TY - JOUR AU - Thiyagarajan, Ravi AU - Veerappan, Kannan PY - 2013 TI - Ultra Low Power Single Edge Triggered Delay Flip Flop Based Shift Registers Using 10-Nanometer Carbon Nano Tube Field Effect Transistor JF - American Journal of Applied Sciences VL - 10 IS - 12 DO - 10.3844/ajassp.2013.1509.1520 UR - https://thescipub.com/abstract/ajassp.2013.1509.1520 AB - Carbon Nano Tube Field Effect Transistor is currently considered as promising successor of Metal Oxide Semiconductor Field Effect Transistor. The scaling down of the Metal Oxide Semiconductor device faced serious limits like short channel effect, tunnelling through gate oxide layer, associated leakage currents and power dissipation when its dimension shrink down to 22 nanometer range. Further scaling of Metal Oxide Semiconductor Field Effect Transistor will result in performance degradation. In this study, an ultra low power Single Edge Triggered Delay Flip Flop and shift registers are designed using 10 nanometre Carbon Nano Tube Field Effect Transistor. The Carbon Nano Tube Field Effect Transistor is an efficient device to supplant the current Complementary Metal Oxide Semiconductor technology for its excellent electrical properties. The high electron and hole mobility of semiconductor nano tubes, their compatibility with high k gate dielectrics, enhanced electrostatics, reduced short channel effects and ability to readily form metal ohmic contacts make these miniaturized structures an ideal material for high performance, nanoscale transistors. To evaluate the performance of Ultra low power Single Edge Triggered Delay Flip Flop and shift registers using 10 nanometer Carbon Nano Tube Field Effect Transistor technology, the results are depicted by analyzing average power, delay, power delay product, rise time and fall time using HSPICE at 1GHz operating frequency.