Research Article Open Access

Metabolic Potential Versus Genome Size

Atanas Todorov Atanasov1 and Dimitar Todorov Valev2
  • 1 Department of Physics and Biophysics, Faculty of Medicine, Trakia University, Stara Zagora, Armeiska Str.11, Bulgaria
  • 2 Space Research and Technology Institute, Bulgarian Academy of Sciences, 6000 Stara Zagora, Boncho Bonev Str. 1, Bulgaria


In this study, we have shown that there is a connection between the metabolic potential (the coefficient 'a' in metabolic-mass relationship P = aMk, where P- basal metabolic rate, M-body mass, k-power coefficient) and the corresponding genome size (C-value diapason) of the given organismal taxon. With the increase of the metabolic potential of living organisms in evolution, the C-value diapason of a given taxon decreases. The study shows the metabolic and genomic characteristics of the simplest bacterial cells that represent the natural scale. The metabolic and genomic characteristics of all more complex organisms that emerge after them are adjusted with this natural scale. This finding may provide an answer to the genome-size enigma.


Alberch, P. (1983). Development and Evolution: Embryos, Genes, and Evolution. The Developmental-Genetic Basis of Evolutionary Change. Science, 221(4607), 257–258.
Andrews, C. B., Mackenzie, S. A., & Gregory, T. R. (2009). Genome size and wing parameters in passerine birds. Proceedings of the Royal Society B, 276(1654), 55–61.
Atanasov, A. T. (2005). The linear alometric relationship between total metabolic energy per life span and body mass of poikilothermic animals. Biosystems, 82(2), 137–142.
Atanasov, A. T. (2016a). Possible determination of the physical parameters of the first living cells based on the fundamental physical constants. AIP Conference Proceedings, 140003.
Atanasov, A. T. (2016b). Possible Physical Determination of the Mass, Size, Doubling Time and Density of the Unicellular Organisms Based on the Fundamental Physical Constants. Physics International, 7(2), 35–43.
Atanasov, A. T., & Dimitrov, B. D. (2002). Changes of the power coefficient in the ‘metabolism–mass’ relationship in the evolutionary process of animals. Biosystems, 66(1–2), 65–71.
Atanasov, A. T., & Ignatova, M.-M. K. (2021). Correlation between the organismal radioresistence and time of appearance in evolution. International Conference of Computational Methods in Sciences and Engineering ICCMSE 2020, 070003.
Banse, K. (1982). Mass-Scaled Rates of Respiration and Intrinsic Growth in Very Small Invertebrates. Marine Ecology - Progress Series, 9, 281–297.
Bell, G., & Mooers, A. O. (1997). Size and complexity among multicellular organisms. Biological Journal of the Linnean Society, 60(3), 345–363.
Blair Hedges, S., & Kumar, S. (2003). Genomic clocks and evolutionary timescales. Trends in Genetics, 19(4), 200–206.
Bonner, J. T. (1968). Size change in development and evolution. Journal of Paleontology, 42(S2), 1–15.
Bonner, J. T. (1988). The evolution of complexity by means of natural selection. Princeton University Press.
Brainerd, E. L., Slutz, S. S., Hall, E. K., & Phillis, R. W. (2001). Patterns of Genome Size Evolution in Tetraodontiform Fishes. Evolution, 55(11), 2363–2368.
Carroll, S. B. (2001). Chance and necessity: the evolution of morphological complexity and diversity. Nature, 409, 1102–1109.
Cavalier-Smith, T. (1985). The Evolution of Genome Size. John Wiley & Sons.
DeLong, J. P., Okie, J., & Moses, M. (2009). PS 60-195: Energetics, shifting constraints, and the evolution of eukaryotes: How metabolism scales with size in unicells. The 94th ESA Annual Meeting, University of New Mexico.
Dolnik, V. R. (1968). Energy metabolism and animal evolution. Uspekhi Sovremennoi Biologii, 66(5), 276–293.
Dunlop, J. A. (1997). Palaeozoic arachnids and their significance for arachnid phylogeny. Proceedings of the 16th European Colloquium of Arachnology, 65–82.
Fortey, R. A., Briggs, D. E. G., & Wills, M. A. (1997). The cambrian evolutionary ‘explosion’ recalibrated. BioEssays, 19(5), 429–434.
Ginnett, D. A. (2001). Review: The Variety of Life: A Survey and a Celebration of All the Creatures That Have Ever Lived, by Colin Tudge. The American Biology Teacher, 63(5), 376–377.
Glazier, D. S. (2009). Activity affects intraspecific body-size scaling of metabolic rate in ectothermic animals. Journal of Comparative Physiology B, 179, 821–828.
Glazier, D. S. (2010). A unifying explanation for diverse metabolic scaling in animals and plants. Biological Reviews, 85(1), 111–138.
Gregory, T. R. (2001a). Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biological Reviews of the Cambridge Philosophical Society, 76(1), 65–101.
Gregory, T. R. (2001b). The Bigger the C-Value, the Larger the Cell: Genome Size and Red Blood Cell Size in Vertebrates. Blood Cells, Molecules, and Diseases, 27(5), 830–843.
Gregory, T. R. (2002b). Genome size and developmental parameters in the homeothermic vertebrates. Genome, 45(5), 833–838.
Gregory, T. R. (2005). Genome Size Evolution in Animals. In The Evolution of the Genome (pp. 3–87). Elsevier.
Grimaldi, D., & Engel, M. S. (2005). Evolution of the Insects (Vol. 144). Cambridge University Press.
Hayssen, V., & Lacy, R. C. (1985). Basal metabolic rates in mammals: Taxonomic differences in the allometry of BMR and body mass. Comparative Biochemistry and Physiology Part A: Physiology, 81(4), 741–754.
Hedges, S. B., Blair, J. E., Venturi, M. L., & Shoe, J. L. (2004). A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evolutionary Biology, 4(2).
Hemmingsen, A. M. (1960). Energy metabolism as related to body size and respiratory surface, and its evolution. Reports of the Steno Memorial Hospital.
Holland, P. W. H. (1999). The future of evolutionary developmental biology. Nature, 402(Suppl 6761), C41–C44.
Ivlev, V. S. (1959). Evaluation of the evolutionary significance of the level of energy metabolism. Zhurnal Obshchei Biologii, 20, 94–103.
King, G. F. (2004). The wonderful world of spiders: preface to the special Toxicon issue on spider venoms. Toxicon, 43(5), 471–475.
Klekowski, R. Z., Wasilewska, L., & Paplinska, E. (1972). Oxygen Consumption By Soil-Inhabiting Nematodes. Nematologica, 18(3), 391–403.
Kozłowski, J., & Konarzewski, M. (2005). West, Brown and Enquist’s model of allometric scaling again: the same questions remain. Functional Ecology, 19(4), 739–743.
Kozłowski, J., Konarzewski, M., & Gawelczyk, A. T. (2003). Cell size as a link between noncoding DNA and metabolic rate scaling. Proceedings of the National Academy of Sciences, 100(24), 14080–14085.
Makarieva, A. M., Gorshkov, V. G., & Li, B.-L. (2005). Energetics of the smallest: do bacteria breathe at the same rate as whales? Proceedings of the Royal Society B, 272(1577), 2219–2224.
Makarieva, A. M., Gorshkov, V. G., Li, B.-L., Chown, S. L., Reich, P. B., & Gavrilov, V. M. (2008). Mean mass-specific metabolic rates are strikingly similar across life’s major domains: Evidence for life’s metabolic optimum. Proceedings of the National Academy of Sciences, 105(44), 16994–16999.
Markov, A. V., Anisimov, V. A., & Korotayev, A. V. (2010). Relationship between genome size and organismal complexity in the lineage leading from prokaryotes to mammals. Paleontological Journal, 44, 363–373.
Martin, A. (2001). The phylogenetic placement of Chondrichthyes: Inferences from analysis of multiple genes and implications for comparative studies. Genetica, 111, 349–357.
McCarthy, M. C., & Enquist, B. J. (2005). Organismal size, metabolism and the evolution of complexity in metazoans. Evolutionary Ecology, 7(5), 681–696.
McShea, D. W. (1996). Perspective metazoan complexity and evolution: is there a trend? Evolution, 50(2), 477–492.
Mirsky, A. E., & Ris, H. (1951). The desoxyribonucleic acid content of animal cells and its evolutionary significance. Journal of General Physiology, 34(4), 451–462.
Oliver, M. J., Petrov, D., Ackerly, D., Falkowski, P., & Schofield, O. M. (2007). The mode and tempo of genome size evolution in eukaryotes. Genome Research, 17(5), 594–601.
Olmo, E. (1983). Nucleotype and cell size in vertebrates: A review. Basic and Applied Histochemistry, 27(4), 227–256.
Olmo, O., & Morescalchi, A. (1975). Evolution of the genome and cell sizes in salamanders. Experientia, 31(7), 804–806.
Petrov, D. A. (2001). Evolution of genome size: new approaches to an old problem. Trends in Genetics, 17(1), 23–28.
Prosser, C. L. (1986). Adaptational biology : molecules to organisms (Vol. 91). Wiley.
Reich, P. B. (2001). Body size, geometry, longevity and metabolism: do plant leaves behave like animal bodies? Trends in Ecology & Evolution, 16(12), 674–680.
Scott, A. C., Chaloner, W. G., & Paterson, S. (1985). Evidence of pteridophyte–arthropod interactions in the fossil record. Proceedings of the Royal Society of Edinburgh. Section B. Biological Sciences, 86, 133–140.
Sewertzoff, A. N. (1929). DIRECTIONS OF EVOLUTION. Acta Zoologica, 10(1–2), 59–141.
Stanley, S. M. (1975). A theory of evolution above the species level. Proceedings of the National Academy of Sciences, 72(2), 646–650.
Sudarsanam, P., & Winston, F. (2000). The Swi/Snf family. Trends in Genetics, 16(8), 345–351.
Swenson, R., & Turvey, M. T. (1991). Thermodynamic Reasons for Perception--Action Cycles. Ecological Psychology, 3(4), 317–348.
Tiersch, T. R., & Wachtel, S. S. (1991). On the Evolution of Genome Size of Birds. Journal of Heredity, 82(5), 363–368.
Valentine, J. W., Collins, A. G., & Meyer, C. P. (1994). Morphological complexity increase in metazoans. Paleobiology, 20(2), 131–142.
Vermeij, G. J. (1999). Inequality and the Directionality of History. The American Naturalist, 153(3), 243–253.
Vinogradov, A. E. (1995). Nucleotypic effect in homeotherms: body‐mass‐corrected basal metabolic rate of mammals is related to genome size. Evolution, 49(6), 1249–1259.
Vinogradov, A. E. (1997). Nucleotypic effect in homeotherms: body‐mass independent resting metabolic rate of passerine birds is related to genome size. Evolution, 51(1), 220–225.
Wachtel, S. S., & Tiersch, T. R. (1993). Variations in genome mass. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 104(2), 207–213.
White, C. R., Phillips, N. F., & Seymour, R. S. (2006). The scaling and temperature dependence of vertebrate metabolism. Biology Letters, 2(1), 125–127.
Witting, L. (2003). Major life-history transitions by deterministic directional natural selection. Journal of Theoretical Biology, 225(3), 389–406.
Wray, G. A., & Lowe, C. J. (2000). Developmental Regulatory Genes and Echinoderm Evolution. Systematic Biology, 49(1), 28–51.
Zotin, A. A. (2018). Energetic Macroevolution of Vertebrates. Biology Bulletin, 45, 299–309.
Zotin, A. A., Lamprecht, I., & Zotin, A. I. (2001). Bioenergetic Progress and Heat Barriers. Journal of Non-Equilibrium Thermodynamics, 26(2), 191–202.
Zotin, A. I. (1990). Thermodynamic Bases of Biological Processes (Reprint 2012). De Gruyter.
Zotin, A. I., & Lamprecht, I. (1996). Aspects of Bioenergetics and Civilization. Journal of Theoretical Biology, 180(3), 207–214.

Physics International
Volume 13 No. 1, 2022, 7-16


Submitted On: 2 March 2022 Published On: 15 June 2022

How to Cite: Atanasov, A. T. & Valev, D. T. (2022). Metabolic Potential Versus Genome Size. Physics International, 13(1), 7-16.

  • 0 Citations



  • Metabolic Potential
  • Genome Size
  • Taxon
  • Enigma
  • Epigenetics