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Introduction 

Consider the quadratic Liénard type nonlinear 

differential equation: 
 

( ) ( )2
0x u x x v x+ + =ɺɺ ɺ  (1) 

 
where, u(x) and v(x) are arbitrary functions of x and a dot 

over a symbol denotes a differentiation with respect to 

time. Mathews and Lakshmanan (1974) showed that 

Equation (1) admits a trigonometric solution with 

amplitude-dependent frequency if: 
 

( ) ( )
2

2 2
,

1 1

x x
u x and v x

x x

λ ω

λ λ
= =

± ±

∓  

 

where, λ and ω are arbitrary constants. The present work 

is an extension of the result of Mathews-Lakshmanan 

(1974) by showing that there are other classes of 

functions u(x) and v(x) such that Equation (1) is closely 

connected to the linear harmonic oscillator equation and 

may exhibit exact and explicit general trigonometric 

solutions with amplitude-dependent frequency. In other 

words, the present research contribution shows the 

existence of classes of quadratic Liénard type equations 

which admit exact and explicit general trigonometric 

solutions but with amplitude-dependent frequency. This is 

accomplished by nonlocal transformation of the linear 

harmonic oscillator equation by means of generalized 

Sundman transformation. In this way the fundamental 

question to be solved first is the formulation of the 

appropriate generalized Sundman transformation 

(section 2) which may allow one to map secondly the 

linear harmonic oscillator equation into a general class of 

mixed Liénard type equations (section 3) from which it 

become possible to deduce the class of equation allowing 

one to find the quadratic Mathews-Lakshmanan equation 

(section 4) and another class of quadratic Liénard type 

equations exhibiting exact trigonometric solution but with 

amplitude dependent frequency (section 5). Finally the 

ability of the theory to be applied in finding exact and 

explicit general periodic solutions to nonlinear differential 

equations in terms of trigonometric or Jacobian elliptic 

functions is highlighted by illustrative examples (section 

6) and concluding remarks are addressed for the work. 

Generalized Sundman Transformation 

In this section the generalized Sundman 
transformation required to demonstrate the preceding 
prediction is formulated. Such a transformation is a 
nonlocal transformation which applies to map in general 
a second order nonlinear ordinary differential equation 
into a second order linear ordinary differential equation 
(Monsia et al., 2016a) to find exact closed-form 
solutions. However, given a general second order linear 
ordinary differential equation, the generalized Sundman 
transformation, conversely, may be applied for detecting 
general classes of second order nonlinear ordinary 
differential equation exactly integrable (Monsia et al., 
2016a). This formalism has been applied in (Monsia et al., 
2016a; 2016b) to deduce mainly a class of quadratic 
Liénard type differential equations which admit exact 
trigonometric function solutions. Consider now the general 
second order linear differential equation of the form: 
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2
0y by a y′′ ′+ + =  (2) 

 
where, prime means differentiation with respect to τ, a 
and b are arbitrary parameters and the generalized 
Sundman transformation (Monsia et al., 2016a): 
 

( ) ( ) ( )

( )
( )

, , , ,

,
, 0

y F t x d G t x dt

F t x
G t x

x

τ τ= =

∂
≠

∂

 (3) 

 
such that: 
 

( ) ( ) ( ) ( )( ), , , exp .
l

F t x g x G t x xγ ϕ= =∫  

 
l and γ are arbitrary parameters, g(x) ≠ 0 and ϕ(x) are 
arbitrary functions of x. So, the application of Equation (3) 
to Equation (2) may give the desired general class of mixed 
Liénard type differential equations (Monsia et al., 2016a). 

General Class of Mixed Liénard Type 

Equations 

By application of the generalized Sundman 

transformation (3), the general second order linear ordinary 

differential Equation (2) may be mapped onto a general 

class of mixed Liénard type equations (Monsia et al., 

2016a). Thus consider the following theorem. 

Theorem 1 

Consider Equation (2). Then by application of 
generalized Sundman transformation (3), Equation (2) 
reduces to: 
 

( )

( )
( ) ( )( )

( )( ) ( )

( )

2

2

exp

exp 2
0

l

l

g x
x l x x bx x

g x

x g x dx
a

g x

γϕ γϕ

γϕ

 ′
′+ − +  

 

+ =∫

ɺɺ ɺ ɺ

 (4) 

 
where, prime denotes the differentiation with respect to x. 

Proof 

The use of Equation (3) allows one to compute the 

first derivative of y(τ): 
 

( ) ( ) ( )l x
y xg x e

γϕ

τ
−

′ = ɺ  (5) 

 
from which, the second derivative: 
 

( )
( )

( )
( ) ( ) ( )22 l xg x

y x x l x x g x e
g x

γϕ

γϕ
−

  ′
′′ ′= + −   

   

ɺɺ ɺ  (6) 

 
Substituting Equations (5) and (6) into Equation (2), 

knowing that ( ) ( )
l

y g x dxτ = ∫  leads, after a few 

mathematical manipulations, to obtain Equation (4). 

On the other hand, by application of l = γ and ϕ(x) = 

ln(g(x)), Equation (4) reduces to: 
 

( ) ( ) ( )2
0

l l l

x bxg x a g x g x dx+ + =∫ɺɺ ɺ  (7) 

 
where, ln designates the natural logarithm. 

For l = 1, b = 1 and 2 2

9
a = , Equation (7) reduces to 

the Musielak equation (Musielak, 2008). 

The choice ϕ(x) = ln(f(x)) gives as equation: 
 

( )

( )

( )

( )
( )

( ) ( )

( )

2

2

2
0

l

l

g x f x
x l x bxf x

g x f x

f x g x dx
a

g x

γ

γ

γ
 ′ ′

+ − +  
 

+ =∫

ɺɺ ɺ ɺ

 (9) 

 

For l = γ = 1, g(x) = f(x) =U'(x), 
3

2
b =  and 2 1

2
a = , 

Equation (9) becomes the equation studied in 

(Cariñena et al., 2005): 
 

( ) ( ) ( )
3 1

0
2 2

x xU x U x U x′ ′+ + =ɺɺ ɺ  (10) 

 
where, U(x) is an arbitrary function such that by making 

U(x) = k x
2
, Equation (10) reduces to the well known 

modified Emden equation: 
 

2 3
3 0x k xx k x+ + =ɺɺ ɺ  (11) 

 

which is widely studied in the literature. However this 

equation may directly be obtained from Equation (9) by 

putting 
1

2
l γ= = , g(x) = f(x) = x

2
, b = 3k and a = k. 

Now, from Equation (4), one may deduce the general 

class of quadratic Liénard type differential equations 

from which the class of quadratic Liénard type equations 

which admit trigonometric solutions (Monsia et al., 

2016a; 2016b) may be obtained. 

General Class of Quadratic Liénard Type 

Equations 

Consider now the following useful theorem. 

Theorem 2 

Let b = 0. Then Equation (4) reduces to: 
 

( )

( )
( )

( ) ( )

( )

2

22

0

lx

l

g x
x l x x

g x

a e g x dx

g x

γϕ

γϕ
 ′

′+ − 
  

+ =∫

ɺɺ ɺ

 (12) 
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Proof 

The theorem 2 is a special case (b = 0) of theorem 1. 

The Equation (12) represents the required general 

class of quadratic Liénard type differential equations. 

One may notice that a judicious parametric choice as 

well as an appropriate selection of function g(x) and ϕ(x) 

may lead to interesting nonlinear oscillator equations for 

mathematical physics. An interesting case of Equation 

(12) may be, for ϕ(x) = ln(f(x)), obtained as: 
 

( )

( )

( )

( )

( ) ( )

( )

2

22

0

l

l

g x f x
x l x

g x f x

a f x g x dx

g x

γ

γ
 ′ ′

+ − 
  

+ =∫

ɺɺ ɺ

 (13) 

 
So with that some examples related to Equation (13) 

may be given to illustrate moreover the high mathematical 

significance of the work developed in this study. 

Examples 

Illustrative examples related to Equation (13) are 

given in this subsection. 

The parametric choice 
1

2
l =  and γ = 1, in Equation 

(13) yields: 

 

( )

( )

( )

( )

( ) ( )( ) ( )( )
( )

2

1 1
22

2 2

1
2

2

0

g x f x
x x

g x f x

a f x g x g x dx

g x

 ′ ′
+ − 

  

+ =∫

ɺɺ ɺ

 (14) 

 

This case corresponds to the class of quadratic 

Liénard type differential equations constructed in 

(Mustafa, 2015). Indeed, the substitution of 
1

2
l = , γ = 1 

and ϕ(x) = ln(f(x)), into the nonlocal transformation (3), 

yields the generalized Sundman transformation 

introduced in (Mustafa, 2015) to build the generalized 

position-dependent mass Euler-Lagrange equation 

(Equation (12) of (Mustafa, 2015)) identical to Equation 

(14). The Equation (14) is shown in (Mustafa, 2015) to 

include as special cases several interesting position-

dependent mass nonlinear oscillator equations like the 

celebrated Mathews-Lakshmanan equations, the 

quadratic Morse type equation, etc. It is therefore no 

longer necessary to again carry out these calculations to 

prove the usefulness of the generalized Sundman 

transformation (3) introduced in this study. Let us 

consider, nevertheless, other interesting illustrative 

examples in addition to those mentioned in (Mustafa, 

2015) for γ ≠ 0 and l ≠ 0. 

Making now f(x) = x
2
 and g(x) = x, Equation (13) 

becomes: 

 

( )
2 2

4 1
2 0

1

x a
x l x

x l

γ
γ

+

+ − + =

+

ɺ
ɺɺ  (15) 

 

The use of nonlocal transformation (3) leads to: 

 

( ) 1 21
, , 1

1

l
y x d x dt l

l

γ
τ τ

+

= = ≠ −

+

 (16) 

 

that is: 

 

( ) ( ) ( )
1

11

0
1 sin ( )

l

llx t l A a tφ α++ = + +   (17) 

 

where, α  is an arbitrary constant and the function τ = φ(t) 

satisfies: 

 

( ) ( )
( )

2

1

0 2

1

( )
1

sin ( )

l

l

d t
l A t K

a t

γ

γ

φ

φ α

+

+

 + + = 
+

∫  (18) 

 

with K an integration constant and: 

 

( )0
( ) siny A aτ τ α= +  (19) 

 

is the solution to Equation (2) where b = 0. 

Now let γ ≠ 0 and 
2

3
l = − . Then Equation (15) 

reduces to: 

 
2

2 4 1
2

2 3 0
3

x

x a x

x

γ
γ

+ 
− + + = 
 

ɺ
ɺɺ  (20) 

 

such that Equation (18) becomes: 

 

( )
( )

6

0

6

( )

3 sin ( )

A d t
t K

a t

γ

γ

φ

φ α

 
+ = 

+ 
∫  (21) 

 

In this perspective the solution x(t) reads: 

 

[ ]
3

30( ) sin ( )
9

A
x t a tφ α= +  (22) 

 

where, φ(t) satisfies Equation (21). For an integer γ or 

1

6
γ = , Equation (21) may be easily computed 

(Gradshteyn and Ryzhik, 2007) and the solution x(t) may 

be expressed explicitly in terms of elementary functions. 

Conversely, for a non-integer γ, Equation (21) will be 

evaluated in terms of special functions and the argument 
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aφ(t) + α, becomes a complicated function of t. So, for 

example, 
1

6
γ = , Equation (21) gives: 

 

( )0
1 ( )
ln

3 2

A a t
t K tg

a

φ α+ 
+ =  

 
 (23) 

 
that is (Gradshteyn and Ryzhik, 2007): 
 

( )0
( )

exp
3 2

aA a t
t K tg

φ α  +
+ = 

 
 (24) 

 
and the solution x(t) may be written as: 
 

( )
3

3 10 0( ) sin 2 exp
9 3

A aA
x t tg t K

−

   
= +    

    
  (25) 

 

Now, the parametric choice 
3

2
γ = −  and l = -2, 

according to Equation (15), leads to the equation: 

 
2 2

5
0

x a

x

x x

+ − =

ɺ
ɺɺ  (26) 

 

Following Equation (16) the solution x(t) takes the form: 

 

( )0

1
( )

sin ( )
x t

A a tφ α
= −

+

 (27) 

 

where, φ(t) satisfies: 

 

( )
( )

3

0 3

( )

sin ( )

d t
A t K

a t

φ

φ α
− + =

+
∫  (28) 

 

that is (Gradshteyn and Ryzhik, 2007): 

 

( )

( )

( )

2

3

0

cos ( )

2 sin ( )

1 ( )
ln

2 2

a t

a a t

a t
tg A t K

a

φ α

φ α

φ α

+
−

+

 + 
+ = − +  

  

  (29) 

 

The Equation (26) admits a position-dependent mass 

dynamics so that the mass m(x) = m0x
2
 and the potential 

energy function ( )
2

0

2

1

2

m a
V x

x
= , where m0 is an arbitrary 

constant. Such a potential is the so-called singular 

inverse square potential and has been widely studied in 

the quantum mechanics. However it is for the first time 

the existence of such a potential has been 

mathematically established through a nonlinear 

oscillator equation. This highlights the physical 

importance of Equation (26). Let us consider now other 

interesting classes of quadratic Liénard type differential 

equations obtained for l = 0, or γ = 0. 

Let γ = 0. In this situation Equation (12) reduces to: 
 

( )

( )

( )( )

( )( )

2

2
0

l

l

a g x dxg x
x l x

g x g x

′
+ + =

∫
ɺɺ ɺ   (30) 

 
By application of g(x) = h'(x), where h(x) is an 

arbitrary function of x, Equation (30) becomes: 
 

( )

( )

( )

( )

2

2
( )

0
( )

l

l

a h xh x
x l x

h x h x

′′′
+ + =

′ ′

∫
ɺɺ ɺ  (31) 

 
So, for l = 1, Equation (31) gives: 

 

( )

( )

( )

( )

2

02
0

h x h x
x x

h x h x

ω′′
+ + =

′ ′
ɺɺ ɺ  (32) 

 

where, 2 2

0
a ω= . In Tiwari et al. (2013) Equation (32) has 

been classicaly analyzed whereas in (Gubbiotti and 

Nucci, 2014), Equation (32) was studied from quantum 

viewpoint. On the other hand it is worth to mention that 

the class of quadratic Liénard type Equation (15) has 

been recently shown to be able to exhibit exact 

trigonometric solutions of harmonic form but with 

amplitude-dependent frequency (Nonti et al., 2018). Now 

it may be possible to show the existence of another class 

of quadratic Liénard type equations which has the ability 

to exibit trigonometric solutions of harmonic form. 

Another Class of Quadratic Liénard Type 

Equations Which Admit Exact 

Trigonometric Solutions 

Let us take now into account the case l = 0, which 

appears to be of high interest since it highlights the 

trigonometric function solutions to a class of quadratic 

Liénard type equations. For l = 0, or g(x) = 1, Equation 

(12) reduces to (Monsia et al., 2016b): 
 

( ) 2 2 2 ( )
0

x

x x x a xe
γϕ

γϕ′− + =ɺɺ ɺ  (33) 

 
According to the generalized Sundman 

transformation (3) and Equation (19) the solution to 

Equation (33) may read: 
 

( )( )0
( ) sinx t A a tφ α= +  (34) 

 

where, τ = φ(t) obeys: 
 

( ) ( )( )expd t x dtφ γϕ=  (35) 

 
that is: 
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( )( ) ( )exp x d t dtγϕ φ− =  (36) 

 
The above shows clearly the following result. 

Theorem 3 

If l = 0, or g(x) = 1, Equation (12) reduces to 

Equation (33), then Equation (34) becomes the solution 

to Equation (33) where, φ(t) satisfies Equation (36). 

So the problem of finding x(t) reduces to solve Equation 

(36) once the function ϕ(x) and the parameter γ are defined. 

The comparison of equation (33) with Equation (1) 

specifies the new class of functions u(x) = -γϕ′(x) and v(x) = 

a
2
xe

2γϕ(x)
, for which Equation (1) may admit exact 

trigonometric solutions with amplitude-dependent 

frequency. That being so, some illustrative examples are 

studied in this paragraph. An interesting case is to consider 

ϕ(x) = ln(f(x)) such that Equation (33) becomes: 
 

( )

( )
( )( )

2
2 2

0
f x

x x a x f x
f x

γ

γ
′

− + =ɺɺ ɺ  (37) 

 
and (36) yields: 

 

( )( )

( )d t
dt

f x
γ

φ
=  (38) 

 

Let γ = 2 and ( ) ( )
1
ln 1

2
x xϕ µ= + . Then Equation (37) 

takes the form: 

( )
22 2

1 0
1

x x a x x

x

µ
µ

µ
− + + =

+

ɺɺ ɺ  (39) 

 

The Equation (38) gives in this perspective: 

 

( )
( )

( )( )0
1 sin

d t
t K

A a t

φ

µ φ α
+ =

+ +
∫  (40) 

 

that is (Gradshteyn and Ryzhik, 2007): 

 

( )

( ) 2 2

01 2 2

0 0

1
2 1

2

a t

a t K A
tg A tg A

φ α

µ
µ µ

−

+

  + −
  = − −

  
  

 (41) 

 

so that the solution: 

 

( )

( )

0

2 2

01 2 2

0 0

1
sin 2 1

2

x t A

a t K A
tg A tg A

µ
µ µ

−

=

   + −
   × − −

   
   

 (42) 

 

An appropriate choice of initial conditions, that is of 

constants A0 and K may lead Equation (42) to exhibit 

harmonic behavior. In this perspective Fig. 1 shows the 

harmonic form of Equation (42) in solid line compared 

with the solution obtained by numerical integration of 

Equation (39) in circles line under the conditions that 

A0 = 0,01; µ = 0,25; a = 1; x0 = 0,01 and 0
0x =ɺ . 

 

 
 
Fig. 1: Comparison of solution (42) with numerical solution of Equation (39). Typical representation values are: A0 = 0,01; µ = 0,25; 

a = 1; x0 = 0,01 and 
0

0x =ɺ  

0 

0.02 
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By applying γ = -1 and ( )
( )

2 2

2 2 2

1

1 1

x
f x

x

µ

µ µ

−

=

+ −

, 

Equation (37) gives: 
 

( ) ( )

( )

2

2

2 2 2 2 2

2 2 2 2

2 2

1 1 1

1 1
0

1

x
x x

x x

a x x

x

µ

µ µ µ

µ µ

µ

−
 − + − 

 + − + =
−

ɺɺ ɺ

 (43) 

 
The Equation (43) admits then as solution: 

 

( ) ( )( )0
cosx t B a tφ β= +  (44) 

 

where, B0 and β are arbitrary parameters, such that: 
 

( )
2 2

sin

1 sin

a t K d
θ

θ
µ θ

+ =

+
∫  (45) 

 

where, 2 2

0
1Bµ =  and θ = aφ(t) + β. 

Therefore one may obtain: 
 

( )( ) ( )
2

1
cos sina t a t K

µ
φ β µ

µ

+
+ = − +     (46) 

 
so that Equation (44) takes the expression: 
 

( ) ( )
2

2

1
sinx t a t K

µ
µ

µ

+
= − +    (47) 

 
By application of suitable initial conditions, one may 

consider: 

2
K

a

π

µ
= −  (48) 

 

such that the definitive solution: 

 

( )
2

2

1
sin

2
x t at

µ π
µ

µ

+  
= + 

 
 (49) 

 

Figure 2 shows the harmonic behavior of Equation 

(49) in solid line compared with the solution obtained by 

numerical integration of Equation (43) in circles line 

under the conditions: 

 

0 0
6,5; 0,5; 0,15 0.a x and xµ = = = =ɺ  

 

On the other hand, it is worth to note that for γ = 1 

and the function ( )
2

1

1

f x
xµ

=
+

, Equation (37) reduces 

to the equation of motion of a particle moving on a 

rotating parabola: 
 

2

2

2 2
0

1 1

x a x

x x

x x

µ

µ µ
+ + =

+ +

ɺɺ ɺ  (50) 

 
which may admit according to the present theory an exact 

trigonometric solution but with amplitude-dependent 

frequency. However the detailed study of this equation will 

be performed in a subsequent work. It is now interesting to 

show that the proposed theory of nonlinear differential 

equations may be also used to solve exactly some inverted 

Painlevé-Gambier equations (Ince, 1956). 
 

 
 
Fig. 2: Comparison of solution (49) with numerical solution of Equation (43). Typical representation values are: µ = 6,5; a = 0,5; x0 

= 0,15 and 
0

0x =ɺ  
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Inverted Painlevé-Gambier Equations 

In this paragraph, solutions to some inverted 

Painlevé-Gambier equations are expressed as mentioned 

in the above. 

Inverted Painlevé-Gambier XVIII Equation 

The Painlevé-Gambier XVIII equation may read 

(Ince, 1956): 

 
2

21
4 0

2

x

x x

x

− − =

ɺ
ɺɺ   (51) 

 

so its inverted version becomes: 

 
2

21
4 0

2

x

x x

x

= + =

ɺ
ɺɺ   (52) 

 

which only differs from Equation (51) by a sign. The 

Equation (52) belongs to the class of quadratic Liénard 

type nonlinear differential equation represented by 

Equation (33) under the considerations that 
1

4
γ = , ϕ(x) 

= ln(x
2
) and a

2
 = 4. As a result the solution to Equation 

(52) may be expressed following Equation (34) as: 

 

( ) ( )( )0
cosx t B a tφ β= −   (53) 

 

such that φ(t) satisfies: 

 

( )( ) ( )
1 1

2 2

0
cosdt B a t d tφ β φ

− −

= −   (54) 

 

The integration of the right hand side of Equation 

(54) may be evaluated as: 

 

( )

( ) ( )

1

2

0

cos

d t
J B

a t

φ

φ β

−

=

−

∫   (55) 

 

that is (Gradshteyn and Ryzhik, 2007): 

 

2

0

2

1 2cos

d
J

a B

ψ

ψ

=

− +
∫   (56) 

 

where: 

 

2aφ ψ β= +   (57) 

 

According to (Gradshteyn and Ryzhik, 2007): 

 
1

2

0

2 2
,
2

J B F
a

δ
−  

=   
 

  (58) 

where, ( )arcsin 2 sinδ ψ=  and F(θ, k), is the elliptic 

integral of the first kind. So, one may find aφ(t)-β, such 

that ψ is given by: 
 

( ) 01
2 2

cos sin 2 sin ,
2 2

a B
cn tψ

−

 
   =
   

 

  (59) 

 
Therefore, one may recover the explicit solution (53) 

under the definitive form: 
 

( ) 01 1

0

22 2
cos 2sin sin cos ,

2 2 2

a B
x t B cn t

− −

     
     =
     

      

 (60) 

 
where, a = 2 and cn(z, k) is the Jacobi elliptic function. Now 

one may reduce Equation (60) using appropriate 

trigonometric identities (Gradshteyn and Ryzhik, 2007) to: 
 

( ) 2

0 0

2
2 ,

2
x t B cn B t

 
=   

 
  (61) 

 
in order to show that Equation (60) may exhibit periodic 

solution behavior. The solution (60) allows in principle, 

to compute the exact solution of the initial Painlevé-
Gambier XVIII equation by replacing the parameter a by 

ia, where i is the purely imaginary number. In other 

words, the solution (60) gives the exact solution to the 
Painlevé-Gambier XVIII Equation (51) by replacing 

0

2
2 ,

2
cn B t

 
  
 

 by (Gradshteyn and Ryzyhik, 2007): 

 

0

0

2 1
2 ,

2 2
2 ,

2

cn i B t

cn B t

 
=     

  
 

  (62) 

 

Inverted Painlevé-Gambier XXXII Equation 

The Painlevé-Gambier XXXII equation (Ince, 1956) 

is written as: 
 

2
1 1

0
2 2

x

x

x x

− + =

ɺ
ɺɺ  (63) 

 
The inverted version may then be written in the form: 

 
2 2

1 2
0

2

x a

x

x x

− − =

ɺ
ɺɺ  (64) 

 

where, 2 1

4
a = . The Equation (64) may be obtained by 

substituting 
1

2
γ = −  and 

3

2
l = −  in Equation (15). In this 

perspective the solution takes the form following (17): 
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( )
( )( )2 2

0

4

sin
x t

A a tφ α
=

+

 (65) 

 

where, φ(t) obeys: 
 

( )
( )

( )( )

2

0

2
4 sin

d tA
t K

a t

φ

φ α
+ =

+
∫  (66) 

 
or: 
 

( ) ( )( )
2

0
1
cot

4

A
t K a t

a
φ α+ = − +  (67) 

 
Therefore the preceding solution x(t) becomes: 

 

( )
2 2

2 2 1 0 0

0

4

sin cot
4 4

x t

aA aA
A t K

−

=
  

− +  
  

 (68) 

 

Inverted Painlevé-Gambier XXI Equation 

According to (Ince, 1956) the Painlevé-Gambier XXI 

equation reads: 
 

2
3

1 0
4

x

x

x

− + =

ɺ
ɺɺ  (69) 

 
In this regard, the inverted equation may be written as: 

 
2

3
1 0

4

x

x

x

− − =

ɺ
ɺɺ  (70) 

 
which may be obtained from Equation (15) by setting 

1

4
γ = − , 

5

4
l = −  and 2 1

4
a = . Thus the solution x(t) 

becomes: 

 

( )
( )( )4 4

0

256

sin
x t

A a tφ α
=

+

 (71) 

 

where, φ(t) satisfies: 

 

( )
( )

( )( )

2

0

2
16 sin

d tA
t K

a t

φ

φ α
+ =

+
∫  (72) 

 

So, Equation (71) may be written in the form: 

 

( )

( )
2

4 4 1 0

0

256

sin cot
16

x t

aA
A t K

−

=
  

− +  
  

 (73) 

 

Now, taking into account these illustrative examples 

a conclusion may be addressed for the work. 

Concluding Remarks 

If the problem of determining approximate 

trigonometric periodic solutions to nonlinear differential 

equations has been more or less solved, the problem of 

finding exact and analytical general trigonometric 

solutions to nonlinear differential equations is yet an 

active mathematical research field. In such a situation the 

Liénard type nonlinear equations are subject of intensive 

study from mathematical viewpoint as well as physical 

standpoint. Different linearizing transformations with 

different complexities have been used to construct exact 

periodic solutions to Liénard nonlinear differential 

equations. In particular the generalized Sundman 

transformation has been widely used to establish exact 

solutions to diverse types of Liénard differential equations. 

Conversely such a transformation may also be used to 

detect diverse classes of Liénard differential equations 

having exact analytical solutions. In this perspective, a 

generalized Sundman transformation is introduced in this 

study to highlight a general class of quadratic Liénard type 

nonlinear differential equations which admit exact and 

explicit general trigonometric solutions with amplitude-

dependent frequency. By doing so, it appears that the 

proposed nonlinear differential equation theory may be 

used to exactly solve a number of interesting mixed and 

quadratic Liénard type equations as well as to generate 

new generalized nonlinear differential equations of 

Liénard type for mathematical modeling and creation of 

new dynamical systems characterized in particular by a 

harmonic potential and a position-dependent mass. 
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