Original Research Paper

Applications of q-Umbral Calculus to Modified Apostol Type q-Bernoulli Polynomials

${ }^{1}$ Mehmet Acikgoz, ${ }^{1}$ Resul Ates, ${ }^{1}$ Ugur Duran and ${ }^{2}$ Serkan Araci
${ }^{l}$ Department of Mathematics,
Faculty of Arts and Science, University of Gaziantep, TR-27310 Gaziantep, Turkey
${ }^{2}$ Department of Economics, Faculty of Economics,
Administrative and Social Sciences, Hasan Kalyoncu University, TR-27410 Gaziantep, Turkey

Article history

Received: 18-11-2017
Revised: 29-11-2017
Accepted: 04-01-2018
Corresponding author:
Serkan Araci
Department of Economics, Faculty of Economics,
Administrative and Social
Sciences, Hasan Kalyoncu
University, TR-27410
Gaziantep, Turkey
Email: mtsrkn@hotmail.com

Abstract

This article aims to identify the generating function of modified Apostol type q-Bernoulli polynomials. With the aid of this generating function, some properties of modified Apostol type q-Bernoulli polynomials are given. It is shown that aforementioned polynomials are q Appell. Hence, we make use of these polynomials to have applications on q-Umbral calculus. From those applications, we derive some theorems in order to get Apostol type modified q-Bernoulli polynomials as a linear combination of some known polynomials which we stated in the paper.

Keywords: q-Umbral Calculus, Apostol-Bernoulli Polynomials, Modified Apostol Type q-Bernoulli Polynomials, q-Appell Polynomials, Generating Functions

Introduction

Throughout this paper, we make use of the following standard notations: $\mathbb{N}:=\{1,2,3, \cdots\}$ and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. Also, as usual, \mathbb{Z} denotes the set of integers, \mathbb{R} denotes the set of real numbers and \mathbb{C} denotes the set of complex numbers.

We now begin with the fundamental properties of q-calculus. Let q be chosen as a fixed real number between 0 and 1 . The q-analogue of any number n is given by:

$$
[n]_{q}=\frac{1-q^{n}}{1-q}
$$

The expression:

$$
[n]_{q}!=[n]_{q}[n-1]_{q} \ldots[2]_{q}[1]_{q}
$$

means the q-factorial of n and also let $n, k \in \mathbb{N}$, for $k \leq n$:

$$
\binom{n}{k}_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}
$$

is called q-binomial coefficient. Note that $[0]_{q}!:=1$. The q-derivative of $f(x)$ is defined by:

$$
\begin{equation*}
D_{q} f(x)=\frac{d_{q} f(x)}{d_{q} x}=\frac{f(x)-f(q x)}{(1-q) x}(0<q<1) \tag{1.1}
\end{equation*}
$$

If $q \rightarrow 1^{-}$, it becomes:

$$
\lim _{q \rightarrow 1^{-}} D_{q} f(x)=\frac{d f(x)}{d x}
$$

representing familiar derivative of a function f, with respect to x. The Jackson definite q-integral of a function f is also defined by:

$$
\int_{0}^{a} f(x) d_{q} x=a(1-q) \sum_{j=0}^{\infty} f\left(q^{j} a\right) q^{j}
$$

The q-exponential functions are given by:

$$
e_{q}(t)=\sum_{n=0}^{\infty} \frac{t^{n}}{[n]_{q}!} \text { and } E_{q}(t)=\sum_{n=0}^{\infty} \frac{q^{\left(\frac{n}{2}\right)} t^{n}}{[n]_{q}!}(t \in \mathbb{C} \text { with }|t|<1)
$$

with the following equality:

$$
e_{q-1}(t)=E_{q}(t)
$$

These fundamental properties of q-calculus listed above are taken from the book (Kac and Cheung, 2002).

By using an exponential function $e_{q}(x)$, Kupershmidt (2005) defined the following q-Bernoulli polynomials:

$$
\sum_{n=0}^{\infty} B_{n, q}(x) \frac{t^{n}}{[n]_{q}!}=\frac{t}{e_{q}(t)-1} e_{q}(x t)
$$

In the case $x=0, B_{n, q}(0)=B_{n, q}$ means the n-th q Bernoulli number.

Very recently, Kurt (2016) defined Apostol type q Bernoulli polynomials of order α by making use of the following generating function:

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{n, q}^{(\alpha)}(x, y, \lambda) \frac{t^{n}}{[n]_{q}!}=\left(\frac{t}{\lambda e_{q}(t)-1}\right)^{\alpha} e_{q}(x t) E_{q}(y t) \tag{1.2}
\end{equation*}
$$

where, $\lambda \in \mathbb{C}$ and $\alpha \in \mathbb{N}$. In this study, we will study on the following polynomial $B_{n, q}^{(1)}(x, \lambda):=B_{n, q}(x, \lambda)$ which is given by special cases $\alpha=1$ and $y=0$ in (1.2):
$\sum_{n=0}^{\infty} B_{n, q}(x, \lambda) \frac{t^{n}}{[n]_{q}!}=\frac{t}{\lambda e_{q}(t)-1} e_{q}(x t)$
When $q \rightarrow 1$ in (1.3), it reduces to ApostolBernoulli polynomials (Choi et al., 2008; Luo and Srivastava, 2006).

We now review briefly the concept of q-umbral calculus. For the properties of q-umbral calculus, we refer the reader to see the references (Araci et al., 2007; Choi et al., 2008; Kac and Cheung, 2002; Kim and Kim, 2014a; Kim et al., 2013; Mahmudov and Keleshteri, 2013; Roman, 1985).

Let \mathbb{C} be a field of characteristic zero and let F be the set of all formal power series in the variable t over \mathbb{C} with:

$$
F=\left\{f \left\lvert\, f(t)=\sum_{k=0}^{\infty} a_{k} \frac{t^{k}}{[k]_{q}!}\right.,\left(a_{k} \in \mathbb{C}\right)\right\}
$$

Let \mathbb{P} be the algebra of polynomials in the single variable x over the field complex numbers and let \mathbb{P}^{*} be the vector space of all linear functionals on \mathbb{P}. In the q-Umbral calculus, $\langle L \mid p(x)\rangle$ means the action of a linear functional L on the polynomial $p(x)$. This operator has a linear property on \mathbb{P}^{*} given by:

$$
\langle L+M \mid p(x)\rangle=\langle L \mid p(x)\rangle+\langle M| p(x\rangle
$$

and:

$$
\langle c L \mid p(x)\rangle=c\langle L \mid p(x)\rangle
$$

for any constant c in \mathbb{C}.
The formal power series:
$f(t)=\sum_{k=0}^{\infty} a_{k} \frac{t^{k}}{[k]_{q}!}$
defines a linear functional on \mathbb{P} by setting:
$\left\langle f(t) \mid x^{n}\right\rangle=a_{n} \quad(x \geq 0)$
Taking $f(t)=t^{k}$ in Equation 1.4 and 1.5 gives:

$$
\begin{equation*}
\left\langle t^{k} \mid x^{n}\right\rangle=[n]_{q}!\delta_{n, k}, \quad(n, k \geq 0) \tag{1.6}
\end{equation*}
$$

where:

$$
\delta_{n, k}= \begin{cases}1, & \text { if } n=k \\ 0, & \text { if } n \neq k\end{cases}
$$

Actually, any linear functional L in \mathbb{P}^{*} has the form (1.4). That is, since:

$$
f_{L}(t)=\sum_{k=0}^{\infty}\left\langle L \mid x^{k}\right\rangle \frac{t^{k}}{[k]_{q}!}
$$

we have:

$$
\left\langle f_{L}(t) \mid x^{n}\right\rangle=\left\langle L \mid x^{n}\right\rangle
$$

and so as linear functionals $L=f_{L}(t)$. Moreover, the map $L \rightarrow f_{L}(t)$ is a vector space isomorphism from \mathbb{P}^{*} onto F. Henceforth, F will denote both the algebra of formal power series in t and the vector space of all linear functionals on \mathbb{P} and so an element $f(t)$ of F will be thought of as both a formal power series and a linear functional. From (1.5), we have:

$$
\left\langle e_{q}(y t) \mid x^{n}\right\rangle=y^{n}
$$

and so:

$$
\left\langle e_{q}(y t) \mid p(x)\right\rangle=p(y)(p(x) \in \mathbb{P})
$$

The order $o(f(t))$ of a power series $f(t)$ is the smallest integer k for which the coefficient of t^{k} does not vanish. If $o(f(t))=0$, then $f(t)$ is called an invertible
series. A series $f(t)$ for which $o(f(t))=1$ will be called a delta series (Araci et al., 2007; Choi et al., 2008; Kac and Cheung, 2002; Kim and Kim, 2014a; Kim et al., 2013; Mahmudov and Keleshteri, 2013; Roman, 1985).

If $f_{1}(t), \ldots, f_{m}(t)$ are in F, then:

$$
\begin{aligned}
& \left\langle f_{1}(t) \ldots f_{m}(t) \mid x_{n}\right\rangle \\
& =\sum_{i_{1}+i_{2}+\ldots+i_{m}=n}\binom{n}{i_{1}, \ldots, i_{m}}_{q}\left\langle f_{1}(t) \mid x^{i_{1}}\right\rangle \ldots\left\langle f_{m}(t) \mid x^{i_{m}}\right\rangle
\end{aligned}
$$

where:

$$
\binom{n}{i_{1}, \ldots, i_{r}}_{q}=\frac{[n]_{q}!}{\left[i_{1}\right]_{q}!\cdots\left[i_{r}\right]_{q}!}
$$

We use the notation t^{k} for the k-th q-derivative operator on \mathbb{P} as follows:

$$
t^{k} x^{n}= \begin{cases}\frac{[n]_{q}!}{[n-k]_{q}!} x^{n-k} & k \leq n \\ 0, & k>n\end{cases}
$$

If $f(t)$ and $g(t)$ are in F, then:

$$
\langle f(t) g(t) \mid p(x)\rangle=\langle f(t) \mid g(t) p(x)\rangle=\langle g(t) \mid f(t) p(x)\rangle
$$

for all polynomials $p(x)$. Notice that for all $f(t)$ in F and for all polynomials $p(x)$:

$$
\begin{align*}
& f(t)=\sum_{k=0}^{\infty}\left\langle f(t) \mid x^{k}\right\rangle \frac{t^{k}}{[k]_{q}!} \text { and } \tag{1.7}\\
& p(x)=\sum_{k=0}^{\infty}\left\langle t^{k} \mid p(x)\right\rangle \frac{x^{k}}{[k]_{q}!}
\end{align*}
$$

Using (1.7), we obtain:

$$
p^{(k)}(x)=D_{q}^{k} p(x)=\sum_{l=k}^{\infty} \frac{\left\langle t^{l} \mid p(x)\right\rangle^{l-k}}{[l]_{q}!} \prod_{s=1}^{k}[l-s+1]_{q}
$$

providing:

$$
\begin{equation*}
p^{(k)}(0)=\left\langle t^{k} \mid p(x)\right\rangle \text { and }\left\langle 1 \mid p^{(k)}(x)\right\rangle=p^{(k)}(0) \tag{1.8}
\end{equation*}
$$

Thus, from (1.8), we note that:

$$
t^{k} p(x)=p^{(k)}(x)=D_{q}^{k} p(x)
$$

Let $f(t) \in F$ be a delta series and let $g(t) \in F$ be an invertible series. Then there exists a unique
sequence $s_{n}(x)$ of polynomials satisfying the following property:

$$
\begin{equation*}
\left\langle g(t) f(t)^{k} \mid s_{n}(x)\right\rangle=[n]_{q}!\delta_{n, k} \quad(x, k \geq 0) \tag{1.9}
\end{equation*}
$$

which is called an orthogonality condition for any q sheffer sequence, cf. (Araci et al., 2007; Choi et al., 2008; Kac and Cheung, 2002; Kim and Kim, 2014a; Kim et al., 2013; Mahmudov and Keleshteri, 2013; Roman, 1985).

The sequence $s_{n}(x)$ is called the q-Sheffer sequence for the pair of $(g(t), f(t))$, or this $s_{n}(x)$ is q-Sheffer for $(g(t), f(t))$, which is denoted by $s_{n}(x) \sim(g(t), f(t))$.

Let $s_{n}(x)$ be q-Sheffer for $(g(t), f(t))$. Then for any $h(t)$ in F and for any polynomial $p(x)$, we have:
$h(t)=\sum_{k=0}^{\infty} \frac{\left\langle h(t) \mid s_{k}(x)\right\rangle}{[k]_{q}!} g(t) f(t)^{k}$,
$p(x)=\sum_{k=0}^{\infty} \frac{\left\langle g(t) f(t)^{k} \mid p(x)\right\rangle_{S_{k}}}{[k]_{q}!}(x)$
and the sequence $s_{n}(x)$ is q-Sheffer for $(g(t), f(t))$ if and only if:
$\frac{1}{g(\bar{f}(t))} e_{q}(x \bar{f}(t))=\sum_{n=0}^{\infty} s_{n}(x) \frac{t_{n}}{[n]_{q}!}$
for all x in \mathbb{C}, where $\bar{f}(f(t))=f(\bar{f}(t))=t$.
An important property for the q-Sheffer sequence $s_{n}(x)$ having $(g(t), t)$ is the q-Appell sequence. It is also called q-Appell for $g(t)$ with the following consequence:
$s_{n}(x)=\frac{1}{g(t)} x^{n} \Leftrightarrow t s_{n}(x)=[n]_{q} s_{n-1}(x)$

Further important property for q-Sheffer sequence $s_{n}(x)$ is as follows:

$$
\begin{aligned}
& s_{n}(x) \text { is } q-\text { Alppel for } g(t) \Leftrightarrow \frac{1}{g(t)} e_{q}(x t) \\
& =\sum_{k=0}^{\infty} s_{n}(x) \frac{t^{n}}{[n]_{q}!}(x \in \mathbb{C})
\end{aligned}
$$

For having information about the properties of q umbral theory (Araci et al., 2007; Choi et al., 2008; Kac and Cheung, 2002; Kim and Kim, 2014a; Kim et al., 2013; Mahmudov and Keleshteri, 2013; Roman, 1985) and cited references therein.

Recently several authors have studied q-Bernoulli polynomials, q-Euler polynomials and various
generalizations of these polynomials (Araci et al., 2007; Choi et al., 2008; Kac and Cheung, 2002; Kim and Kim, 2014a; 2014b; 2015; Kim et al., 2013; Kurt, 2016; Kurt and Simsek, 2013; Kupershmidt, 2005; Luo and Srivastava, 2006; Mahmudov, 2013; Mahmudov and Keleshteri, 2013; Roman, 1985; Srivastava, 2011). In the next section, we investigate modified Apostol type q-Bernoulli numbers and polynomials and we apply these numbers and polynomials to q-umbral theory which is the systematic study of q-umbral algebra. Actually, we are motivated to write this paper from Kim's systematic works on q-umbral theory (Kim and Kim, 2014a; 2014b; 2015; Kim et al., 2013).

Modified Apostol Type q-Bernoulli Numbers and Polynomials

Recall from (1.3) that:

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{n, q}(x, \lambda) \frac{t^{n}}{[n]_{q}!}=\frac{t}{\lambda e_{q}(t)-1} e_{q}(x t)(\lambda \neq 1) \tag{2.1}
\end{equation*}
$$

Taking $t \rightarrow 0$ on the above gives $B_{0, q}(x, \lambda)=0$. This shows that the generating function of these polynomials is not invertible. Therefore, we need to modify slightly Equation (2.1) as follows:

$$
F_{q}^{*}(x, t)=\sum_{n=0}^{\infty} B_{n, q}^{*}(x, \lambda) \frac{t^{n}}{[n]_{q}!}=\frac{t}{\lambda e_{q}(t)-1} e_{q}(x t)
$$

representing:

$$
\begin{equation*}
\frac{B_{n+1, q}(x, \lambda)}{[n+1]_{q}}=B_{n, q}^{*}(x, \lambda) \tag{2.2}
\end{equation*}
$$

Here we called $B_{n, q}^{*}(x, \lambda)$ modified Apostol type q Bernoulli polynomials. Now:

$$
\lim _{t \rightarrow 0} F_{q}^{*}(x, t)=B_{0, q}^{*}(x, \lambda)=\frac{1}{\lambda-1} \neq 0 \quad(\lambda \neq 1)
$$

This modification yields to being invertible for generating function of modified Apostol type q Bernoulli polynomials. As a traditional for some special polynomials to be a number, in the case when x $=0, B_{n, q}^{*}(0, \lambda)=B_{n, q}^{*}(\lambda)$ is called the modified Apostol type n-th q-Bernoulli number. Now we list some properties of modified Apostol type q-Bernoulli polynomials as follows.

From (2.2), we obtain:

$$
\begin{equation*}
B_{n, q}^{*}(x, \lambda)=\sum_{k=0}^{n}\binom{n}{k}_{q} B_{k, q}^{*}(\lambda) x^{n-k}=\sum_{k=0}^{n}\binom{n}{k}_{q} B_{n-k, q}^{*}(\lambda) x^{k} \tag{2.3}
\end{equation*}
$$

By (2.2), the modified Apostol type q-Bernoulli numbers can be found by means of the following recurrence relation:

$$
\begin{equation*}
B_{0, q}^{*}(x, \lambda)=\frac{1}{\lambda-1} \text { and } \lambda B_{n, q}^{*}(1, \lambda)-B_{n, q}^{*}(\lambda)=\delta_{0, n} \tag{2.4}
\end{equation*}
$$

A few numbers are listed below:

$$
\begin{aligned}
& B_{0, q}^{*}(\lambda)=\frac{1}{\lambda-1}, B_{1, q}^{*}(\lambda)=\frac{-\lambda}{(\lambda-1)^{2}}, B_{2, q}^{*}(\lambda)=\frac{\lambda(1+\lambda q)}{(\lambda-1)^{3}} \\
& B_{3, q}^{*}(\lambda)=\frac{-\lambda\left(1+2 \lambda q+2 \lambda q^{2}+\lambda^{2} q^{3}\right)}{(\lambda-1)^{4}}
\end{aligned}
$$

From (1.11) and (1.12), we have:

$$
\begin{equation*}
B_{n, q}^{*}(x, \lambda) \sim\left(\lambda e_{q}(t)-1, t\right) \tag{2.5}
\end{equation*}
$$

and:

$$
\begin{equation*}
t B_{n, q}^{*}(x, \lambda)=[n]_{q} B_{n-1, q}^{*}(x, \lambda)=B_{n, q}(x, \lambda) \tag{2.6}
\end{equation*}
$$

It follows from (2.6) that $B_{n, q}^{*}(x, \lambda)$ is q-Appell for $\lambda e_{q}(t)-1$.

We now have the following theorem.

Theorem 1

Let $p(x) \in \mathbb{P}$. We have:

$$
\left\langle\left.\frac{\lambda e_{q}(t)-1}{t} \right\rvert\, p(x)\right\rangle=\lambda \int_{0}^{1} p(u) d_{q} u
$$

Proof

From Equation (2.5) and (2.6), we write:

$$
B_{n, q}^{*}(x, \lambda)=\frac{1}{\lambda e_{q}(t)-1} x^{n} \quad(n \geq 0)
$$

By (1.1) and (1.6), we obtain the following calculations:
$\left\langle\left.\frac{\lambda e_{q}(t)-1}{t} \right\rvert\, x^{n}\right\rangle=\frac{1}{[n+1]_{q}}\left\langle\left.\frac{\lambda e_{q}(t)-1}{t} \right\rvert\, t x^{n+1}\right\rangle$
$=\frac{1}{[n+1]_{q}}\left\langle\lambda e_{q}(t)-1 \mid x^{n+1}\right\rangle$
$=\frac{\lambda}{[n+1]_{q}}=\lambda \int_{0}^{1} x^{n} d_{q} x$
Thus, from (2.7), we arrive at:

$$
\left\langle\left.\frac{\lambda e_{q}(t)-1}{t} \right\rvert\, p(x)\right\rangle=\lambda \int_{0}^{1} p(u) d_{q} u \quad(p(x) \in \mathbb{P})
$$

which is desired result.

Example 1

If we take $p(x)=B_{n, q}^{*}(x, \lambda)$ in Theorem 1 , on the one hand, we derive:

$$
\begin{aligned}
& \lambda \int_{0}^{1} B_{n, q}^{*}(x, \lambda) d_{q} x=\left\langle\left.\frac{\lambda e_{q}(t)-1}{t} \right\rvert\, B_{n, q}^{*}(x, \lambda)\right\rangle \\
& =\left\langle 1 \left\lvert\, \frac{\lambda e_{q}(t)-1}{t} \frac{t B_{n+1, q}^{*}(x, \lambda)}{[n+1]_{q}}\right.\right\rangle \\
& =\frac{1}{[n+1]_{q}}\left\langle t^{0} \mid x^{n+1}\right\rangle=[n]_{q}!\delta_{n+1,0}
\end{aligned}
$$

On the other hand:
$\left.\lambda[n+1]_{q} \int_{0}^{1} B_{n, q}^{*}(x, \lambda) d_{q} x=\lambda[n+1]_{q} \int_{k=0}^{1} \sum_{k=0}^{n} \begin{array}{l}n \\ k\end{array}\right)_{q} B_{n-k, q}^{*}(\lambda) x^{k} d_{q} x$ $=\lambda[n+1]_{q} \sum_{k=0}^{n}\binom{n}{k}_{q} B_{n-k, q}(\lambda) \int_{0}^{1} x^{k} d_{q} x$
$=\lambda \sum_{k=0}^{n}\binom{n+1}{k+1}_{q}^{*} B_{n-k, q}^{*}(\lambda)$
Thus we have the following interesting property for modified Apostol type q-Bernoulli numbers derived from Theorem 1 for $n \geq 0$:

$$
\sum_{k=0}^{n}\binom{n+1}{k+1}_{q} B_{n-k, q}^{*}(\lambda)=0
$$

which can be also generated by Equation (2.3) and (2.4).
The following is an immediate result emerging from (1.10) and (2.5) that:

$$
\begin{aligned}
& p(x)=\sum_{k=0}^{\infty} \frac{[n+1]_{q}}{[k]_{q}!}\left\langle\left.\frac{\lambda e_{q}(t)-1}{t} t^{k} \right\rvert\, p(x)\right\rangle B_{k, q}^{*}(x, \lambda) \\
& =\sum_{k=0}^{\infty} \frac{[n+1]_{q}}{[k]_{q}!}\left\langle\left.\frac{\lambda e_{q}(t)-1}{t} \right\rvert\, t^{k} p(x)\right\rangle B_{k, q}^{*}(x, \lambda) \\
& =\lambda \sum_{k=0}^{\infty} \frac{[n+1]_{q}}{[k]_{q}!} B_{k, q}^{*}(x, \lambda) \int_{0}^{1} t^{k} p(x) d_{q} x
\end{aligned}
$$

By choosing suitable polynomials $p(x)$, one can derive some interesting results. So we omit to give examples and so we now take care of a fundamental property in q umbral theory which is stated below by Theorem 2.

Theorem 2

Let n be nonnegative integer. Then we have:

$$
\left\langle\left.\frac{e_{q}(t)-1}{t} \right\rvert\, B_{n, q}^{*}(x, \lambda)\right\rangle=\int_{0}^{1} B_{n, q}^{*}(u, \lambda) d_{q} u
$$

Proof

From (2.3), we first obtain:

$$
\begin{aligned}
& \int_{c}^{x+y} B_{n, q}^{*}(u, \lambda) d_{q} u=\sum_{k=0}^{n}\binom{n}{k}_{q} B_{n-k, q}^{*}(\lambda) \frac{1}{[k+1]_{q}}\left\{(x+y)^{k+1}-x^{k+1}\right\} \\
& =\frac{1}{[n+1]_{q}} \sum_{k=0}^{n}\binom{n+1}{k+1}_{q}^{*} B_{n-k, q}^{*}(\lambda)\left\{(x+y)^{k+1}-x^{k+1}\right\} \\
& =\frac{1}{[n+1]_{q}}\left(B_{n-1, q}^{*}(x+y, \lambda)-B_{n+1, q}^{*}(x, \lambda)\right)
\end{aligned}
$$

Thus, by applying (2.8), we get:

$$
\begin{align*}
& \left\langle\left.\frac{e_{q}(t)-1}{t} \right\rvert\, B_{n, q}^{*}(x, y)\right\rangle=\frac{1}{[n+1]_{q}}\left\langle\left.\frac{e_{q}(t)-1}{1} \right\rvert\, t B_{n+1, q}^{*}(x, \lambda)\right\rangle \\
& =\frac{1}{[n+1]_{q}}\left\{B_{n+1, q}^{*}(1, \lambda)-B_{n+1, q}^{*}(\lambda)\right\} \tag{2.9}\\
& =\int_{0}^{1} B_{n, q}^{*}(u, \lambda) d_{q} u
\end{align*}
$$

Comparing Equation (2.8) with Equation (2.9), we complete the proof of this theorem.
The following theorem is useful to derive any polynomial as a linear combination of modified Apostol type q-Bernoulli polynomials.

Theorem 3

For $q(x) \in P_{n}$, let:

$$
q(x)=\sum_{k=0}^{n} b_{k, q} B_{k, q}^{*}(x, \lambda)
$$

Then:

$$
b_{k, q}=\frac{1}{[k]_{q}!}\left\{\lambda q^{(k)}(1)-q^{(k)}(0)\right\}
$$

Proof

It follows from (1.9) that:

$$
\begin{equation*}
\left\langle\left(\lambda e_{q}(t)-1\right) t^{k} \mid B_{n, q}^{*}(x, \lambda)\right\rangle=[n]_{q}!\delta_{n, k}(n, k \geq 0) \tag{2.10}
\end{equation*}
$$

We now consider the following sets of polynomials of degree less than or equal to n :

$$
\mathbb{P}_{n}=\{q(x) \in \mathbb{C}[x] \mid \operatorname{deg} q(x) \leq n\}
$$

For $q(x) \in \mathbb{P}_{n}$, we further consider that:
$q(x)=\sum_{k=0}^{n} b_{k, q} B_{k, q}^{*}(x, \lambda)$
Combining (2.10) with (2.11), it becomes:
$\left\langle\left(\lambda e_{q}(t)-1\right) t^{k} \mid q(x)\right\rangle=\sum_{l=0}^{n} b_{l, q}\left\langle\left(\lambda e_{q}(t)-1\right) t^{k} \mid B_{l, q}^{*}(x, \lambda)\right\rangle$
$=\sum_{l=0}^{n} b_{l, q}[l]_{q}!\delta_{l, k}=[k]_{q}!b_{k, q}$
Thus, from (2.12), we have:
$b_{k, q}=\frac{1}{[k]_{q}!}\left\langle\left(\lambda e_{q}(t)-1\right) t^{k} \mid q(x)\right\rangle=\frac{1}{[k]_{q}!}\left\{\lambda q^{(k)}(1)-q^{(k)}(0)\right\}$
where, $q^{(k)}(x)=D_{q}^{k} q(x)$. Thus the proof is completed.
When we choose $q(x)=E_{n, q}(x)$, we have the following corollary which is given by its proof.

Corollary 1

Let $n \geq 2$. Then:

$$
\begin{aligned}
& E_{n, q}(x)=(\lambda q-1) B_{n, q}^{*}(x, \lambda)+[n]_{q}\left(\frac{\lambda+1}{2}\right) B_{n-1, q}^{*}(x, \lambda) \\
& -(\lambda+1) \sum_{k=0}^{n-2}\binom{n}{k}_{q} E_{n-k, q} B_{k, q}^{*}(x, \lambda)
\end{aligned}
$$

Proof

Recall that the q-Euler polynomials $E_{n, q}(x)$ are defined by (Mahmudov, 2013; Srivastava, 2011):

$$
\sum_{n=0}^{\infty} E_{n, q}(x) \frac{t^{n}}{[n]_{q}!}=\frac{[2]_{q}}{e_{q}(t)+1} e_{q}(x t)
$$

which in turn yields to:

$$
E_{n, q}(x) \sim\left(\frac{e_{q}(t)+1}{[2]_{q}}, t\right) \quad(n \geq 0)
$$

and:

$$
t E_{n, q}(x)=[n]_{q} E_{n-1, q}(x)
$$

Set:

$$
q(x)=E_{n, q}(x) \in \mathbb{P}_{n}
$$

Then it becomes:

$$
\begin{equation*}
E_{n, q}(x)=\sum_{k=0}^{n} b_{k, q} B_{k, q}^{*}(x, \lambda) \tag{2.13}
\end{equation*}
$$

Let us now evaluate the coefficients $b_{k, q}$ as follows:

$$
\begin{aligned}
& b_{k, q}=\frac{1}{[k]_{q}!}\left\langle\left(\lambda e_{q}(t)-1\right) t^{k} \mid E_{n, q}(x)\right\rangle \\
& =\frac{[n]_{q}[n-1]_{q} \cdots[n-k+1]_{q}}{[k]_{q}!}\left\langle\lambda e_{q}(t)-1 \mid E_{n-k, q}(x)\right\rangle \\
& =\binom{n}{k}_{q}\left\langle\lambda e_{q}(t)-1 \mid E_{n-k, q}(x)\right\rangle \\
& =\binom{n}{k}_{q}\left(\lambda E_{n-k, q}(1)-E_{n-k, q}\right)
\end{aligned}
$$

where, $E_{n, q}:=E_{n, q}(0)$ are called q-Euler numbers satisfying the following property:

$$
\begin{equation*}
E_{n, q}(1)+E_{n, q}=[2]_{q} \delta_{0, n} \tag{2.14}
\end{equation*}
$$

with the conditions $E_{0, q}=1$ and $E_{1, q}=-\frac{1}{2} . \mathrm{By}$ (2.13) and (2.14), we have:

$$
\begin{aligned}
E_{n, q}(x) & =b_{n, q} B_{n, q}^{*}(x, \lambda)+b_{n-1, q} B_{n-1, q}^{*}(x, \lambda)+\sum_{k=0}^{n-2} b_{k, q} B_{k, q}^{*}(x, \lambda) \\
= & (\lambda q-1) B_{n, q}^{*}(x, \lambda)+[n]_{q}\left(\frac{\lambda+1}{2}\right) B_{n-1, q}^{*}(x, \lambda) \\
& -(\lambda+1) \sum_{k=0}^{n-2}\binom{n}{k}_{q} E_{n-k, q} B_{k, q}^{*}(x, \lambda) .
\end{aligned}
$$

Recall from (1.2) that Apostol type q-Bernoulli polynomials of order r are given by the following generating function, for $y=0$ (Kurt, 2016):

$$
\sum_{n=0}^{\infty} B_{n, q}^{(r)}(x, \lambda) \frac{t^{n}}{[n]_{q}!}=\left(\frac{t}{\lambda e_{q}(t)-1}\right)^{r} e_{q}(x t)
$$

where, $t \in \mathbb{C}$ and $r \in \mathbb{N}$. If t approaches to 0 on the above, it yields to $B_{0, q}^{(\alpha)}(x, \lambda)=0$, which means that the generating function of $B_{n, q}^{(\alpha)}(x, \lambda)$ is not invertible. So, we need to modify slightly Equation (2.1), as follows:

$$
\begin{equation*}
\bar{F}_{q}^{(r)}(x, t)=\sum_{n=0}^{\infty} \bar{B}_{n, q}^{(r)}(x, \lambda) \frac{t^{n}}{[n]_{q}!}=\left(\frac{1}{\lambda e_{q}(t)-1}\right)^{r} e_{q}(x t) \tag{2.15}
\end{equation*}
$$

which implies an invertible since:

$$
\lim _{t \rightarrow 0} \bar{F}_{q}^{(r)}(x, t)=\bar{B}_{n, q}^{(r)}(x, \lambda)=\left(\frac{1}{\lambda-1}\right)^{r} \neq 0 \quad(\lambda \neq 1)
$$

Therefore, we called $\bar{B}_{n, q}^{(r)}(x, \lambda)$ as modified Apostol type q-Bernoulli polynomials of higher order. In the case $x=0, \bar{B}_{n, q}^{(r)}(0, \lambda):=\bar{B}_{n, q}^{(r)}(\lambda)$ may be called the modified Apostol type q-Bernoulli numbers.

Let:

$$
g^{r}(t, \lambda)=\left(\lambda e_{q}(t)-1\right)^{r}
$$

It is clear that $g^{r}(t, \lambda)$ is an invertible series. It follows from (2.15) that $\bar{B}_{n, q}^{(r)}(x, \lambda)$ is q-Appell for $\left(\lambda e_{q}(t)-1\right)^{r}$. So, by (1.12), we have:

$$
\bar{B}_{n, q}^{(r)}(x, \lambda)=\frac{1}{g^{r}(t, \lambda)} x^{n}
$$

and:

$$
t \bar{B}_{n, q}^{(r)}(x, \lambda)=[n]_{q} \bar{B}_{n-1, q}^{(r)}(x, \lambda)
$$

Thus, we have:

$$
\bar{B}_{n, q}^{(r)}(x, \lambda) \sim\left(\left(\lambda e_{q}(t)-1\right)^{r}, t\right)
$$

By (1.5) and (2.15), we get:

$$
\begin{align*}
& \left\langle\left.\frac{1^{r}}{\left(\lambda e_{q}(t)-1\right)^{r}} e_{q}(y t) \right\rvert\, x^{n}\right\rangle \tag{2.16}\\
& =\bar{B}_{n, q}^{(r)}(y, \lambda)=\sum_{l=0}^{n}\binom{n}{l}_{q} \bar{B}_{n-l, q}^{(r)}(\lambda) y^{l}
\end{align*}
$$

Here we find that:

$$
\begin{align*}
& \left\langle\left.\left(\frac{1}{\lambda e_{q}(t)-1}\right)^{r} \right\rvert\, x^{n}\right\rangle=\left\langle\left.\frac{1}{\lambda e_{q}(t)-1} \times \cdots \times \frac{1}{\lambda e_{q}(t)-1} \right\rvert\, x^{n}\right\rangle \tag{2.17}\\
& =\sum_{i_{1}+\cdots+i_{r}=n}\binom{n}{i_{1}, \cdots, i_{r}} B_{q}^{*}(\lambda) \cdots B_{i_{1}, q}^{*}(\lambda)
\end{align*}
$$

By using (2.16), we have:

$$
\begin{equation*}
\left\langle\left.\left(\frac{1}{\lambda e_{q}(t)-1}\right)^{r} \right\rvert\, x^{n}\right\rangle=\bar{B}_{n, q}^{(r)}(\lambda) \tag{2.18}
\end{equation*}
$$

Therefore, by (2.17) and (2.18), we obtain the following theorem.

Theorem 4

Let n be nonnegative integer. Then we have:

$$
\bar{B}_{n, q}^{(r)}(\lambda)=\sum_{i_{1}+\cdots+i_{r}=n}\binom{n}{i_{1}, \cdots, i_{r}} \prod_{q}^{r=1} B_{i_{j}, q}^{*}(\lambda)
$$

Set:

$$
q(x)=\bar{B}_{n, 9}^{(r)}(x, \lambda) \in \mathbb{P}_{n}
$$

Then, by Theorem 3, we write:
$\bar{B}_{n, q}^{(r)}(x, \lambda)=\sum_{k=0}^{n} b_{k, q} B_{k, q}^{*}(x, \lambda)$
where the coefficient $b_{k, q}$ is given by:
$b_{k, q}=\frac{1}{[k]_{q}!}\left\langle\left(\lambda e_{q}(t)-1\right) t^{k} \mid q(x)\right\rangle$
$=\binom{n}{k}_{q}\left\langle\left(\lambda e_{q}(t)-1\right) \mid \bar{B}_{n-k, q}^{(r)}(x, \lambda)\right\rangle$
$=\binom{n}{k}_{q}\left(\lambda \bar{B}_{n-k, q}^{(r)}(1-\lambda)-\bar{B}_{n-k, q}^{(r)}(\lambda)\right)$
From the Equation (2.15), we have:

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left(\lambda \bar{B}_{n, q}^{(r)}(1, \lambda)-\tilde{B}_{n, q}^{(r)}(\lambda)\right) \frac{t^{n}}{[n]_{q}!}=\left(\frac{1}{\lambda e_{q}(t)-1}\right)^{r}\left(\lambda e_{q}(t)-1\right) \\
& =\left(\frac{1}{\lambda e_{q}(t)-1}\right)^{r-1} \\
& =\sum_{n=0}^{\infty} \tilde{B}_{n, q}^{(r-1)}(\lambda) \frac{t^{n}}{[n]_{q}!}
\end{aligned}
$$

By comparing the coefficients $\frac{t^{n}}{[n]_{q}!}$ in the above equation, we get:

$$
\begin{equation*}
\lambda \bar{B}_{n, q}^{(r)}(1, \lambda)-\bar{B}_{n, q}^{(r)}(\lambda)=\bar{B}_{n, q}^{(r-1)}(\lambda) \tag{2.21}
\end{equation*}
$$

From the Equation (2.19) to (2.21), we get the following theorem.

Theorem 5

Let $n \in \mathbb{N}_{\mathbf{b}}$ and $r \in \mathbb{N}_{\mathbf{b}}$. Then:

$$
\bar{B}_{n, q}^{(r)}(x, \lambda)=\sum_{k=0}^{n}\binom{n}{k}_{q} \bar{B}_{n-k, q}^{(r-1)}(\lambda) B_{k, q}^{*}(x, \lambda)
$$

Let us assume that:
$q(x) \sum_{k=0}^{n} b_{k, q}^{r} \bar{B}_{k, q}^{(r)}(x, \lambda) \in \mathbb{P}_{n}$

We use a similar method in order to find the coefficient $b_{k, q}^{r}$ as same as Theorem 3. So we omit the details and give the following equality:

$$
b_{k, q}^{r}=\frac{1}{[k]_{q}!} \sum_{l=0}^{r}\binom{r}{l}_{q} \lambda^{l}(-1)^{r-l} \sum_{m \geq 0_{1}} \sum_{1+\cdots+i_{l}=m}\binom{m}{i_{1}, \cdots, i_{l}}_{q} \frac{1}{[m]_{q}!} q^{(m+k)}(0)
$$

By (2.22) and coefficient $b_{k, q}^{r}$, we state the following theorem.

Theorem 6

For $n \in \mathbb{N}$, let:

$$
q(x)=\sum_{k=0}^{n} b_{k, q}^{r} \bar{B}_{k, q}^{(r)}(x, \lambda) \in \mathbb{P}_{n}
$$

Then:

$$
\begin{aligned}
& b_{k, q}^{r}=\frac{1}{[k]_{q}!}\left\langle\left(\lambda e_{q}(t)-1\right) t^{k} \mid q(x)\right\rangle \\
& =\frac{1}{[k]_{q}!m \geq 0} \sum_{l=0} \sum_{l}^{r}\left(\begin{array}{l}
\\
l
\end{array}\right)_{q} \lambda^{l}(-1)^{r-l} \sum_{i_{1}+\cdots+i_{i}=m}\binom{m}{i_{1}, \cdots, i_{l}}_{q} \frac{1}{[m]_{q}!} q^{(m+k)}(0)
\end{aligned}
$$

where, $q^{(k)}(x)=D_{q}^{k} q(x)$.
Let us consider $q(x)=B_{n, q}^{*}(x, \lambda) \in \mathbb{P}_{n}$. Then, by Theorem 6, we have:

$$
\begin{equation*}
B_{n, q}^{*}(x, \lambda)=\sum_{k=0}^{n} b_{k, q}^{r} \bar{B}_{k, q}^{(r)}(x, \lambda) \tag{2.23}
\end{equation*}
$$

From Theorem 6 and (2.23), we acquire the following theorem.

Theorem 7

For $n, r \in \mathbb{N}$, the following equality holds true:

$$
\begin{aligned}
& B_{n, q}^{*}(x, \lambda)=\sum_{k=0}^{n}\left(\sum_{m=0}^{n-k} \sum_{l=0}^{r} \sum_{i_{1}+\cdots+i_{l}=m}(-1)^{r-l} \lambda^{l}\binom{r}{l}_{q}\binom{m}{i_{1}, \cdots, i_{l}}_{q}\right. \\
& \left.\times\binom{ m+k}{m}_{q}\binom{n}{m+k}_{q} B_{n-m-k, q}^{*}(\lambda)\right) \bar{B}_{k, q}^{(r)}(x, \lambda)
\end{aligned}
$$

Conclusion

In the paper, we have derived some new and interesting identities arising from q-umbral theory.

Acknowledgment

The fourth author is supported by the Research Fund of Hasan Kalyoncu University in 2018.

Author's Contributions

All authors equally contributed to this paper.

Competing Interests

The authors have no competing interests.

References

Araci, S., M. Acikgoz, T. Diagana and H.M. Srivastava, 2007. A novel approach for obtaining new identities for the lambda extension of q-Euler polynomials arising from the q-umbral calculus. J. Nonlinear Sci. Appl., 10: 1316-1325. DOI: 10.22436/jnsa.010.04.03
Choi, J., P.J. Anderson and H.M. Srivastava, 2008. Some q-extensions of the Apostol-Bernoulli and the Apostol-Euler polynomials of order n and the multiple Hurwitz zeta function. Applied Math. Comput., 199: 723-737. DOI: 10.1016/j.amc.2007.10.033
Kac, V. and P. Cheung, 2002. Quantum Calculus. 1st Edn., Springer, New York, ISBN-10: 0387953418, pp: 112.
Kim, D.S. and T. Kim, 2014a. q-Bernoulli polynomials and q-umbral calculus. Sci. China Math., 57: 1867-1874. DOI: 10.1007/s11425-014-4821-3
Kim, D.S. and T. Kim, 2014b. Some identities of q Euler polynomials arising from q-umbral calculus. J. Inequal. Appl., 2014: 1-1. DOI: 10.1186/1029-242X-2014-1
Kim, D.S. and T. Kim, 2015. Umbral calculus associated with Bernoulli polynomials. J. Number Theory, 147: 871-882. DOI: 10.1016/j.jnt.2013.09.013
Kim, T., T. Mansour, S.H. Rim and S.H. Lee, 2013. Apostol-Euler polynomials arising from umbral calculus. Adv. Difference Equa., 2013: 301-301. DOI: 10.1186/1687-1847-2013-301

Kupershmidt, B.O., 2005. Reflection symmetries of q Bernoulli polynomials. J. Nonlinear Math. Phys., 12: 412-422. DOI: $10.2991 / \mathrm{jnmp} .2005 .12$.s 1.34
Kurt, B. and Y. Simsek, 2013. On the generalized Apostol-type Frobenius-Euler polynomials. Adv. Difference Equ., 2013: 1-1. DOI: 10.1186/1687-1847-2013-1
Kurt, B., 2016. A note on the Apostol type q -Frobenius-Euler polynomials and generalizations of the Srivastava-Pinter addition theorems. Filomat, 30: 65-72. DOI: 10.2298/FIL1601065K
Luo, Q.M. and H.M. Srivastava, 2006. Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials. Comput. Math. Appl., 51: 631-642.
DOI: 10.1016/j.camwa.2005.04.018

Mahmudov, N.I. and M.E. Keleshteri, 2013. On a class of generalized q-Bernoulli and q-Euler polynomials. Adv. Difference Equ., 2013: 115-115. DOI: 10.1186/1687-1847-2013-115
Mahmudov, N.I., 2013. On a class of q-Bernoulli and q-Euler polynomials, Adv. Difference Equ., 2013: 108-108. DOI: 10.1186/1687-1847-2013-108
Roman, S., 1985. More on the umbral calculus, with emphasis on the q-umbral calculus. J. Math. Anal. Appl., 107: 222-254. DOI: 10.1016/0022-247X(85)90367-1
Srivastava, H.M., 2011. Some generalization and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials. Applied Math. Inform. Sci., 5: 390-444.

