A Hybridization of Enhanced Artificial Bee Colony-Least Squares Support Vector Machines for Price Forecasting
- 1 University Utara Malaysia, Malaysia
Abstract
Problem statement: As the performance of Least Squares Support Vector Machines (LSSVM) is highly rely on its value of regularization parameter, γ and kernel parameter, σ2, man-made approach is clearly not an appropriate solution since it may lead to blindness in certain extent. In addition, this technique is time consuming and unsystematic, which consequently affect the generalization performance of LSSVM. Approach: This study presents an enhanced Artificial Bee Colony (ABC) to automatically optimize the hyper parameters of interest. The enhancement involved modifications that provide better exploitation activity by the bees during searching and prevent premature convergence. Later, the prediction process is accomplished by LSSVM. Results and Conclusion: Empirical results obtained indicated that feasibility of proposed technique showed a satisfactory performance by producing better prediction accuracy as compared to standard ABC-LSSVM and Back Propagation Neural Network.
DOI: https://doi.org/10.3844/jcssp.2012.1680.1690
Copyright: © 2012 Zuriani Mustaffa and Yuhanis Yusof. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
- 3,243 Views
- 2,856 Downloads
- 3 Citations
Download
Keywords
- Artificial Bee Colony (ABC)
- energy fuel price time series
- financial prediction
- Least Squares Support Vector Machines (LSSVM)