
 

 
 © 2018 Mehmet Acikgoz, Resul Ates, Ugur Duran and Serkan Araci. This open access article is distributed under a Creative 

Commons Attribution (CC-BY) 3.0 license. 
 

Journal of Mathematics and Statistics 
 

Original Research Paper 

Applications of q-Umbral Calculus to Modified Apostol Type 

q-Bernoulli Polynomials 
 

1
Mehmet Acikgoz, 

1
Resul Ates, 

1
Ugur Duran and 

2
Serkan Araci 

 
1Department of Mathematics, 

Faculty of Arts and Science, University of Gaziantep, TR-27310 Gaziantep, Turkey 
2Department of Economics, Faculty of Economics, 

Administrative and Social Sciences, Hasan Kalyoncu University, TR-27410 Gaziantep, Turkey 

 
Article history 

Received: 18-11-2017 
Revised: 29-11-2017 
Accepted: 04-01-2018 
 
Corresponding author: 
Serkan Araci 
Department of Economics, 
Faculty of Economics, 
Administrative and Social 
Sciences, Hasan Kalyoncu 
University, TR-27410 
Gaziantep, Turkey 
Email: mtsrkn@hotmail.com 

Abstract: This article aims to identify the generating function of modified 

Apostol type q-Bernoulli polynomials. With the aid of this generating 

function, some properties of modified Apostol type q-Bernoulli 

polynomials are given. It is shown that aforementioned polynomials are q-

Appell. Hence, we make use of these polynomials to have applications on 

q-Umbral calculus. From those applications, we derive some theorems in 

order to get Apostol type modified q-Bernoulli polynomials as a linear 

combination of some known polynomials which we stated in the paper. 

 

Keywords: q-Umbral Calculus, Apostol-Bernoulli Polynomials, Modified 

Apostol Type q-Bernoulli Polynomials, q-Appell Polynomials, Generating 

Functions 

 

Introduction 

Throughout this paper, we make use of the 

following standard notations: { }: 1,2,3,=ℕ ⋯  and 

{ }0
0= ∪ℕ ℕ . Also, as usual, ℤ denotes the set of 

integers, ℝ denotes the set of real numbers and ℂ 

denotes the set of complex numbers. 

We now begin with the fundamental properties of 

q-calculus. Let q be chosen as a fixed real number 

between 0 and 1. The q-analogue of any number n is 

given by: 
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The expression: 
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means the q-factorial of n and also let n, 
0

k∈ℕ , for k ≤ n: 
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is called q-binomial coefficient. Note that [0]q! := 1. 

The q-derivative of f(x) is defined by: 
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If q → 1
−

, it becomes: 
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representing familiar derivative of a function f, with 

respect to x. The Jackson definite q-integral of a 

function f is also defined by: 
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The q-exponential functions are given by: 
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with the following equality: 
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e t E t
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=  

 
These fundamental properties of q-calculus listed 

above are taken from the book (Kac and Cheung, 2002). 

By using an exponential function eq(x), 

Kupershmidt (2005) defined the following q-Bernoulli 

polynomials: 
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In the case x = 0, Bn,q(0) = Bn,q means the n-th q-

Bernoulli number. 

Very recently, Kurt (2016) defined Apostol type q-

Bernoulli polynomials of order α by making use of the 

following generating function: 
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where, λ∈ℂ and 
0

α ∈ℕ . In this study, we will study on 

the following polynomial ( ) ( )1

,
,

n q
B x λ := Bn,q(x, λ) which is 

given by special cases α = 1 and y = 0 in (1.2): 
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When q → 1 in (1.3), it reduces to Apostol-

Bernoulli polynomials (Choi et al., 2008; Luo and 

Srivastava, 2006). 

We now review briefly the concept of q-umbral 

calculus. For the properties of q-umbral calculus, we 

refer the reader to see the references (Araci et al., 

2007; Choi et al., 2008; Kac and Cheung, 2002; Kim and 

Kim, 2014a; Kim et al., 2013; Mahmudov and 

Keleshteri, 2013; Roman, 1985). 

Let ℂ be a field of characteristic zero and let F be 

the set of all formal power series in the variable t over 

ℂ with: 
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Let P  be the algebra of polynomials in the single 

variable x over the field complex numbers and let ∗

P  
be the vector space of all linear functionals on P . In 

the q-Umbral calculus, 〈L|p(x)〉 means the action of a 

linear functional L on the polynomial p(x). This 

operator has a linear property on ∗

P  given by: 
 

( ) ( )| | | (L M p x L p x M p x+ = +  

and: 

 

( ) ( )| |cL p x c L p x=  

 

for any constant c in ℂ. 

The formal power series: 
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defines a linear functional on P  by setting: 

 

( ) ( )| 0
n

n
f t x a x= ≥  (1.5) 

 

Taking f(t) = t
k
 in Equation 1.4 and 1.5 gives: 
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Actually, any linear functional L in ∗

P  has the form 

(1.4). That is, since: 
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we have: 

 

( ) | |
n n

L
f t x L x=  

 

and so as linear functionals L = fL(t). Moreover, the 

map L → fL(t) is a vector space isomorphism from 
∗

P  

onto F. Henceforth, F will denote both the algebra of 

formal power series in t and the vector space of all 

linear functionals on P  and so an element f(t) of F will 

be thought of as both a formal power series and a 

linear functional. From (1.5), we have: 

 

( ) | n n

q
e yt x y=  

 

and so: 

 

( ) ( ) ( ) ( )( )|
q
e yt p x p y p x= ∈P  

 

The order o(f(t)) of a power series f(t) is the 

smallest integer k for which the coefficient of t
k
 does 

not vanish. If o(f(t)) = 0, then f(t) is called an invertible 
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series. A series f(t) for which o(f(t)) = 1 will be called a 

delta series (Araci et al., 2007; Choi et al., 2008; Kac and 

Cheung, 2002; Kim and Kim, 2014a; Kim et al., 2013; 

Mahmudov and Keleshteri, 2013; Roman, 1985). 

If f1(t), ..., fm(t) are in F, then: 
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We use the notation t

k
 for the k-th q-derivative 

operator on P  as follows: 
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If f(t) and g(t) are in F, then: 
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for all polynomials p(x). Notice that for all f(t) in F and 

for all polynomials p(x): 
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Using (1.7), we obtain: 
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providing: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 | 1 | 0
k k kkp t p x and p x p= =  (1.8) 

 
Thus, from (1.8), we note that: 

 

( ) ( ) ( ) ( )kk k

qt p x p x D p x= =  

 

Let f(t) ∈ F be a delta series and let g(t) ∈ F be 

an invertible series. Then there exists a unique 

sequence sn(x) of polynomials satisfying the 

following property: 

 

( ) ( ) ( ) [ ] ( )
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| ! , 0
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n n kq
g t f t s x n x kδ= ≥  (1.9) 

 

which is called an orthogonality condition for any q-

sheffer sequence, cf. (Araci et al., 2007; Choi et al., 2008; 

Kac and Cheung, 2002; Kim and Kim, 2014a; Kim et al., 

2013; Mahmudov and Keleshteri, 2013; Roman, 1985). 

The sequence sn(x) is called the q-Sheffer sequence 

for the pair of (g(t), f(t)), or this sn(x) is q-Sheffer for 

(g(t), f(t)), which is denoted by sn(x) ∼ (g(t), f(t)). 

Let sn(x) be q-Sheffer for (g(t), f(t)). Then for any 

h(t) in F and for any polynomial p(x), we have: 
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 (1.10) 

 

and the sequence sn(x) is q-Sheffer for (g(t), f(t)) if and 

only if: 
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for all x in ℂ, where ( )( )f f t  = ( )( )f f t = t. 

An important property for the q-Sheffer sequence 

sn(x) having (g(t), t) is the q-Appell sequence. It is also 

called q-Appell for g(t) with the following 

consequence: 
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Further important property for q-Sheffer sequence 

sn(x) is as follows: 
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For having information about the properties of q-

umbral theory (Araci et al., 2007; Choi et al., 2008;    

Kac and Cheung, 2002; Kim and Kim, 2014a; Kim et al., 

2013; Mahmudov and Keleshteri, 2013; Roman, 1985) 

and cited references therein. 

Recently several authors have studied q-Bernoulli 

polynomials, q-Euler polynomials and various 
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generalizations of these polynomials (Araci et al., 2007; 

Choi et al., 2008; Kac and Cheung, 2002; Kim and Kim, 

2014a; 2014b; 2015; Kim et al., 2013; Kurt, 2016; 

Kurt and Simsek, 2013; Kupershmidt, 2005; Luo and 

Srivastava, 2006; Mahmudov, 2013; Mahmudov and 

Keleshteri, 2013; Roman, 1985; Srivastava, 2011). In 

the next section, we investigate modified Apostol type 

q-Bernoulli numbers and polynomials and we apply 

these numbers and polynomials to q-umbral theory 

which is the systematic study of q-umbral algebra. 

Actually, we are motivated to write this paper from 

Kim’s systematic works on q-umbral theory (Kim and 

Kim, 2014a; 2014b; 2015; Kim et al., 2013). 

Modified Apostol Type q-Bernoulli Numbers 

and Polynomials 

Recall from (1.3) that: 
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Taking t → 0 on the above gives B0,q(x, λ) = 0. This 

shows that the generating function of these 

polynomials is not invertible. Therefore, we need to 

modify slightly Equation (2.1) as follows: 
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representing: 
 

( )

[ ]
( )1, *

,

,
,

1

n q

n q

q

B x
B x

n

λ
λ

+

=
+

 (2.2) 

 

Here we called ( )*

,
,

n q
B x λ  modified Apostol type q-

Bernoulli polynomials. Now: 
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This modification yields to being invertible for 

generating function of modified Apostol type q-

Bernoulli polynomials. As a traditional for some 

special polynomials to be a number, in the case when x 

= 0, ( )*

,
0,

n q
B λ = ( )*

,n q
B λ  is called the modified Apostol 

type n-th q-Bernoulli number. Now we list some 

properties of modified Apostol type q-Bernoulli 

polynomials as follows. 

From (2.2), we obtain: 
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By (2.2), the modified Apostol type q-Bernoulli 
numbers can be found by means of the following 
recurrence relation: 
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A few numbers are listed below: 
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From (1.11) and (1.12), we have: 
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It follows from (2.6) that ( )*

,
,

n q
B x λ  is q-Appell for 

λeq(t)-1. 

We now have the following theorem. 

Theorem 1 

Let ( )p x ∈P . We have: 
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Proof 

From Equation (2.5) and (2.6), we write: 
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By (1.1) and (1.6), we obtain the following 

calculations: 
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Thus, from (2.7), we arrive at: 
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which is desired result. 

Example 1 

If we take p(x) = ( )*

,
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B x λ  in Theorem 1, on the 

one hand, we derive: 
 

( )
( )

( )

( ) ( )

[ ]

[ ]
[ ]

1
* *

, ,
0

*

1,

0 1

1,0

1
, | ,

1 ,
1|

1

1
| !

1

q

n q q n q

q n q

q

n

nq

q

e t
B x d x B x

t

e t tB x

t n

t x n

n

λ
λ λ λ

λ λ

δ

+

+

+

−

=

−

=

+

= =

+

∫

 

 
On the other hand: 

 

[ ] ( ) [ ] ( )

[ ] ( )

( )

1 1
* *

, ,
0 0

0

1

,
0

0

*

,

0

1 , 1

1

1

1

n
k

n q q n k q qq q
k q

n
k

n k q qq
k q

n

n k q

k q

n
n B x d x n B x d x

k

n
n B x d x

k

n
B

k

λ λ λ λ

λ λ

λ λ

−

=

−

=

−

=

 
+ = +  

 

 
= +  

 

+ 
=  

+ 

∑∫ ∫

∑ ∫

∑

 

 
Thus we have the following interesting property for 

modified Apostol type q-Bernoulli numbers derived 
from Theorem 1 for n ≥ 0: 
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which can be also generated by Equation (2.3) and (2.4). 
The following is an immediate result emerging 

from (1.10) and (2.5) that: 
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By choosing suitable polynomials p(x), one can derive 

some interesting results. So we omit to give examples and 

so we now take care of a fundamental property in q-

umbral theory which is stated below by Theorem 2. 

Theorem 2 

Let n be nonnegative integer. Then we have: 
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Proof 

From (2.3), we first obtain: 
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Thus, by applying (2.8), we get: 
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Comparing Equation (2.8) with Equation (2.9), we 

complete the proof of this theorem. 

The following theorem is useful to derive any 

polynomial as a linear combination of modified 

Apostol type q-Bernoulli polynomials. 

Theorem 3 
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n
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We now consider the following sets of polynomials 

of degree less than or equal to n: 
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k

q x b B x λ

=

=∑  (2.11) 

 
Combining (2.10) with (2.11), it becomes: 

 

( )( ) ( ) ( )( ) ( )

[ ] [ ]

*

, ,

0

, , ,

0

1 | 1 | ,

! !

n
k k

q l q q l q

l

n

l q l k k qq q
l

e t t q x b e t t B x

b l k b

λ λ λ

δ

=

=

− = −

= =

∑

∑

 (2.12) 

 
Thus, from (2.12), we have: 

 

[ ]
( )( ) ( )

[ ]
( ) ( ) ( ) ( ){ }

,

1 1
1 | 1 0

! !

k kk

k q q

q q

b e t t q x q q
k k

λ λ= − = −  

 

where, q
(k)
(x) = ( )k

qD q x . Thus the proof is completed. 

When we choose q(x) = En,q(x), we have the 

following corollary which is given by its proof. 

Corollary 1 

Let n ≥ 2. Then: 
 

( ) ( ) ( ) [ ] ( )

( ) ( )

* *

, , 1,

2
*

, ,

0

1
1 , ,

2

1 ,

n q n q n qq

n

n k q k q

k q

E x q B x n B x

n
E B x

k

λ
λ λ λ

λ λ

−

−

−

=

+ 
= − +  

 

 
− +  

 
∑

 

 

Proof 

Recall that the q-Euler polynomials En,q(x) are 

defined by (Mahmudov, 2013; Srivastava, 2011): 

 

[ ]

[ ]
,

0

2
( ) ( )

( ) 1!

n

q

n q q

n q
q

t
E x e xt

e tn

∞

=

=

+
∑  

 

which in turn yields to: 

 

( )
( )

[ ]
( )

,

1
, 0

2

q

n q

q

e t
E x t n

 +
  ≥
 
 

∼  

 

and: 

 

( ) [ ] ( ), 1,n q n qq
tE x n E x

−

=  

Set: 

 

( ) ( )
,n q n

q x E x= ∈P  

 

Then it becomes: 

 

( ) ( )*

, , ,

0

,

n

n q k q k q

k

E x b B x λ

=

=∑  (2.13) 

 

Let us now evaluate the coefficients bk,q as follows: 

 

[ ]
( )( ) ( )

[ ] [ ] [ ]

[ ]
( ) ( )

( ) ( )

( )( )

, ,

,

,

, ,

1
1 |

!

1 1
1|

!

1 |

1

k

k q q n q

q

q q q

q n k q

q

q n k q

q

n k q n k q

q

b e t t E x

k

n n n k

e t E x

k

n
e t E x

k

n
E E

k

λ

λ

λ

λ

−

−

− −

= −

− − +
= −

 
= − 
 

 
= − 
 

⋯

 

 

where, En,q := En,q(0) are called q-Euler numbers 

satisfying the following property: 

 

( ) [ ], , 0,
1 2

n q n q nq
E E δ+ =  (2.14) 

 

with the conditions E0,q = 1 and 1,

1

2
q

E = − . By (2.13) 

and (2.14), we have: 

 

( ) ( ) ( ) ( )

( ) ( ) [ ] ( )

( ) ( )

2
* * *

, , , 1, 1, , ,

0

* *

, 1,

2
*

, ,

0

, , ,

1
1 , ,

2

1 , .

n

n q n q n q n q n q k q k q

k

n q n qq

n

n k q k q

k q

E x b B x b B x b B x

q B x n B x

n
E B x

k

λ λ λ

λ
λ λ λ

λ λ

−

− −

=

−

−

−

=

= + +

+ 
= − +  

 

 
− +  

 

∑

∑

 

 

Recall from (1.2) that Apostol type q-Bernoulli 

polynomials of order r are given by the following 

generating function, for y = 0 (Kurt, 2016): 

 

( ) ( )
[ ] ( )

( ),

0

,
1!

r
n

r

n q q

n q
q

t t
B x e xt

e tn

λ
λ

∞

=

 
=   − 

∑  

 

where, t∈ℂ and r∈ℕ. If t approaches to 0 on the 

above, it yields to ( ) ( )0,
,

q
B x

α

λ = 0, which means that the 

generating function of ( ) ( ),
,

n q
B x

α

λ is not invertible. So, 

we need to modify slightly Equation (2.1), as follows: 
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( ) ( ) ( ) ( )
[ ] ( )

( ),

0

1
, ,

1!

r
n

r r

q n q q

n q
q

t
F x t B x e xt

e tn

λ
λ

∞

=

 
= =   − 
∑  (2.15) 

 
which implies an invertible since: 
 

( ) ( ) ( ) ( ) ( ),
0

1
lim , , 0 1

1

r

r r

q n q
t

F x t B x λ λ
λ→

 
= = ≠ ≠ 

− 
 

 

Therefore, we called ( ) ( ),
,

r

n q
B x λ  as modified Apostol 

type q-Bernoulli polynomials of higher order. In the 

case x = 0, ( ) ( )
,

0,
r

n q
B λ := ( ) ( )

,

r

n q
B λ may be called the 

modified Apostol type q-Bernoulli numbers. 

Let: 
 

( ) ( )( ), 1
r

r

q
g t e tλ λ= −  

 

It is clear that g
r
(t, λ) is an invertible series. It 

follows from (2.15) that ( ) ( ),
,

r

n q
B x λ is q-Appell for 

(λeq(t) -1)
r
. So, by (1.12), we have: 

 

( ) ( )
( )

,

1
,

,

r n

n q r
B x x

g t
λ

λ
=  

 

and: 

 
( ) ( ) [ ] ( ) ( ), 1,

, ,

r r

n q n qq
tB x n B xλ λ

−

=  

 

Thus, we have: 

 

( ) ( ) ( )( )( ),

, 1 ,
r

r

n q q
B x e t tλ λ −∼  

 

By (1.5) and (2.15), we get: 

 

( )( )
( )

( ) ( ) ( ) ( ), ,

0

1
|

1

,

r
n

qr

q

n
r r l

n q n l q

l q

e yt x
e t

n
B y B y

l

λ

λ λ
−

=

−

 
= =  

 
∑

 (2.16) 

 

Here we find that: 

 

( ) ( ) ( )

( ) ( )
1

1

* *

, ,
1

1 1 1
| |

1 1 1

, , r

r

r

n n

q q q

i q i q

ri i n q

x x
e t e t e t

n
B B

i i

λ λ λ

λ λ

+ + =

 
= × ×  − − − 

 
=  

 
∑
⋯

⋯

⋯

⋯

 (2.17) 

 

By using (2.16), we have: 

( )
( ) ( )
,

1
|

1

r

rn

n q

q

x B
e t

λ
λ

 
=  − 

 (2.18) 

 
Therefore, by (2.17) and (2.18), we obtain the 

following theorem. 

Theorem 4 

Let n be nonnegative integer. Then we have: 
 

( ) ( ) ( )
1

*

, ,
11

, ,
j

r

r
r

n q i q
jri i n q

n
B B

i i
λ λ

=+ + =

 
=  

 
∑ ∏
⋯

⋯

 

 
Set: 

 

( ) ( ) ( )
,

,

r

n q n
q x B x λ= ∈P  

 

Then, by Theorem 3, we write: 
 

( ) ( ) ( )*

, , ,

0

, ,

n
r

n q k q k q

k

B x b B xλ λ

=

=∑  (2.19) 

 

where the coefficient bk,q is given by: 

 

[ ]
( )( ) ( )

( )( ) ( ) ( )

( ) ( ) ( ) ( )( )

,

,

, ,

1
1 |

!

1 | ,

1

k

k q q

q

r

q n k q

q

r r

n k q n k q

q

b e t t q x
k

n
e t B x

k

n
B B

k

λ

λ λ

λ λ λ

−

− −

= −

 
= − 
 

 
= − − 
 

 (2.20) 

 

From the Equation (2.15), we have: 

 

( ) ( ) ( ) ( )( )
[ ] ( )

( )( )

( )

( ) ( )
[ ]

, ,

0

1

1

,

0

1
1, 1

1!

1

1

!

r
n

r r

n q n q q

n q
q

r

q

n

r

n q

n
q

t
B B e t

e tn

e t

t
B

n

λ λ λ λ
λ

λ

λ

∞

=

−

∞

−

=

 
− = −  − 

 
=   − 

=

∑

∑

ɶ

ɶ

 

 

By comparing the coefficients 
[ ] !

n

q

t

n

in the above 

equation, we get: 
 

( ) ( ) ( ) ( ) ( ) ( )1

, , ,
1,

r r r

n q n q n q
B B Bλ λ λ λ

−

− =  (2.21) 

 

From the Equation (2.19) to (2.21), we get the 

following theorem. 
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Theorem 5 

Let 
0

n∈ℕ  and 
0

r∈ℕ . Then: 

 

( ) ( ) ( ) ( ) ( )
1 *

, , ,

0

, ,

n
r r

n q n k q k q

k q

n
B x B B x

k
λ λ λ

−

−

=

 
=  

 
∑  

 

Let us assume that: 

 

( ) ( ) ( ), ,

0

,

n
rr

k q k q n

k

q x b B x λ

=

∈∑ P  (2.22) 

 

We use a similar method in order to find the 

coefficient 
,

r

k qb as same as Theorem 3. So we omit the 

details and give the following equality: 

 

[ ]
( )

[ ]
( ) ( )

1

,

0 0 1

1 1
1 0

, ,! !
l

r
r l m kr l

k q

l m li i mq qq q

mr
b q

i ilk m
λ

− +

= ≥ + + =

  
= −   

   
∑ ∑ ∑

⋯

⋯

 

 

By (2.22) and coefficient 
,

r

k qb , we state the 

following theorem. 

Theorem 6 

For 
0

n∈ℕ , let: 

 

( ) ( ) ( ), ,

0

,

n
rr

k q k q n

k

q x b B x λ

=

= ∈∑ P  

 

Then: 

 

[ ]
( )( ) ( )

[ ]
( )

[ ]
( ) ( )

1

,

0 0 1

1
1 |

!

1 1
1 0

, ,! !
l

r k

k q q

q

r l m kl

m l li i mq qq q

b e t t q x
k

mr
q

i ilk m

λ

λ
− +

≥ = + + =

= −

  
= −   

   
∑∑ ∑

⋯

⋯

 

 

where, q
(k)
(x) = ( )k

qD q x . 

Let us consider q(x) = ( )*

,
,

n q n
B x λ ∈P . Then, by 

Theorem 6, we have: 

 

( ) ( ) ( )*

, , ,

0

, ,

n
rr

n q k q k q

k

B x b B xλ λ

=

=∑  (2.23) 

 

From Theorem 6 and (2.23), we acquire the 

following theorem. 

Theorem 7 

For n, 
0

r∈ℕ , the following equality holds true: 

( ) ( )

( ) ( ) ( )

1

*

,

0 0 0 1

*

, ,

, 1
, ,

,

l

n n k r
r l l

n q

k m l li i m q q

r

n m k q k q

q q

mr
B x

i il

m k n
B B x

m m k

λ λ

λ λ

−

−

= = = + + =

− −

   
= −       

+   
×    +    

∑ ∑∑ ∑
⋯

⋯

 

 

Conclusion 

In the paper, we have derived some new and 

interesting identities arising from q-umbral theory. 
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