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Abstract: Bayesian Credible Intervals are proposed for a Poisson mean. 

These intervals are compared to five classical confidence intervals found 

in the literature. A simulation study is performed to compare the 

procedures using two different criteria and it is attempted to determine 

which of the procedures performs best for various values of the parameter 

and sample size. Estimation of the number of three-point shot attempts and 

three-point shot makes by the San Antonio Spurs is given as an example.  
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Introduction 

During the 2011-2012, 2012-2013 and 2013-2014 

regular seasons, the San Antonio Spurs were in the top 

three in team three point shooting percentage. Because a 

random phenomenon for which a count of some type 

may be modeled by a Poisson distribution, the number of 

three-point attempts and the number of three pointers 

made in a game are possible candidates. Because it 

seems reasonable to assume that these two counts are 

such that at most one three point attempt (or one make) 

can occur in a very small interval of time and the number 

of attempts (or the number of makes) in two equal 

nonoverlapping time intervals should be independent and 

have the same distribution, the Poisson distribution 

seems like an appropriate model for each of these counts. 

There have been many confidence intervals proposed 

and compared in the literature to estimate a Poisson 

mean. A sample of such work are Sahai and Khurshid 

(1993), Schwertman and Martinez (1994), Barker 

(2002), Byrne and Kabaila (2005), Patil and Kulkarni 

(2012), Khamkong (2012) and Tanusit (2012); most of 

these include the familiar Wald interval, the scores 

interval and the Garwood interval which are considered 

in this paper. For six approximate intervals and the exact 

Garwood interval, Schwertman and Martinez (1994) 

produces tables for a range of observed Poisson values 

and several confidence levels. Barker (2002) compares a 

total of nine confidence intervals using coverage rate, 

expected length and whether or not the interval is in 

closed form. Byrne and Kabaila (2005) compares at least 

twelve approximate and exact confidence intervals using 

coverage rate and length; one is a short exact interval 

and is calculated via an algorithm and was first proposed 

in Kabaila and Byrne (2001). Patil and Kulkarni (2012) 

compares 19 confidence intervals using several criteria 

including coverage rate and expected length. Sahai and 

Khurshid (1993) gives several nice biomedical and 

epidemiological examples which could be modeled by 

the Poisson distribution. Also, they provide a review of 

the methodology for ten confidence intervals; each of 

these intervals are in the comparative study of Patil and 

Kulkarni (2012) including the Wald, scores and 

Garwood intervals. Tanusit (2012) compares seven 

confidence intervals using coverage rate and length; 

three of which adapt three common intervals replacing 

the typical point estimator of the Poisson mean (the 

sample mean) by a Bayes estimator of a Poisson mean 

utilizing the conjugate Gamma prior with criterion given 

for the choice of the prior parameters. Khamkong (2012) 

compares four confidence intervals using coverage rate 

and estimated expected length; the scores interval is 

considered along with a proposed adapted Wald interval 

which outperformed the other intervals for small mean 

and small to moderate sample sizes. 
Assuming X has a Poisson distribution with mean θ 

(Poisson(θ)), note that X has an approximate normal 

distribution with µ = θ = σ
2
 (N(θ,θ)) for large θ. This can 

be seen by assuming X1, …, Xθ is a random sample from 

a Poisson (1) distribution, letting X = 
θ

i

i 1

X
=

∑  and applying 

the Central Limit Theorem. In fact, for values of θ as 

small as 25, the normal approximation works quite well. 
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When θ is not small, assuming X1, …, Xn is a random 

sample from a Poisson (θ) distribution is basically 

equivalent to assuming a random sample of size n from a 

N(θ,θ) distribution. Estimating θ assuming a random 

sample of size n from a N(θ,θ) distribution is an 

interesting problem in itself but is even more attractive 

with its application in estimating a Poisson mean. In 

interval estimation of θ assuming normality, a chi-square 

pivot (Q1 = (n – 1)S
2
/θ), a t pivot ( )2

( θ) /Q n X S= −  

and a N(0,1) pivot ( )3
( θ) / θQ n X= − , where 

i

1

(1 / )
n

i

X n X

=

= ∑  and S
2
 = ( )

2

1

n

i

i

X X
=

−∑ / (n – 1), may be 

employed. Also, Q4 = ( θ) /n X X−  is a reasonable 

pivot which is approximately N(0,1) for large n when 

sampling from a Poisson(θ) distribution. Additionally, 

Garwood (1936) gives an exact interval for the Poisson 

mean which is valid for any value of n. 

As alternatives to the classical intervals indicated 

above, two Bayesian credible intervals are proposed. The 

first approach utilizes the Jeffrey’s prior assuming a 

N(θ,θ) distribution and the second approach employs the 

Jeffrey’s prior assuming a Poisson(θ) distribution.  

In section 2, the classical confidence intervals are 

given using pivots Q1, Q2, Q3 and Q4 along with the exact 

confidence interval first derived by Garwood (1936). The 

two new Bayesian credible intervals are derived in section 

3. Section 4 modifies the previous interval estimators of θ 

based on a single Poisson(θ) random variable when θ is 

large. A simulation study is performed to compare the 

procedures using two different criteria in section 5. The 

three pointer example is given in section 6 along with a 

summary of results to conclude the paper. It will be 

apparent from the numerical studies which of the 

procedures performs best for various values of θ and n. 

Confidence Intervals Using the Pivotal 

Quantity Method 

Let X = (X1, …, Xn ) be a random sample and let T1 = 

t1(X) and T2 = t2(X) be two statistics satisfying T1 ≤ T2 

and Pθ [T1 < θ < T2] = 1-α, where α is between 0 and 1 

and does not depend on θ, then the interval (T1, T2) is 

called a 100(1-α)% confidence interval for θ. A pivotal 

quantity Q is a function of X and θ which has a 

distribution free of θ. To find a 100(1-α)% confidence 

interval for θ, find q1 and q2 such that P[q1 < Q < q2] = 1-

α. The values q1 and q2 will depend on α and X. 

Manipulate {q1 < Q < q2} so that {t1(X) < θ < t2(X)}, 

then (T1, T2) is a 100(1-α)% confidence interval for θ 

where Ti = ti(X) for i = 1 and 2. 

Assuming X1, …, Xn is a random sample from a 

N(θ,θ) distribution, the pivotal quantity Q1 = (n-1) S
2
/θ 

has a chi-square distribution with (n-1) degrees of 

freedom (χ
2
(n-1)). Letting q1 = 

2

1 /2, 1α n
χ

− −

and q2 = 
2

/ 2, 1α n
χ

−

, 

where 2

,k
χ
γ

 denotes the 100(1-γ)th percentile of a χ
2
(k) 

distribution, note that 2 2

1 / 2, 1 1 / 2, 1α n α n
P χ Q χ

− − −

 < <  = 1-α. 

Manipulating: 
 

( ){ }2 2 2

1 / 2, 1 / 2, 11 /
α n α n

χ n S χθ
− − −

< − <  

 
to isolate θ, it is straightforward to show that a 100(1 – 

α)% confidence interval for θ is: 
 

( ) ( )( )2 2 2 2

/ 2, 1 1- / 2, 1-1 / , -1 / .
α n α n

n S χ n S χ
− −

 (1) 

 
Assuming normality, the pivotal quantity Q2 = 

( θ) /n X S−  has a t-distribution with (n-1) degrees of 

freedom (t(n-1)). Letting tα/2,n-1 denote the 100(1-

α/2)th percentile of a t(n-1) distribution and noting 

that P[-tα/2,n-1 < Q2 < tα/2,n-1] = 1-α, the resulting 100(1-

α)% confidence interval for θ is given by: 
 

 / 2, -1t / .
α n

X S n±  (2) 

 

The statistic Q3 = ( θ) / θn X − is a pivotal quantity 

because it is a function of X and it has a N(0,1) 

distribution which is free of θ. Let q1 = −zα/2 and q2 = 

zα/2, where zα/2 denotes the 100(1-α/2)th percentile of a 

standard normal distribution. Employing the pivotal 

quantity method, the resulting 100(1-α)% confidence 

interval for θ is given by: 
 

 ( ) ( )2 2 2

/ 2 / 2 /2
z / 2 / z / 4 .
α α

X n z X n n
α

+ ± +  (3) 

 
This result is sometimes referred to as the scores 

interval. 

When X1,…, Xn is a random sample from a Poisson(θ) 

distribution, Q4 = ( )θ /n X X−  is approximately N(0,1) 

for large n. Using this pivotal quantity, it follows that: 
 

/ 2
z
α

X X / n±  (4) 

 

is an approximate 100(1 – α)% confidence interval for θ 

which is the familiar Wald interval. 

To find the exact Garwood interval, let W = 

i

1

n

i

X
=

∑ assuming a Poisson(θ) random sample. Noting that 

W is Poisson(nθ) and observing W = w, it is desired to find 

θ such that ( )( )
k

0

exp θ θ / !
w

k

-n n k

=

∑  = α/2 and 

( )( )
k

w

exp θ θ / !
k

-n n k
∞

=

∑  = α/2. A helpful result that appears in 
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many mathematical statistics textbooks (e.g., Mood et al. 

(1974)) that relates the Poisson and Gamma families is: 
 

( ) ( )( )

( )( )

1
k

0

k

1– exp θ θ / !

exp θ θ / !

r -

k

k r

P U u -u u k

-u u k

=

∞

=

≤ =

=

∑

∑

 (5) 

 
where, U has a Gamma(r, θ) distribution. To satisfy 

( )( )
k

w

exp θ θ / !
k

-n n k
∞

=

∑  = α/2, it is necessary that α/2 = P(U 

≤ n) = P(V ≤ 2θn) using (5), where U has a Gamma(w, θ) 

distribution and V = 2θU has a chi-square distribution 

with 2w degrees of freedom ( χ
2
 (2w)). Hence, θ = 

2

1- / 2,2α w
χ /(2n). Similarly, for ( )( )

k

0

exp θ θ / !
w

k

-n n k

=

∑  = α/2 to 

be satisfied, it is necessary that: 
 

( )( )

( ) ( ) ( )

k

1

 / 2 1– exp θ θ / !

1 – 2

k w

-n n k

P U n P U n P V n

α

θ

∞

= +

=

= ≤ = > = >

∑
 

 
using (5), where U has a Gamma(w +1, θ) distribution 

and V = 2θU has a χ
2
 (2(w +1)) distribution. It follows 

that θ = 2

/ 2,2( 1)α w
χ

+
/(2n) and the resulting Garwood 100(1-

α)% confidence interval for θ is: 

 

( ) ( )( )2 2

1- /2,2 / 2,2( 1)/ 2 , / 2 .
α w α w

χ n χ n
+

 (6) 

 

Although the exact method of Barker (2002) was 

to find the smallest θ such that ( )( )
k

0

exp θ θ / !
w

k

-n n k

=

∑  ≤ 

α/2 and the largest θ such that ( )( )
k

w

exp θ θ / !
k

-n n k
∞

=

∑  ≤ 

α/2 which produce a confidence interval not in closed 

form, he did not use the result in (5) to derive (6) and 

did not refer to this interval as the Garwood interval. 

However, Sahai and Khurshid (1993) briefly gives 

this argument for n = 1. 

Bayesian Credible Intervals 

A 100(1-α)% Bayesian credible interval for θ is 

(t1(x), t2(x)), where x is an observed value of X = (X1,…, 

Xn), t1(x) ≤ t2(x) and P[t1(x) ≤ θ ≤ t2(x)|x] = 1-α. This 

probability is with respect to the posterior distribution of 

θ given x which is given by: 

 

( ) ( ) ( )( | ) | / ,x f x m xπ θ θ π θ=  

 

where, f(x| θ) is the joint density of X, π(θ) is the prior 

density of θ and m(x) is the marginal density of X. In 

Bayesian analysis, all inference is based on the posterior 

distribution.  

Assuming X1,…, Xn is a random sample from a 

normal distribution with mean and variance equal to θ, 

the joint probability density function of X1,…, Xn is: 

  

( ) ( ) ( ) ( ) ( )
- / 2 2

1

| θ | 2πθ exp / 2θ .
n

n

i i

ii

f x f x xθ θ

=

 
= = − − 

 
∑∏  (7)  

 

Assuming no prior knowledge is available for the 

parameter θ, a noninformative prior is employed using 

the method of Jeffreys (1961). This method defines the 

noninformative prior of θ to be π(θ) = [I(θ)]
1/2
, where 

I(θ) is the expected Fisher information given by: 

 

( )
( )( )2

2

ln | θ
.

i
f X

I Eθ
θ

 ∂
= −  

∂  
 

 

Because ln(f(xi|θ)) = – (1/2) ln(2π) – (1/2) ln(θ) – (xi-

θ)
2
/(2θ): 

 

( )( )
( )

2

2 2 3

2

ln | θ
1/ 2 / .

i

i

f x
xθ θ

θ

∂
= −

∂
 

 

It follows that I(θ) = E[ 2

i
X /θ

3
-1/(2θ

2
)] = 1/θ+1/(2θ

2
) 

and hence: 

 

( ) ( )
1/2

2
1 / 1 / 2 .π θ θ θ = +   

 

From (7), the resulting posterior density of θ given x is: 

 

( ) ( ) ( )
1/2

/2 2 2

1

| exp / 2 / 2 1/ 1/ 2 .
n

n

i

i

x x nπ θ θ θ θ θ θ
−

=

  ∝ − − +   
∑  (8) 

 

Figure 1 plots π(θ|x) where x1,…, xn were randomly 

generated from a N(θ,θ) distribution with n = 20 and θ = 

100; the posterior looks fairly normal. For this particular x 

generated (x = (101.32039, 98.72714, 93.60091, 

88.72688, 111.43617, 103.49016, 109.97538, 104.67434, 

120.22155, 105.63300, 90.54763, 104.42001, 95.76609, 

110.46566, 104.04043, 101.49670, 102.85183, 108.18623, 

102.35371, 99.56476)), the posterior mean and variance 

were 102.68 and 5.1116, respectively. 

Assuming the posterior distribution of θ is 

approximately normal with mean ˆ
N

µ  = E(θ|x) and 

variance 2
ˆ
N

σ  = Var(θ|x), an approximate 100(1-α)% 

Bayesian credible interval for θ is: 

 

/2
ˆ ˆ .
N N

z
α

µ σ±  (9) 
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Fig. 1: Posterior density of θ given x where n = 20 and θ = 100 

 
Note for the sample that generated Fig. 1, the 95% 

credible interval for θ given in (9) is (98.25, 107.11) 

which contains 100. 

Now assume X1,…, Xn is a random sample from a 

Poisson distribution with mean θ; hence, the joint 

probability mass function of X1,…, Xn is: 

 

( ) 1

1

| θ θ exp(- θ) / !.

n

i

i

nx

i

i

f x n x=

=

∑
= ∏  (10) 

 

Employing Jeffreys’ method again, first note that 

ln(f(xi|θ)) = xi ln(θ)-θ-ln(xi!). Hence: 

 

( )
( )( )

( )
2

2

2

ln | θ
/ 1 / ;

i

i

f X
I E E Xθ θ θ

θ

 ∂
= − = = 

∂  
 

 

this yields the noninformative prior π(θ) = θ
-1/2

. Using 

(10), the resulting posterior density of θ given x is thus 

given by: 

 

( ) ( )1

1/2

| θ exp - θ .

n

i

i

x

x nπ θ =

−∑
∝  (11) 

 

Figure 2 plots the posterior in (11) where x1,…, x50 

were randomly generated from a Poisson(100) 

distribution. This posterior looks fairly normal with 

posterior mean and variance given by 98.99 and 

1.9798, respectively. 

Assuming the posterior distribution of θ is 

approximately normal with mean ˆ
P

µ  = E(θ|x) and 

variance 2
ˆ
P
σ  = Var(θ|x), an approximate 100(1-α)% 

Bayesian credible interval for θ is: 

 

/ 2
ˆ ˆ .
P P

z
α

µ σ±  (12) 

 

For the sample that generated Fig. 2, the 95% 

credible interval for θ given in (12) is (96.23, 101.75) 

which contains 100. 

Modification of Intervals Assuming a Single 

Poisson Random Variable 

Consider modifying the previous interval estimators of 

θ in Sections 2 and 3 based on a single Poisson(θ) random 

variable when θ is large. Letting Y have a Poisson(θ) 

distribution, the previous confidence intervals and credible 

intervals are modified using n = 1. First note that the chi-

square confidence interval in (1) and the t interval in (2) 

cannot be altered because the observed value of the 

standard deviation is 0 in this case due to n being 1. 

However, the remaining intervals can be modified. 

The scores confidence interval based on Q3 given in 

(3) becomes: 

 
2 2

/ 2 / 2 / 2
z / 2 z / 4.
α α

Y z Y
α

+ ± +  (13) 

 

The Wald confidence interval based on Q4 given in 

(4) modified for a single Poisson(θ) random variable is 

given by: 

 

 
/ 2

z .
α

Y Y±  (14) 
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Fig. 2: Posterior density of θ given x where n = 50 and θ = 100 

 

Observing Y = y, the resulting Garwood 100(1 – α)% 

confidence interval for θ is: 
 

 ( )2 2

1- / 2,2 / 2,2( 1)/ 2, / 2 .α y α yχ χ
+

 (15) 

 
To derive the Bayesian credible intervals, note from 

(8) that the posterior of θ given y in the normal case is: 

 

( ) ( ){ } ( )
1/ 2

1/2 2 2
| exp / 2 / 2 1/ 1/ 2 .y yπ θ θ θ θ θ θ

−  ∝ − − +   (16) 

 

Letting ˆ
N

µ  and 2
ˆ
N
σ  denote the mean and variance of 

the posterior given in (16), respectively and assuming this 

posterior is close to normal, an approximate 100(1 – α)% 

Bayesian credible interval for θ is as given in (9) using the 

new definitions of ˆ
N

µ  and ˆ
N

σ . Similarly for the Poisson 

case, the posterior density of θ given y is given by: 

 

( ) 1/ 2| e .y
y

θ
π θ θ

− −

∝  (17) 

 

Assuming this posterior is approximately normal with 

ˆ
P

µ  = E(θ|y) and variance 2
ˆ
P
σ  = Var(θ|y), an approximate 

100(1-α)% Bayesian credible interval for θ is as given in 

(12) using the new definitions of ˆ
P

µ  and ˆ
P

σ .  

Figure 3 plots the posterior densities given in (16) 

and (17) where a variate of 103 was randomly generated 

from a Poisson distribution with θ = 100. These 

posteriors look fairly normal, where ˆ
N

µ  = 103.4933, 2
ˆ
N
σ  

= 103.8477, ˆ
P

µ  = 103.4988 and 2
ˆ
P
σ  = 103.4409. These 

densities are nearly indistinguishable. For y = 103, the 

95% credible intervals given in (9) and (12) using the 

new definitions of ˆ
N

µ , ˆ
N

σ , ˆ
P

µ  and ˆ
P

σ  are (83.52, 

123.47) and (83.56, 123.43), respectively. Both of the 

intervals contain 100, the assumed value of θ and the 

second interval based on the posterior in (17) is slightly 

narrower than the one based on the posterior in (16). 

Numerical Studies  

To compare the seven approaches, a simulation study 

is performed considering various values of the parameter 

θ and the sample size n for the two different underlying 

distributions from which the random sample is taken. 

Approaches 1 through 4 utilize the confidence intervals 

for θ given in (1), (2), (3) and (4), respectively, 

approaches 5 and 6 utilize the credible intervals for θ 

given in (9) and (12), respectively and approach 7 is the 

Garwood confidence interval in (6). Approaches 1 and 2 

do not exist for n = 1 because the sample variance equals 

0. For n = 1, approaches 3, 4 and 7 employ the 

confidence intervals given in (13), (14) and (15), 

respectively and approaches 5 and 6 use the intervals 

given in (9) and (12) employing the posterior densities 

given in (16) and (17), respectively. 

All combinations with n equal to 5, 10, 20, 50 and 

100 and the parameter θ equal to 1, 5, 10, 20, 50 and 100 

assuming the N(θ,θ) and Poisson(θ) distributions are 

considered. Also, values of θ equal to 50, 100, 150, 200, 

250, 300, 350 and 400 for n = 1 assuming a Poisson(θ) 

distribution are investigated. For each n, θ and 

distribution combination, a random sample is generated 

and the various intervals are computed, where it is noted 

whether or not θ is in each of the resulting intervals as 

well as the length of each of the resulting intervals. 
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Fig. 3: Posterior densities of θ given y = 103 where θ = 100 given in (16) and (17) (dashed line) 

 
This process is repeated 10,000 times and the percentage 
of time the respective interval estimates cover the 
parameter and the average lengths of the respective 
interval estimates are calculated. Casella and Berger 
(2002) suggest size and coverage probability as criteria 
to evaluate confidence intervals. Bolded values in the 
table indicate the approach that yields the smallest 
average length among all approaches with coverage 
percentages of at least 95%. Italic bolded values signify 
the approach that yields the smallest average length 
among all approaches with coverage percentages of at 
least 94.50% which could be rounded to 95%. 

Recall that the criteria of coverage percentage and 

length closely match the criteria of Barker (2002) which 

also included the criterion of the interval being in closed 

form. The Wald interval, the scores interval, the 

Garwood interval and six others for values of nθ between 

0.5 and 5.0 were compared using these three criteria. 

Noting that Barker did not point out that the method that 

was referred to as the exact method was actually the 

method of Garwood which yields an interval of closed 

form, Barker recommends the Garwood interval when 

desiring the coverage percentage to never go below 95% 

and the scores interval when tolerating approximate 

coverage percentage and wide intervals. In the numerical 

study of Barker, the Garwood interval was always 

narrower than the scores interval. The opposite is the 

case in this numerical study; however, the numerical 

study of Barker considers values of nθ not exceeding 5. 

Note also that the Wald interval performed poorly in 

terms of coverage in the Barker numerical study.  

Sampling from a normal distribution, Table 1 gives 

the results for the various θ and n when n > 1. First note 

that the coverage percentages of all of the approaches are 

all around 95% for most of the values of θ and n 

considered. The only exceptions to this are approaches 4 

(Wald) and 6 (second Bayes) which have low coverage 

percentages for small θ and n and approach 7 (Garwood) 

which has high coverage percentages for small θ and n. 

It is not surprising that approach 4 does poorly for small 

n as it is based on Q4 which is approximately standard 

normal for large n; however, even for small n, approach 

4 has good coverage percentages for larger θ. Note also 

that approach 4 cannot be used when x  is negative. This 

happened in the simulation study only when θ = 1 and n 

= 5 or 10; in such cases, the coverage percentages and 

average lengths were based on the number of loops 

where x  was positive which was over 99% of the time. 

Similarly, approach 3 (scores) cannot be used when the 

radicand in (3) is negative. This occurred in only a few 

loops in the simulations when θ = 1 and n = 5 or 10 and 

adjustments were accordingly made. The Bayesian 

approach assuming normal data (approach 5) tended to 

yield the smallest average length while keeping coverage 

probabilities of at least 0.95; the only exception to this 

was when n = 5 for the various θ where approach 5 had 

the smallest average length but had coverage percentages 

slightly below 95%. Except for the θ = 1 or n = 5 cases, 

approach 4 (Wald) performed well followed by 

approaches 6 (second Bayes) and 3 (scores). When n = 5, 

approach 3 performed best for smaller values of θ. For 
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any θ, approaches 3, 4 and 6 have very close average 

lengths for n = 50 and 100; however, approach 5 has 

smallest average lengths in these cases. Approach 7 

(Garwood) outperformed the others in only one case (θ = 

50, n = 5) where several others had smaller average 

lengths but had coverage percentages a little below 95%. 

This is not surprising as this interval is not based on 

normal data. Approach 1 is the worst as its average 

length far exceeds the other intervals while having 

reasonable coverage percentages.  
 
Table 1: Coverage percentages and average length of interval estimates for θ for the seven approaches for various θ, n and 

underlying normal distribution (N(θ,θ)) 

 Approach 

 ----------------------------------------------------------------------------------------------------------------------------------- 

 1 2 3 4 5 6 7 

θ = 1, n = 5 

Coverage % 95.29 95.11 95.29 91.30 94.78 93.23 97.75 

Average length 7.880 2.000 1.884 1.695 1.597 1.755 1.986 

θ = 1, n = 10 

Coverage % 95.14 95.08 94.94 92.91 95.32 94.28 96.79 

Average length 2.877 1.359 1.286 1.226 1.078 1.257 1.349 

θ = 1, n = 20 

Coverage % 94.85 95.34 95.30 93.88 95.18 94.68 96.18 

Average length 1.556 0.923 0.892 0.871 0.738 0.882 0.927 

θ = 1, n = 50 

Coverage % 95.37 95.40 95.38 94.50 95.17 95.02 95.64 

Average length 0.857 0.566 0.558 0.553 0.459 0.556 0.575 

θ = 1, n = 100 

Coverage % 95.05 95.33 95.31 95.04 95.15 95.04 95.79 

Average length 0.577 0.395 0.394 0.392 0.322 0.393 0.402 

θ = 5, n = 5 

Coverage % 94.88 94.92 95.19 93.95 94.54 93.92 96.08 

Average length 39.502 5.189 3.979 3.903 3.722 3.814 4.022 

θ = 5, n = 10 

Coverage % 94.72 95.15 95.40 94.56 95.15 94.94 95.96 

Average length 14.243 3.104 2.790 2.763 2.672 2.774 2.871 

θ = 5, n = 20 

Coverage % 94.96 95.04 95.13 95.01 95.16 95.24 95.72 

Average length 7.753 2.062 1.966 1.957 1.880 1.962 2.011 

θ = 5, n = 50 

Coverage % 95.01 94.95 95.18 95.05 95.03 95.16 95.56 

Average length 4.269 1.263 1.241 1.239 1.185 1.240 1.260 

θ = 5, n = 100 

Coverage % 95.06 95.19 95.16 95.10 95.35 95.18 95.44 

Average length 2.895 0.885 0.877 0.876 0.837 0.877 0.887 

θ = 10, n = 5 

Coverage % 95.10 95.29 95.24 94.64 95.03 94.99 95.98 

Average length 79.200 7.384 5.579 5.526 5.328 5.532 5.745 

θ = 10, n = 10 

Coverage % 95.11 95.19 95.23 95.14 95.33 95.29 95.84 

Average length 28.766 4.415 3.934 3.915 3.850 3.925 4.022 

θ = 10, n = 20 

Coverage % 95.19 95.37 95.04 95.06 95.03 95.21 95.41 

Average length 15.628 2.929 2.778 2.771 2.715 2.775 2.824 

θ = 10, n = 50 

Coverage % 95.03 95.32 95.15 95.02 95.18 95.04 95.26 

Average length 8.532 1.786 1.754 1.753 1.713 1.753 1.773 

θ = 10, n = 100 

Coverage % 95.04 95.22 95.35 95.25 95.07 95.23 95.35 

Average length 5.792 1.252 1.240 1.239 1.211 1.240 1.249 

θ = 20, n = 5 

Coverage % 95.30 95.27 95.15 95.01 95.09 95.18 95.68 

Average length 156.05 10.382 7.865 7.828 7.766 7.823 8.040 
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Table 1: Continued 

 1 2 3 4 5 6 7 

θ = 20, n = 10 

Coverage % 94.89 95.17 95.21 95.09 95.13 95.17 95.68 

Average length 57.420 6.236 5.556 5.543 5.492 5.546 5.648 

θ = 20, n = 20 

Coverage % 95.20 95.16 95.10 95.06 95.00 95.11 95.32 

Average length 31.009 4.127 3.922 3.918 3.877 3.920 3.971 

θ = 20, n = 50 

Coverage % 95.01 95.17 95.27 95.40 95.20 95.42 95.46 

Average length 17.146 2.532 2.481 2.480 2.451 2.480 2.500 

θ = 20, n = 100 

Coverage % 95.19 95.13 95.17 95.22 95.14 95.22 95.32 

Average length 11.563 1.770 1.753 1.753 1.732 1.753 1.763 

θ = 50, n = 5 
Coverage % 95.24 95.07 94.76 94.57 94.54 94.53 95.10 

Average length 391.05 16.430 12.419 12.395 12.298 12.334 12.603 

θ = 50, n = 10 

Coverage % 95.07 95.33 95.39 95.36 95.45 95.38 95.63 

Average length 143.42 9.858 8.769 8.760 8.726 8.760 8.863 

θ = 50, n = 20 

Coverage % 95.04 95.48 95.20 95.16 95.22 95.23 95.37 

Average length 77.878 6.539 6.200 6.197 6.171 6.199 6.248 

θ = 50, n = 50 

Coverage % 95.15 95.35 95.36 95.32 95.36 95.34 95.30 

Average length 42.839 4.003 3.920 3.920 3.901 3.920 3.941 

θ = 50, n = 100 

Coverage % 95.23 95.24 95.10 95.11 95.17 95.08 95.23 

Average length 28.955 2.800 2.772 2.772 2.759 2.772 2.782 

θ = 100, n = 5 

Coverage % 95.29 95.23 95.15 95.17 94.96 94.97 95.40 

Average length 787.62 23.334 17.548 17.531 17.416 17.441 17.737 

θ = 100, n = 10 

Coverage % 95.01 95.22 95.10 95.09 95.08 95.17 95.31 

Average length 287.11 13.939 12.404 12.398 12.376 12.400 12.500 

θ = 100, n = 20 

Coverage % 95.23 94.98 95.04 95.04 94.97 95.04 95.24 

Average length 156.14 9.258 8.766 8.764 8.746 8.765 8.815 

θ = 100, n = 50 

Coverage % 95.14 95.46 95.36 95.31 95.33 95.32 95.39 

Average length 85.676 5.660 5.544 5.544 5.531 5.544 5.564 

θ = 100, n = 100 

Coverage % 95.33 95.20 95.21 95.21 95.11 95.17 95.21 

Average length 57.889 3.960 3.921 3.920 3.911 3.920 3.930 

 

Table 2 considers the same values of θ and n as Table 

1 but the sample is taken from a Poisson distribution. 

First note that for small θ and n, it is possible for x1 = 

… = x
n
 which yields (0, 0) using approach 1, ( x , x ) 

for approach 2 and (0, 0) for approach 4 only when 

each xi = 0. For these cases, this occurred less than 1% 

of the time and the coverage percentages and average 

lengths were appropriately modified counting only 

those cases where this phenomena did not occur. For 

smaller θ, approaches 1 (for θ = 1 and 5) and 5 (for θ 

= 1, 5 and 10) tended to have coverage probabilities 

below 0.95 but these probabilities get closer to 0.95 as 

θ increases. Approach 4 performed the best for these 

values of θ followed closely by approaches 6 and 3 

except when θ = 1 and n = 5 or 10 where approach 6 

performed the best followed by approaches 3 and 7 with 

approach 4 having too small covering percentages. 

When θ is larger (θ = 20, 50, 100), the coverage 

percentages of all the approaches are all around 95% 

for the various n. In this case, approach 5 performs the 

best followed by approaches 4, 6 and 3; in fact, for n 

= 20, 50 and 100, approaches 3, 4 and 6 have almost 

identical average lengths. Again approach 1 has much 

higher average lengths than the other approaches for 

all θ and n considered. 

Table 3 gives the results for various large values of θ 

when sampling from the Poisson distribution when n = 1, 

where approaches 3 through 7 are considered. The 

coverage percentages of all five approaches are around 

95% for all the values of θ given. The Wald approach 
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(approach 4) is the dominating approach followed by the 

Bayesian approach assuming sampling from a Poisson 

population (approach 6). Approach 5 is the next best 

approach and approaches 3 and 5 have identical average 

lengths for large θ. Approach 7 (Garwood) had good 

coverage probability but had largest average length 

among the five approaches. The good performance of 

approach 4 may be surprising as it is reasonable to 

suspect that it would not do well for small n; however, 

even in Table 1 and 2, approach 4 did perform well for 

larger θ when n is small. 

For Table 1 and 2, average lengths increase as θ 

increases for fixed n for each approach and average 

lengths decrease as n increases for fixed θ for each 

approach. For Table 3, average lengths increase as θ 

increases for each approach. 

Consider comparing the results of (n1 = 1, θ1 = θ) and 

(n2 = n, θ2 = θ/n) cases in Table 2 and 3 where Poisson 

data was assumed. For example, compare the results of 

the (1,250) and (50,5) cases or the results of the (1,400) 

and (20,20) cases. For approaches 3, 4, 6 and 7, the 

average length of the intervals for the (1, θ) case was 

about n times that for the respective (n, θ/n) case. This 

can be seen by comparing (3) to (13), (4) to (14), (11) to 

(17) and (6) to (15) and noting that 
i

1

n

i

Y X
=

=∑ , where 

X1,…, X
n is a random sample from a Poisson(θ/n) 

distribution and Y is a Poisson(θ) random variable. When 

you multiply the intervals in (3), (4) and (6) by n, 

intervals (13), (14) and (15), respectively, are obtained. 

Noting that the posteriors in (11) and (17) are the same 

when (n, θ/n) is substituted in (11) and (1, θ) is 

substituted in (17) and when using (11), the interval for 

θ2 = θ/n would actually be found. Unfortunately, the 

cases considered in Table 2 and 3 cannot be reduced due 

to the observation noted above only applies to 

approaches 3, 4, 6 and 7. 

 
Table 2: Coverage percentages and average length of interval estimates for θ for the seven approaches for various θ, n and 

underlying Poisson distribution 

 Approach 

 ---------------------------------------------------------------------------------------------------------------------------------- 

 1 2 3 4 5 6 7 

θ = 1, n = 5 

Coverage % 95.43 95.94 95.91 87.29 87.06 95.52 97.87 

Average length 8.020 2.072 1.879 1.684 1.537 1.771 1.955 

θ = 1, n = 10 

Coverage % 90.96 94.34 96.34 92.92 87.40 95.65 97.48 

Average length 2.866 1.373 1.285 1.224 1.056 1.256 1.342 

θ = 1, n = 20 

Coverage % 90.47 93.95 94.52 95.08 86.57 95.08 95.82 

Average length 1.546 0.916 0.892 0.871 0.730 0.882 0.926 

θ = 1, n = 50 

Coverage % 89.75 94.77 94.54 95.02 85.15 95.02 95.47 

Average length 0.855 0.564 0.558 0.553 0.456 0.556 0.575 

θ = 1, n = 100 

Coverage % 89.23 94.76 95.14 94.62 85.61 95.25 95.62 

Average length 0.578 0.395 0.393 0.391 0.321 0.392 0.402 

θ = 5, n = 5 

Coverage %  95.24 94.57 94.20 94.63 92.60 94.63 95.73 

Average length  39.151 5.172 3.974 3.898 3.809 3.932 4.127 

θ = 5, n = 10 

Coverage %  94.35 94.97 94.54 95.05 92.95 95.05 95.21  

Average length  14.453 3.122 2.793 2.766 2.675 2.780 2.873 

θ = 5, n = 20 

Coverage %  93.92 94.94 95.02 94.52 93.00 95.36 95.48 

Average length  7.746 2.060 1.967 1.957 1.879 1.962 2.011 

θ = 5, n = 50 

Coverage %  93.81 95.19 94.79 95.15 92.84 95.15 95.44 

Average length  4.276 1.264 1.241 1.239 1.184 1.240 1.260 

θ = 5, n = 100 

Coverage %  93.90 95.09 95.09 95.12 93.09 95.40 95.53 

Average length  2.888 0.884 0.877 0.877 0.837 0.877 0.887 

θ = 10, n = 5 

Coverage %  95.01 94.94 94.38 94.59 93.83 94.41 95.20 

Average length  79.119 7.385 5.582 5.529 5.437 5.520 5.747 
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Table 2: Continued  

 1 2 3 4 5 6 7 

θ = 10, n = 10 

Coverage %  94.41 95.04 95.03 94.68 94.05 95.33 95.41 

Average length  28.523 4.390 3.933 3.914 3.844 3.922 4.020 

θ = 10, n = 20 

Coverage %  94.59 95.18 95.04 94.95 94.08 95.47 95.55 

Average length  15.575 2.923 2.777 2.771 2.714 2.774 2.835 

θ = 10, n = 50 

Coverage %  94.59 95.14 95.01 95.10 94.13 95.26 95.25 

Average length  8.566 1.789 1.755 1.754 1.714 1.755 1.774 

θ = 10, n = 100 

Coverage %  94.58 95.24 95.03 95.29 94.25 95.29 95.38 

Average length  5.777 1.251 1.240 1.239 1.210 1.240 1.250 

θ = 20, n = 5 

Coverage %  94.59 95.10 94.92 94.50 94.69 95.34 95.40 

Average length  160.90 10.520 7.872 7.834 7.795 7.853 8.045 

θ = 20, n = 10 

Coverage %  95.00 95.25 95.01 94.79 94.63 95.36 95.42 

Average length  57.146 6.127 5.553 5.540 5.492 5.547 5.651 

θ = 20, n = 20 

Coverage %  94.80 95.24 95.48 95.33 94.73 95.18 95.51  

Average length  31.198 4.136 3.925 3.921 3.880 3.923 3.972 

θ = 20, n = 50 

Coverage %  94.48 95.08 95.04 95.34 94.69 95.34 95.36 

Average length  17.069 2.526 2.480 2.479 2.450 2.480 2.499 

θ = 20, n = 100 

Coverage %  94.64 95.20 95.08 95.16 94.78 95.29 95.31 

Average length  11.575 1.770 1.754 1.753 1.732 1.753 1.763 

θ = 50, n = 5 

Coverage %  95.10 95.13 94.96 95.06 95.04 95.06 95.45 

Average length  396.95 16.566 12.418 12.394 12.369 12.386 12.581 

θ = 50, n = 10 

Coverage %  95.14 95.03 94.74 94.86 94.95 95.11 95.15 

Average length  142.08 9.809 8.776 8.768 8.735 8.770 8.867 

θ = 50, n = 20 

Coverage %  95.20 95.06 95.11 95.25 95.05 95.25 95.33 

Average length  77.755 6.532 6.200 6.197 6.171 6.198 6.247 

θ = 50, n = 50 

Coverage %  94.83 95.33 95.10 95.26 95.08 95.26 95.38 

Average length  42.701 3.996 3.921 3.920 3.902 3.921 3.941 

θ = 50, n = 100 

Coverage %  94.84 95.22 95.13 95.14 95.08 95.20 95.27 

Average length  28.927 2.799 2.772 2.772 2.758 2.772 2.782 

θ = 100, n = 5 

Coverage %  95.10 95.24 94.99 94.91 95.02 95.17 95.46 

Average length  787.59 23.319 17.545 17.528 17.510 17.536 17.741 

θ = 100, n = 10 

Coverage %  94.88 95.19 94.99 95.15 95.09 95.15 95.30 

Average length  287.90 13.962 12.402 12.396 12.374 12.399 12.496 

θ = 100, n = 20 

Coverage %  95.26 95.27 95.21 95.14 95.14 95.32 95.39 

Average length  155.511 9.240 8.765 8.763 8.745 8.764 8.814 

θ = 100, n = 50 

Coverage %  95.13 95.41 95.16 95.14 95.01 95.22 95.26 

Average length  85.644 5.660 5.544 5.544 5.531 5.544 5.564 

θ = 100, n = 100 

Coverage %  95.04 95.01 95.13 95.12 95.03 95.12 95.18 

Average length  57.963 3.962 3.921 3.920 3.911 3.920 3.930 
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Table 3: Coverage percentages and average length of interval estimates for θ for the seven approaches for n = 1 and various θ with 

underlying Poisson distribution 

 Approach 

 --------------------------------------------------------------------------------------------------------------------------------- 

 1 2 3 4 5 6 7 

θ = 50 

Coverage % **** **** 94.83 95.10 95.10 95.10 95.46 

Average length ****  ****  27.929 27.662 27.912 27.794 28.760 

θ = 100 

Coverage %  ****  **** 95.13 94.72 95.52 95.52 95.58 

Average length  ****  **** 39.364 39.175 39.359 39.270 40.235 

θ = 150 

Coverage %  ****  **** 95.54 95.46 95.09 95.09 95.55 

Average length  ****  **** 48.127 47.973 48.125 48.051 49.032 

θ = 200 

Coverage %  ****  **** 94.96 94.75 95.28 95.28 95.34 

Average length  ****  **** 55.539 55.405 55.537 55.472 56.451 

θ = 250 

Coverage %  ****  **** 94.85 95.05 95.05 95.05 95.52 

Average length  ****  **** 62.076 61.957 62.075 62.017 62.986 

θ = 300 

Coverage % ****  **** 94.95 95.19 95.19 95.19 95.24 

Average length  ****  **** 67.998 67.889 67.998 67.944 68.899 

θ = 350 

Coverage %  ****  **** 95.21 94.94 95.49 95.49 95.56 

Average length  ****  **** 73.440 73.340 73.440 73.390 74.374 

θ = 400 

Coverage %  ****  **** 95.52 95.46 95.25 95.25 95.71 

Average length  ****  **** 78.491 78.397 78.491 78.444 79.424 

 

It is difficult to compare results of this simulation 

study with the conclusions of Schwertman and Martinez 

(1994), Barker (2002), Byrne and Kabaila (2005) and 

Patil and Kulkarni (2012) due to the various comparison 

criteria and values of n and θ considered. However, it is 

fair to say that some considered the Garwood interval 

more favorable and the Wald interval much less favorable 

than this study. For instance, for n = 1, Patil and Kulkarni 

(2012) determined from their numerical study that the 

Garwood and scores intervals had good coverage rates 

for θ in the interval (0,50] with the Garwood interval 

having shortest length along with three other intervals 

among the 19 intervals for θ between 4 and 50. 

Furthermore, they recommended to avoid the Wald 

interval due to low coverage rates for all θ they 

considered. Tanusit (2012) considered θ = 1, 2,…, 5 and 

n = 10, 11,…, 100 and recommended the scores and 

Wald intervals for small n and large n, respectively.  

The adaptation of the Wald interval given in 

Khamkong (2012) is referred to as AWC and is given by 

 

( )2

/ 2 / 2
z / 2 / .
α

X n z X n
α

+ ±  

 

The simulation study considered θ = 1, 1.5, 3, 5 and 

10 and n = 15, 25, 50 and 100; hence, there is some 

overlap with the numerical study of this paper. Note that 

the length of AWC equals the length of the Wald interval 

given in (4) and the length of AWC is less than the 

length of the scores interval given in (3). From the 

simulation of Khamkong, the coverage rates of the 

scores interval and AWC are usually equal and below 

95%. Requiring a coverage rate of at least 95%, the 

table below using Poisson data notes the approach that 

yielded the shortest length when AWC is compared to 

those in this paper for θ and n that include or are 

somewhat close to values in the simulation of 

Khamkong. Referring to the AWC interval as approach 

8, the Wald interval and the second Bayes approach 

dominate for these values of θ and n. 
 

 20   50   100 

n --------------- -------------- ------------- 

θ 1 5 10 1 5 10 1 5 10 

Best approach 4 6 6 4 4 4,8 6 4 4,8  

 

Assuming the N(θ,θ) model, note that T = 
1

n

2

i

i

X

=

∑ is a 

minimal sufficient statistic for θ because the joint density 

of X1, …, X
n in (7) can be written as: 

 

( )

( ) { }
- / 2

1 1

f | θ
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n n

n 2

i i

i i

x

n x x
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By the Sufficiency Principle, any inference about θ 

should depend on the sample (X1,…, X
n ) only through 

T. Note that Q1 and Q2 involve X  as well as T and Q3 

does not involve T. Assuming the Poisson(θ) model, 

the Wald interval based on Q4, the Bayesian approach 

yielding (12) and the exact Garwood interval 

have
1

n

i

i

X
=

∑ as a minimal sufficient statistic for θ. The 

only approach that solely utilizes T is the Bayesian 

approach that assumes the N(θ,θ) model. Hence, it 

makes sense that approach 5 is the dominating 

approach for normal data as in Table 1. 

Example 

After the National Basketball Association (NBA) and 

American Basketball Association (ABA) merged in 

1976, the San Antonio Spurs have won five NBA 

championships and 22 division titles. For the 1979-1980 

season, the NBA adopted the three-point shot, where a 

player's feet must be completely behind the three-point 

line at the time of the shot or jump in order to make a 

three-point attempt. In recent years, the Spurs have 

typically been a very good three-point shooting team.  

As an example, consider the number of three-point 

attempts by the San Antonio Spurs during the 2011-

2012, 2012-2013 and 2013-2014 regular seasons where 

they were in the top three in team three point shooting 

percentage. There are 82 games in a regular season; 

however, the 2011-2012 season consisted of only 66 

regular season games because it started late due to a 

lockout. For the 230 regular season games in the time 

period of interest, the actual average number of three-

point attempts by the Spurs was 21.4 per game. 

Assuming the number of three-point attempts in a game 

has a Poisson(θ) distribution, consider estimating θ based 

on a random sample of size 20 from the 230 games of 

interest. Using R to select the random sample, the games 

selected were on February 18, March 28, April 9 and 18, 

November 10 and 17 of 2012, February 19 and 22, March 

3, 16 and 27, November 11 and December 31 of 2013, 

January 4 and 17, February 10, March 16 and 28, April 3 

and 14 of 2014 which yielded three-point attempts of 28, 

20, 24, 21, 18, 27, 30, 22, 20, 17, 15, 28, 20, 18, 20, 17, 

16, 24, 22 and 17, respectively. This sample resulted in a 

sample mean of 21.200 and a sample variance of 19.221 

which are fairly close; hence, the Poisson model seems 

feasible. The interval estimates of θ for Approaches 1 

through 7 are given in the table below.  

 

 Approach 

 ------------------------------------------------------------------------------------------------------------- 

 1 2 3 4 5 6 7 

Interval lower bound 11.116 19.148 19.276 19.182 19.185 19.206 19.230 

Interval upper bound 41.004 23.252 23.316 23.218 23.177 23.244 23.317 

Length of interval 29.888 4.104 4.040 4.036 3.992 4.038 4.087 
 

From the table, note that the actual value of θ, 21.4, is in 

each interval. Approach 1 yielded by far the widest interval 

while approach 5 (first Bayes) yielded the shortest interval 

followed closely by approaches 4 (Wald), 6 (second Bayes) 

and 3 (scores). This is what is expected considering our 

discussion of Table 2 for θ = 20 = n. 

Of interest may also be the number of three-pointers 

made for these 20 games in the sample; these values 

were 12, 10, 7, 8, 7, 16, 10, 4, 9, 6, 10, 13, 9, 4, 8, 5, 10, 

13, 9 and 4, where the actual mean number of three-

pointers made in a game was θ = 8.3. This sample 

resulted in a mean and variance of 8.700 and 10.642, 

respectively. From the table below, note that 8.3 lies 

within each interval. Approach 1 is again the worst 

approach, whereas, approach 5 is the best followed 

closely by approaches 4, 6 and 3. From our discussion of 

Table 2 when θ is small and n = 20, approach 4 was 

expected to perform the best. 
 

 Approach 

 ------------------------------------------------------------------------------------------------------------- 

 1 2 3 4 5 6 7 

Interval lower bound 6.155 7.173 7.500 7.407 7.554 7.430 7.455 

Interval upper bound 22.702 10.227 10.092 9.993 10.094 10.020 10.093 

Length of interval 16.547 3.054 2.592 2.586 2.540 2.590 2.638 

 

Conclusion 

When sampling from a N(θ,θ) or a Poisson(θ) 

distribution, the Bayesian credible interval obtained 

assuming normal data (approach 5) appears to perform 

very well for various values of θ and n. The only 

exceptions to this occurs when sampling from a 

N(θ,θ) distribution and θ and n are small where 

approach 3 (scores) is preferred and when sampling 

from a Poisson(θ) distribution when θ is small or 
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when θ is not small and n = 1 where approach 4 

(Wald) is preferred. 

In statistics, it is always desired to improve on 

statistical methods in various inference problems. 

Estimating a Poisson mean is not a new problem and has 

been discussed in the literature for years. Although the 

distribution was named after Simeon Denis Poisson in 

the 1800’s, some believe it should have been named after 

Abraham de Moivre who actually appears to be the first 

to discover it in the early 1700’s.  
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