Bulk and Interface Configuration on the Performances of Perovskite Solar Cells
- 1 Department de Physique, Laboratoire de Matériaux et Environnement (LA.M.E) - UFR/SEA, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
- 2 Department de Physique, Laboratoire de Matériaux et Environnement (LA.M.E) - UFR/SEA, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
Abstract
The ongoing search for energy conversion technologies that are more efficient, affordable, and sustainable than traditional solar cells have led researchers to look at other technologies. Among these technologies, perovskite-based solar cells seem increasingly credible, as they have the potential to achieve high energy conversion efficiencies that rival or even surpass those of silicon solar cells, which currently dominate the market. Despite this enormous potential, perovskite solar cells face several problems holding them back. For this study, we employed the SCAPS-1D software which is a simulation software developed at the University of gent in Belgium for conducting numerical simulations of a perovskite solar cell. The calculation methodology is the finite difference method using the transport, Poisson, and continuity equations with predefined boundary conditions. Through this simulation, we studied the influence of absorber thickness, lifetime, carrier diffusion length, and defect density on the overall behavior of the electrical parameters. The best performances are observed when the absorber thickness is equal to 0.5 μm and the defect density is less than 1016 cm-3.
DOI: https://doi.org/10.3844/ajassp.2023.39.47
Copyright: © 2023 Sankara Issiaka, Soumaïla Ouédraogo, Daouda Oubda, Boureima Traoré, Marcel Bawindsom Kébré, Adama Zongo and François Zougmoré . This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
- 1,615 Views
- 899 Downloads
- 0 Citations
Download
Keywords
- Perovskite
- Defect Density
- Thickness
- Solar Cell
- Scaps-1d Software