Research Article Open Access

A Rough Set based Gene Expression Clustering Algorithm

J. Jeba Emilyn and K. Ramar


Problem statement: Microarray technology helps in monitoring the expression levels of thousands of genes across collections of related samples. Approach: The main goal in the analysis of large and heterogeneous gene expression datasets was to identify groups of genes that get expressed in a set of experimental conditions. Results: Several clustering techniques have been proposed for identifying gene signatures and to understand their role and many of them have been applied to gene expression data, but with partial success. The main aim of this work was to develop a clustering algorithm that would successfully indentify gene patterns. The proposed novel clustering technique (RCGED) provides an efficient way of finding the hidden and unique gene expression patterns. It overcomes the restriction of one object being placed in only one cluster. Conclusion/Recommendations: The proposed algorithm is termed intelligent because it automatically determines the optimum number of clusters. The proposed algorithm was experimented with colon cancer dataset and the results were compared with Rough Fuzzy K Means algorithm.

Journal of Computer Science
Volume 7 No. 7, 2011, 986-990


Submitted On: 23 April 2011 Published On: 28 June 2011

How to Cite: Emilyn, J. J. & Ramar, K. (2011). A Rough Set based Gene Expression Clustering Algorithm. Journal of Computer Science, 7(7), 986-990.

  • 4 Citations



  • Microarray technology
  • clustering algorithm
  • gene expression data
  • fuzzy membership
  • rough clustering
  • clustering technique
  • knowledge discovery
  • data mining
  • attribute clustering