Research Article Open Access

Robust Speech Recognition Using Fusion Techniques and Adaptive Filtering

S. A.R. Al-Haddad, S. A. Samad, A. Hussain, K. A. Ishak and A. O.A. Noor


The study proposes an algorithm for noise cancellation by using recursive least square (RLS) and pattern recognition by using fusion method of Dynamic Time Warping (DTW) and Hidden Markov Model (HMM). Speech signals are often corrupted with background noise and the changes in signal characteristics could be fast. These issues are especially important for robust speech recognition. Robustness is a key issue in speech recognition. The algorithm is tested on speech samples that are a part of a Malay corpus. It is shown that the fusion technique can be used to fuse the pattern recognition outputs of DTW and HMM. Furthermore refinement normalization was introduced by using weight mean vector to obtain better performance. Accuracy of 94% on pattern recognition was obtainable using fusion HMM and DTW compared to 80.5% using DTW and 90.7% using HMM separately. The accuracy of the proposed algorithm is increased further to 98% by utilization the RLS adaptive noise cancellation.

American Journal of Applied Sciences
Volume 6 No. 2, 2009, 290-295


Published On: 28 February 2009

How to Cite: Al-Haddad, S. A., Samad, S. A., Hussain, A., Ishak, K. A. & Noor, A. O. (2009). Robust Speech Recognition Using Fusion Techniques and Adaptive Filtering . American Journal of Applied Sciences, 6(2), 290-295.

  • 20 Citations



  • HMM
  • DTW
  • Zero crossing technique
  • RLS
  • word bounder