Adaptive Resonance Theory 1 (ART1) Neural Network Based Horizontal and Vertical Classification of 0-9 Digits Recognition
Abstract
This study describes the Adaptive Resonance Theory 1 (ART1), an efficient algorithm that emulates the self-organizing pattern recognition and hypothesis testing properties of the ART neural network architecture for horizontal and vertical classification of 0-9 digits recognition. In our approach the ART1 model can self-organize in real time producing stable and clear recognition while getting input patterns beyond those originally stored. It can also preserve its previously learned knowledge while keeping its ability to learn new input patterns that can be saved in such a fashion that the stored patterns cannot be destroyed or forgotten. A parameter called the attentional vigilance parameter determines how fine the categories will be. If vigilance increases or decreases due to environmental control feedback, then the system automatically searches for and learns fine recognition categories.
DOI: https://doi.org/10.3844/jcssp.2007.869.873
Copyright: © 2007 Mbaitiga Zacharie. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
- 3,329 Views
- 5,257 Downloads
- 4 Citations
Download
Keywords
- ART1
- gain control
- input pattern
- signal