
 

 
   © 2018 Sami H. Altoum. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 

license. 

Journal of Mathematics and Statistics 

 

 

Original Research Paper 

q-Deformation of Transonic Gas Equation 

 
1,2

Sami H. Altoum 

 
1Academy of Engineering Science, Sudan 
2Department of Mathematics, AL-Qunfudhah University College, Umm Al-Qura University, Saudi Arabia 

 
Article history 

Received: 23-09-2017 

Revised: 23-11-2017 

Accepted: 24-4-2018 

 
Email: samialtoum@hotmail.com 

Abstract: In this study, the transonic gas equation will be considered. For 

q∈(0,1), q-deformation of transonic gas equation (q-transonic) are studied, 

we use q- derivative (or Jackson derivative) to solve transonic gas equation. 

 

Keyword: Transonic Gas Equation, q-Deformation, q-Derivative 

 

Introduction 

In real complex and functional analysis, derivatives 

are generalized to functions of several real or complex 

variables and functions between topological vector 

spaces. An important case is the variational 

derivative in the calculus of variations. Repeated 

application of differentiation leads to derivatives of 

higher order and differential operators. The derivative 

is often met for the first time as an operation on a 

single real function of a single real variable. One of the 

simplest settings for generalizations is to vector valued 

functions of several variables (most often the domain 

forms a vector space as well). This is the field 

of multivariable calculus. In one-variable calculus, we 

say that a function :f →R R  is differentiable at a 

point x if the limit 
( )

0

( )
lim
h

f x h f x

h→

+ −

 exists. Roughly 

speaking, in mathematics, specifically in the areas 

of combinatorics and special functions, a q-analog of a 

theorem, identity or expression is a generalization 

involving a new parameter q that returns the original 

theorem, identity or expression in the limit as q→1 

(this limit is often formal, as q is often discrete-valued). 

Typically, mathematicians are interested in q-

analog that arise naturally, rather than in arbitrarily 

contriving q-analog of known results. The earliest q-

analog studied in detail is the basic hypergeometric 

series, which was introduced in the 19th century. q-

analog find applications in a number of areas, including 

the study of fractals and multi-fractal measures and 

expressions for the entropy of chaotic dynamical 

systems. The relationship to fractals and dynamical 

systems results from the fact that many fractal patterns 

have the symmetries of Fuchsian groupssee (Accardi and 

Boukas, 2006; Accardi et al., 2006; Ettaieb et al., 2014; 

Leeuwen and Maassen, 1995; Hida, 1993). The 

connection passes through hyperbolic geometry and 

ergodic theory, where the elliptic integrals and modular 

formsplay a prominent role; the q-series themselves are 

closely related to elliptic integrals. q-analogs also 

appear in the study of quantum groups and in q-

deformed superalgebras. The connection here is 

similar, in that much of string theory is set in the 

language of Riemann surfaces, resulting in connections 

to elliptic curves, which in turn relate to q-series. There 

are two main groups of q-analogs, the "classical" q-

analogs, with beginnings in the work of Leonhard 

Euler and extended by F.H. Jackson and others. q-

analogs are often found in physical applications, 

especially exact solutions of many-body problems. In 

such cases, the q→1 limit usually corresponds to 

relatively simple dynamics, e.g., without nonlinear 

interactions, while q<1 gives insight into the complex 

nonlinear regime with feedbacks. An example from 

atomic physics is the model of molecular condensate 

creation from an ultra-cold fermionic atomic gas during 

a sweep of an external magnetic field through the 

Fischbach resonance. This process is described by a 

model with a q-deformed version of the SU(2) algebra 

of operators (The special unitary group SU(n) is a 

real Lie group though not a complex Lie group) 

(Accardi and Boukas, 2009; Bangerezako, 2004; 

Bożejko and Speicher, 1991; Ettaieb et al., 2012; 

Jackson, 1910; Mason, 1915) and its solution is 

described by q-deformed exponential and binomial 

distributions. This article is organized as follows: In 

section 2 we state the main problem transonic gas 

equation, in section 3 introduced q-derivative, in 

section 4 introduced some q-calculus definitions related 

to q-deformation and Jackson derivative, in section 5 

the classical solution of transonic gas equation 

presented. Finally used to q-deformation to deduce a 

solution of transonic gas equation. 
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Transonic Gas Equation 

Consider the transonic gas equation: 

 

0.
x xx yy

u u u+ =  (1) 

 

The study of gas dynamics is often associated with 

the flight of modern high-speed aircraft and atmospheric 

reentry of space-exploration vehicles; however, its 

origins lie with simpler machines. At the beginning of 

the 19th century, investigation into the behavior of fired 

bullets led to improvement in the accuracy and 

capabilities of guns and artillery. As the century 

progressed, inventors such as Gustaf de Laval advanced 

the field, while researchers such as Ernst Mach sought to 

understand the physical phenomenon involved through 

experimentation the model equation gas equation. In 

classical solution of transonic gas flow the solution take 

a system of equations but the number of equations is less 

the number of unknowns parameters, for this reason we 

cannot have a unique solution for our differential 

equation. This leads to an open question, what can we do 

in our case or how can we change completely the PDEs 

in order to get a solvable system with unique solution. 

So in this study we solve the transonic gas equation 

using q-deformation. 

q-Derivative 

Here is a nice diversion for anyone who knows what 

the derivative of a simple function is f(x). The modern 

theory of differential and integral calculus began in the 

20th century with the works of Newton and Leibniz. As 

it is well known, the derivative of a function f(x) with 

respect to the variable x is by definition: 

 

( )
( ) ( )

0

lim .
h

f x h f x
f x

h→

+ −
′ =  

 

Now, let us consider the following expression: 

 

( )
( ) ( )

1

lim .
q

f qx f x
f x

qx x→

−
′ =

−
 

 

Of course, this is not valid when q = 1 or x = 0 but 

otherwise this alternative formula is equivalent to the 

usual derivative. You can convince yourself by 

writing 
( )( )1 ( )

( 1)

f x q x f x

q x

+ − −

−

, the term (q-1)x playing 

the role of h. 

At the beginning of the 20th century, F.H. Jackson 

studied this modified derivative and many of its 

consequences. The key concept is the q-derivative 

operator defined as follows when 0<q<1: 

( )( )
( )

1

( )
lim ,

q

q

f qx f x
D f x

qx x
→

−

=

−

 

 

this q-derivative can be applied to functions not 

containing 0 in their domain of definition. Then it 

reduces to the ordinary derivative when q goes to 1: 

 

( )( ) ( )
1

lim .
q

q

fD f x x
→

′=  

 

Example 

Compute the q-derivative of x
2 
+2x +1: 

 

( )
( ) ( )

( )

2 2

2

2 1 2 1

2 1

1 2.

q

qx qx x x
D x x

qx x

q x

   + + − + +  + + =
−

= − +

 

 

One can easily check that the q-derivative operator is 

linear: 

 

( )

( ) ,

q q q

q q

D f g D f D g

D f D fλ λ

+ = +

=

 

 

the product rule is slightly modified but it approaches the 

usual product rule when q goes to one: 

 

( )( )( ) ( )( )( ) ( )( ) ( ).q q q
D fg x f qx D g x D f x g x= +  

 

q-Calculus 

We recall some basic notations used in q-calculus 

(Abdi, 1962; Accardi and Boukas, 2007; Adams, 1929; 

Altoum et al., 2047; Ettaieb et al., 2016; Hida, 1993; 

Yuri et al., 1998). The natural number n has the 

following q deformation: 

 

[ ] [ ]2 1
1 , 0 0.:

n

q q
n q q q with

−

= + + + + =⋯  

 

Occasionally, we shall write [∞]q for the limit of 

these numbers: 
 

1
,

1 q−
 

 
The q factorials and q binomial coefficients are 

defined naturally as: 
 

[ ] [ ] [ ] [ ] [ ] [ ]! 1 . 2 . 3 , 0 : 0.
q q q q q q

n n with= … =  

 

Recall that from (Yuri et al., 1998), for q∈(0,1) 

relation aa
*
-qa

*
a = 1 (q-Deformation of the Square 
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White Noise Lie Algebra) admits, up to unitary 

equivalence, a unique non-trivial bounded irreducible 

representation given on the canonical basis: 
 

{ } ( )2

n
e n of l∈N N  

 
Defined using the following equations: 

 

• a
*
en = en+1 

• aen = [n]q en-1 

• 〈en, em〉 = δn,m[n]q! 
 

For q∈(0,1) and analytic for :f →C C define 

operators Z and Dq as follows (Ettaieb et al., 2016; Hida, 

1993; Yuri et al., 1998): 

 

( )( ) ( )

( )( )

( ) ( )

( )

( )

: ,

, 0
1 .

0

q

Zf z zf z

f z f qz
z

z qD f z

f

=

 −
≠

−= 
 ′

 

 
The operator Dq has the following properties: 

 

• limq→1(Dqf)(x) = f’(x) 

• ( ) [ ]1 1
1

1

n

n n n

q q

q
D z z n z

q

− −

−

= =

−

 

• Dq(f(z)g(z) = (Dqf)(z)g(z) + f(qz)(Dqg)(z) 

• 
( ) ( ) ( )

( )

( ) ( )( )( )

( ) ( )

q q

q

D f z g z f z D g zf z
D

g z g z g qz

−

=  

 
We can apply the Taylor formula to the definition of 

(Dqf)(z) to get: 
 

( )( )
( )

( )
( ) ( )1

0

1
.

1 !

k

kk

q

k

q
D f z x f x

k

∞

+

=

−

=

+
∑  

 
A q-analog of the Taylor expansion of a function 

around zero as follows: 

 

( )
( )

( ) [ ]0 0

(0) ( )(0) .
! !

n
n

n n

q

n n

z z
f z f D f

n n

∞ ∞

= =

= =∑ ∑  

 

Classical Solution of Transonic Gas 

Equation (Titov, 1988) 

The exact solution of the transonic gas dynamics 

given by the Equation 1 is as follows. 

Suppose u(x,t) is the solution of the Equation 1. Then 

the function: 

 
3 2

1 1 2 1 3 2 4 5 6
( , ) ,u c c u c x c c y c c y c

−

= + + + +  

is also a solution, where c1,c2,…,c6 are arbitrary constants. 

Solution can be investigated are the following: 

 

( ) ( )

( ) ( )
( )

( )

( )

( )

( )

( )( ) ( )

1 2 3 4

2 3
13 8

1

3

3 2

1 2

2

1

3 43

1

2 3

3 2
2

1 2 32

33
4

1
2

1 2 3 42

2

( , )

2
( , ) ( )

39 3

3
3

( , )
3

4
( , )

3

1
( , ) 2

3 12

9
( , )

u x t c xy c x c y c

a c
u x t y A a y A x B

x B
c y A x B

a y A

x c
u x t c y c

a x c

B
u x t aA y x c c Ax By c

aA

ac
u x t Ay B c x c Ay B c y c

A

aA
u x t

y c

= + + +

= + + + +

+
+ + + −

+

+
= + +

+

= − − + + ± + +

= + + − + + +

= −
+

( )

( )

( ) ( ) ( )

( )

( )

3
3

2
22

3 42

1 1 1

3 5
72

2 2
1 2 1

3

2

3 42

1

4
3

3
( , ) 4

7

3

x cx c
A c y c

y c a y c

u x t aA y c A x c y c

x c
c y c

a y c

+ +
+ − + + 

+ + 

= − + + + +

+
− + +

+

 

 

where, A, B, C1,…,C4, are arbitrary constant (the first 

solution is degenerate). 

There are solutions of the following forms: 

 

• self-similar solution: 

 
3 2

, ( , ) ( ),
k k k

z xy u x t y u z z xy
− −

= = =  

 

where, k is any arbitrary constants. 

• Generalized separable solution as: 

 
3

32

1 2 3

2 3

1 2 3 4

1 2

( , ) ( ) ( ) ( ) ;

( , ) ( ) ( ) ( ) ( )

( , ) ( ) ( ) ( )

u x y y y x y x

u x t y y x y x y x

u x t y x y

φ φ φ

ψ ψ ψ ψ

ψ φ ψ

= + +

= + + +

= +

 

 

Analogous of Transonic Gas Equation 

As an q-analogous of (1), we introduce q-transonic 

gas equation as follows: 

 

( )( ) ( )2 2

, , ,
0,

q x q x q y
D u D D+ =  (2) 

 

where: 

 

( )

( )

( )'

( )
0, 0 1,

0

q

f r f qr
r q

D f r r qr

f

 −
≠ < <

= −
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then: 

 

( )

( ) ( )

( )

1 2 1 2

1

1 1, 1 2

2

, ,
, 0,

,

0,

q x

x

f z z f qz z
ifz

z qzD f z z

f z

 −
≠

−= 
 ∂

 

 

and: 

 

( )

( ) ( )

( )

1 2 1 2

2

2 2, 1 2

1

, ,
, 0,

,

,0

q y

y

f z z f z qz
if z

z qzD f z z

f z

 −
≠

−= 
 ∂

 

 

and: 

 

( )

( ) ( )

( )

, 1 2

2

1 2 1 2 1 2

12 2

1

2

,

, 2 , ( , )
, 0,

(1 )

0,

q xx

xx

D f z z

f z z f qz z f q z z
if z

z q

f z

 − −
≠

= − −
 ∂

 

 

and: 

 

( )

( ) ( )

( )

, 1 2

2

1 2 1 2 1 2

22 2

2

,

, 2 , ( , )
, 0.

(1 )

,0

q yy

yy

D f z z

f z z f z qz f z q z
if z

z q

f z

 − +
≠

− −= 
 ∂

 (3) 

 

Now let: 

 

( ) ( )( )

( ) ( )

( )

( ) ( ) ( )

( ) ( )

( ) ( )

( )

, 1 2 , , 1 2

1 2 1 2

1

1

2

1 2 1 2 1 2 1 2

1 22

1 2

1

1 2

1

2 2

1 2

1

, ,

, ,
, 0

(1 )

0,

, , , ( , )
, 0, 0

(1 )

,0 ,0
, 0, 0

(1 )

0, 0,
, 0, 0

(1 )

0,0 ,

q xy q x q y

x

y y

x x

xy

D f z z D D F z z

F z z F qz z
if z

z q

f z

f z z f z qz f qz z f qz qz
z z

z z q

f z f qz
z z

z q

f z f qz
z z

z q

f

=

 −
≠

− −= 
 ∂

 − − +
≠ ≠

−
 ∂ −∂

≠ =
−= 

∂ −∂
= ≠

−

∂









 

 

where, (z1 ≠ 0 Λz2 ≠ 0) ⇒ z1 = 0Vz2 = 0. 

Let: 

 

( ) ( ), 1 2 1 2
, , ,

q x
D f z z g z z=  

 

then: 

( ) ( )( )

( )

( )

( ) ( ) ( )

( ) ( )

( ) ( )

, 1 2 , , 1 2

, 1 2

, 1 2 , 1 2

2

2

, 1

1 2 1 2 1 2 1 2

1 22

1 2

2 2

1 2

1

1 1

1

, ,

( , )

, ( , )
, 0

(1 )

,0

, , , ( , )
, 0, 0

(1 )

0, 0,
, 0, 0

(1 )

,0 ,0

(1

q yx q y q x

q y

q x q x

y q x

x x

y y

D f z z D D F z z

D g z z

D f z z D f z qz
z

z q

D f z

f z z f qz z f z qz f qz qz
z z

z z q

f z f qz
z z

z q

f z f qz

z

=

=

 −
≠

−= 
 ∂

− − +
≠ ≠

−

∂ − ∂
= ≠

−=

∂ − ∂

−

( )

1 2

1 2

, 0, 0
)

0,0 0, 0.
yx

z z
q

f z z








 ≠ =



∂ = =

 

 

Now let u = f(z1,z2), then: 

 

( )

( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( )

, 1 2 ,

2

1 2 1 2 1 2 1 2 1 2

13 3

1

2 2 1

,

, , , 2 , ,
, 0

(1 )

0, 0, , 0.

q x q xx

x xx

D f z z D f

f z z f qz z f z z f qz z f q z z
z

z q

f z f z z

 − − +
 ≠

= −


∂ ∂ =

 (4) 

 

Now substitute (3) and (4) in (2) we get the following 

case: 

 

( )( ) ( )

( ) ( )

( ) ( )( )

( )

( )( ) ( )( ) ( )

2 2

, , ,

1 2

2 2 1 2

1 2

1 2

1 0

2 0

3 4 , 0 0

0, 0, (3) , 0 0

(4) 0,0 , 0 0

0,0 0,0 0,0 , 0 0.

q x q x q y

x xx

yy

x xx yy

z

z

D u D D

z z

f z f z z z

f z z

f f f z z

=

=

+

 + ≠ ∧ ≠


∂ ∂ + = ∧ ≠
= 

+ ∂ ≠ ∧ =

∂ ∂ + ∂ = ∧ =

 

 

The above discussion gives the following theorem. 

Theorem 

For q∈(0,1), the solution of the transonic gas 

Equation 2 is given by: 

 

[ ] [ ] [ ]

[ ] [ ]

1 2

1 0

, 3, 2 ,

3 2

1 .

r s

q q q
i j

i j r i s j r sq q

i r i r i

a a s s a

+ −

= =

− + − −

− + − +

= − −

∑∑
 

 

Proof 

Let q-transonic gas equation is 

( )( ) ( )2 2

, , ,
0

q x q x q y
D u D D+ = . 

Then, from above discussions, we substitute 
,q x

D u , 

2

,q x
D  and 2

,q y
D in (2 ) we can find: 
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( ) ( )( ) ( ) ( ) ( )( )
( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

1 2 1 2 1 2 1 2 1 2

33

1

2

1 2 1 2 1 2

1 22 2

2

2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

3 3

1

2

1 2 1 2 1 2

2 2

2

, , , 2 , ,

1

, 2 , ( , )
0, , 0

(1 )

, 3 , , , , 2 , , ,

(1 )

, 2 , ,

(1 )

f z z f qz z f z z f qz z f q z z

z q

f z z f z qz f z q z
z z

z q

f z z f z z f qz z f z z f q z z f qz z f qz z f q z z

z q

f z z f z qz f z q z

z q

− − +

−

− +

+ = ≠

− −

− + − −

−

− +

+ =

− −

0

 (5) 

 
Now let: 

 

( )1 2 , 1 2

, 0

, ,

n m

n m

n m

u z z a z z

∞

=

= ∑  

 
and: 
 

( )
( )

( )

[ ]

1 1

, 1

1

1

1

1

1

(1 )

1

(1 )

nn

n

q x

n n

n

q

z qz
D z

z q

z q

z q

z n
−

−

=

−

−

=

−

=

 

 
This implies: 

 

[ ] [ ] [ ]

[ ] [ ]

( ) [ ] [ ] [ ]

[ ] [ ]

[ ] [ ] [ ]

1 2

, 1 2 , 1 2

, ,

2

, 1 2

,

1 2

1 2 , 1 2 , 1 2

, , ,

2

, 1 2

,

1 2

, 1 2 , 1 2

, , ,

1

1 0

, 1

1 0

1

n m n m

n m n mq q q
n m n m

n m

n mq q
n m

i j n m

i j n mq q q
i j n m

n m

n mq q
n m

i j n

i j n mq q q
i j n m

n a z z n n a z z

m m a z z

u z z i a z z n n a z z

m m a z z

i a z z n n a z z

∞ ∞

− −

∞

−

∞

− −

∞

−

∞

− −

  
−  

  

 
+ − = 
 

= −

+ − =

−

∑ ∑

∑

∑

∑

∑

[ ] [ ] 2

, 1 1

,

1 0

m

n m

n mq q
n m

m m a z z

∞

−+ − =∑

 

 
This implies: 

 

[ ] [ ] [ ]( )

[ ] [ ]

3

, 1 2

, , ,

2

, 1 2

,

,

1

1

i n m j

i jq q q
i j n m

n m

n mq q
n m

i n n a z z

m m a z z

∞

+ − +

∞

−

−

= − −

∑

∑

 

 
where: 
 

2 2, 0 2

3 3, 2 1 0 1

m j s m s j m s j

i n r n r i n r i r i

+ = − = − − ≥ ⇔ ≥ +
⇒

+ − = = − + ≥ ⇔ − + ≥ ⇒ ≥ −
 

 
If and only if: 

[ ] [ ] [ ]( )

[ ] [ ]( )

[ ] [ ]( )

2

, 3, 2 1 2

1, 0 2, 1

2

, 1 2

, 0

1 2
2 2

, , , 1 2 , 1 2

0, 2 1, 1, 0, 2

2 2

1

1 ,

r s

i j r i s jq q q
i j s j r i

n m

n mq q
n m

r s
r s r s

i j r s r sq q
r s i j r s

i r i r i a a z z

m m a z z

z z s s a z zα

∞ ∞

−

− + − −

= = = + = −

∞

−

=

∞ + − ∞

− −

= = = = = =

− + − +

= − −

 
= − −  

 

∑ ∑

∑

∑ ∑∑ ∑

 

 
where: 
 

[ ] [ ] [ ]( ), , , , 3, 2
2 2 .

i j r s i j r i s jq q q
i r i r i a aα

− + − −
= − + − +  

 
Hence, we deduce the following result: 

 

[ ] [ ] [ ]

[ ] [ ]

1 2

1 0

, 3, 2 ,

3 2

1 .

r s

q q q
i j

i j r i s j r sq q

i r i r i

a a s s a

+ −

= =

− + − −

− + − +

= − −

∑∑
  (6) 

 

{ } { }0  2, 0,1,2,  2,3,4,r and s r and s∀ ≥ ≥ ∀ ∈ … ∈ …  

 
This conclude the proof. 

Conclusion 

In this study, the q-analogous of transonic gas 

equation presented. The classical solution considered. 

We show that the huge different between classical 

case and a new q-analogous of transonic gas equation.  

In future I will investigate the solution of Equation 

(6) using code programming with the software Maple. 
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