American Journal of Biochemistry and Biotechnology

A Microscopic Study of Language-Related Cortex in Autism

Edith López-Hurtado and Jorge J. Prieto

DOI : 10.3844/ajbbsp.2008.130.145

American Journal of Biochemistry and Biotechnology

Volume 4, Issue 2

Pages 130-145


Impaired language function is a principle criterion for the diagnosis of autism. The present study of brain from age-matched autistic and control subjects compared brain regions associated with the production and processing of speech. Wernicke's area (Brodmann 22, speech recognition), Broca's area (Brodmann 44, speech production) andthe gyrus angularis (Brodmann 39, reading) from autistic subjects (7-44 years of age) and control subjects (8-56 years of age) were examined microscopically. Striking differences in the density of glial cells, the density of neurons andthe number of lipofuscin-containing neurons were observed in the autistic group compared with the control group. The mean density of glial cells was greater in the autistic cohort than controls in area 22 (p<0.001), area 39 (p<0.01) andarea 44 (p<0.05). The density of neurons was lesser in autism in area 22 (p<0.01) and area 39 (p<0.01). The autistic group exhibited significantly greater numbers of lipofuscin-containing cells in area 22 (p<0.001) and area 39 (p<0.01). The results are consistent with accelerated neuronal death in association with gliosis and lipofuscin accumulation in autism after age seven. Production of lipofuscin (a matrix of oxidized lipid and cross-linked protein more commonly associated with neurodegenerative disease) is accelerated under conditions of oxidative stress. Area 22 in autism evidenced the greatest glial increase, the greatest neuronal decrease andthe greatest increase of non-specific cells containing lipofuscin, which itself may contribute to greater free-radical generation in brain.


© 2008 Edith López-Hurtado and Jorge J. Prieto. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.