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ABSTRACT 

Studies that include both experimental data and computational simulations (in silico) have increased in 
number because the techniques are complementary. In silico methodologies are currently an essential 
component of drug design; moreover, identification and optimization of the best ligand based on the 
structures of biomolecules are common scientific challenges. Geometric structural properties of 
biomolecules explain their behavior and interactions and when this information is used by a combination 
of algorithms, a dynamic model based on atomic details can be produced. Docking studies enable 
researchers to determine the best position for a ligand to bind on a macromolecule, whereas Molecular 
Dynamics (MD) simulations describe the relevant interactions that maintain this binding. MD 
simulations have the advantage of illustrating the macromolecule movements in more detail. In the 
case of a protein, the side chain, backbone and domain movements can explain how ligands are trapped 
during different conformational states. Additionally, MD simulations can depict several binding sites 
of ligands that can be explored by docking studies, sampling many protein conformations. Following 
the previously mentioned strategy, it is possible to identify each binding site that might be able to 
accommodate different ligands through atomic motion. Another important advantage of MD is to 
explore the movement of side chains of key catalytic residues, which could provide information about 
the formation of transition states of a protein. All this information can be used to propose ligands and 
their most probable site of interaction, which are daily tasks of drug design. In this review, the most 
frequent criteria that are considered when determining pharmacological targets are gathered, 
particularly when docking and MD are combined. 
 
Keywords: Docking, MD Simulations, In Silico, Theoretical Studies, Drug Design 

1. INTRODUCTION 

Experimental techniques of molecular biology can be 
used to explore the intrinsic mechanisms of storage and 
transmission of information within the cell. In particular, 

the cloning and purification of a protein can permit its 
study by Nuclear Magnetic Resonance (NMR) or X-ray 
studies. A useful result of these techniques is the 
structural chemistry of the protein (tridimensional 
models, 3D), which helps to elucidate its biological 
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properties. Using the 3D structure of a protein, molecular 
recognition studies between protein-protein or protein-
ligand can be achieved and used to explain biological 
events. Signal transduction and enzyme activation are 
now explained by complex structures that are determined 
by the aforementioned techniques and the design and 
production of new drugs depend largely on 
understanding how the functions of the proteins are 
inhibited or activated (Klaic et al., 2012; Baud et al., 
2012). Furthermore, in addition to binding studies, there 
are other drug properties considered when designing 
drugs, such as absorption, distribution, metabolism, 
excretion and toxicity, among others. These can be studied 
using computational approaches (Alonso et al., 2006). 

There are theoretical methods that include algorithms 
to solve the problem of molecular recognition. Initially, 
docking simulations considered the protein molecule and 
the ligand to be rigid elements with a specific geometry, 
for which energetic functions were evaluated to find an 
optimal coupling (Yue, 1990; Aqvist and Tapia, 1992; 
DesJarlais et al., 1986). However, various recent 
methods for the docking of flexible proteins and ligands 
have been developed (Ivetac and McCammon, 2011; 
Andrusier et al., 2008). Docking simulations depend on 
initial positions of the atoms of participating molecules 
and the sampling of the conformational space is 
deficient. Therefore, improvements in these docking 
methods and even their conjugation with other algorithms 
are strongly recommended. The incorporation of flexibility 
properties in the molecular recognition process increases the 
likelihood of finding suitable complexes, i.e., the refinement 
of the atomic positions can be obtained as a result of the 
mutual interdependence of participating atoms. This 
description is offered by Molecular Dynamics (MD) 
simulations (Feher and Williams, 2012; Coupez and Lewis, 
2006; Alonso et al., 2006). 

MD simulations of biomolecules permit the 
construction of a hypothesis of molecular mechanisms 
that are involved in a biological phenomenon, 
explaining them by the behavior of their constituent 
atoms (Rahman et al., 2012; Lin et al. 2012; Tsai et al., 
2012; Rosas-Trigueros et al., 2011). MD uses a 
numerical method for solving the Newtonian 
equations for the atoms of biomolecules. The solution 
gives the consecutive positions and velocities of particles 
subjected to a potential function derived from an 
empirical model that approximates atomic interactions in 
terms of classical mechanics. MD simulations also offer 
an ensemble of conformations that provide an 
interpretation of sampling in the scope of mechanical 
statistics, where the mean values of observables describe 
a system (Cuendet, 2006; Lee et al., 2009). As with 
docking techniques, computational processing costs limit 

the MD simulations; moreover, this could be critical if 
the size and the number of molecules grow considerably. 
Consequently, the algorithms, codes and methods 
available are constantly improved (Gotz et al., 2012; 
Bauer et al., 2011; Pool et al., 2012; Zhao et al., 2012). 
This study reviews the potential of strategies for 
computational molecular recognition that combine 
docking and MD simulations to gain insight into 
molecular behaviors and conditions to identify 
pharmacological targets.   

1.1. Methods Used for Performing MD 

Simulations 

As stated above, several docking methods have 
yielded promising results by considering binding models 
that take into account the atomistic motions of receptors 
and ligands. Without doubt, it is particularly beneficial to 
visualize how various proteins move and modify their 
shape, atom-by-atom, as a function of time, as they 
perform their functions (e.g., catalytic activity) (Roux, 
2010). MD simulation methods simulate atomic motions, 
yielding molecular trajectories. This information can be 
used to calculate thermodynamic quantities and estimate 
binding affinities and kinetic rates. Unlike other 
computational methods such as Monte Carlo methods, 
MD methods allow us to directly examine dynamical 
processes, driven by the finite temperature of the 
simulation (Tilocca, 2012). MD simulations have also 
been used to examine the cooperativity in DNA-drug 
recognition and Virtual Screening (VS) of snapshots 
from MD simulations has been successfully used for 
position prediction and ranking of compound libraries. 
Molecular flexibility and binding properties can help to 
identify specific protein-ligand complexes at varying 
frequencies along typical MD simulations and the 
sampling of molecular movements can be performed on 
different time scales (Nichols et al., 2011; Harris et al., 
2001). Additionally, the reduction of cost associated with 
these methods has made their intensive use for drug 
discovery attractive in recent times (Harvey and 
Fabritiis, 2012; Ou-Yang et al., 2012). 

Conventional MD simulation methods evaluate the 
time evolution of a system by numerically integrating 
Newton’s equations of motion. A molecule is considered 
to be a collection of spheres corresponding to atoms with 
a fixed electronic distribution. The molecular mechanical 
model considers interactions between bonded atoms 
where bonds are modeled by springs with a Hookean 
pairwise potential. Interactions between atoms connected 
by consecutive bonds usually include triplets (angles) 
and quadruplets (dihedral and improper angles). 
Together with nonbonded interactions (Coulomb and van 
der Waals), this model yields the potential energy for a 
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fixed conformation, where the negative gradient provides 
the force needed for the numerical calculation of the 
system trajectories. To approximate the physical 
behavior of real molecules in motion, the energy terms 
mentioned above are parameterized to fit quantum-
mechanical calculations and experimental data. The 
parameters thus obtained, together with the equations, 
are collectively called a “force-field” and although the 
parameterization is performed with a limited training set 
of molecules, a force-field is expected to be transferable 
to similar molecules. However, the reliability of force-
fields is often questioned (Paton and Goodman, 2009). 
Commonly used force fields for MD simulations of 
biochemical systems include OPLS-AA (Jorgensen and 
Tirado, 1988), CHARMM (MacKerell et al., 1998) and 
AMBER (Cornell et al., 1995), which were developed or 
optimized for the simulation of proteins (Mackerell, 
2004) and have yielded similar results in simulations of 
peptidic chains with 165 amino acids or less (Price and 
Brooks, 2002). MD methods include numerical 
algorithms that manipulate the pressure, temperature and 
volume of the system. These algorithms allow 
researchers to simulate molecules under different 
conditions (Schlick, 2010). 

 Molecular simulation protocols (docking and MD 
simulations) start with an initial 3D model of the system, 
which can be obtained from NMR or crystallographic 
data, collected in the Protein Data Bank (PDB) 
(Berman et al., 2000). When such information is not 
available for a peptidic chain, a protein structure 
prediction method can be used to obtain a 3D model that 
can later be used as input for the MD simulation. Among 
protein structure prediction methods, homology 
modeling has become very popular for obtaining the 
initial coordinates for a protein, providing coordinates 
based on homologous sequences with an experimentally 
determined structure; the obtained models can be further 
refined using MD simulations (Nurisso et al., 2012). 
When homology modeling is not feasible, several other 
protein structure prediction methods are available, as has 
been shown in the biannual CASP experiment (Kinch et al., 
2011). With the protein coordinates as a starting point, a set 
of boundaries are defined for the system and the space is 
filled with solvent molecules. Once the initial model is 
ready, the trajectory is calculated in a stepwise manner. 
In each step, the forces acting on each atom are 
calculated and each atom is moved according to those 
forces in a small time step (1 or 2 fs). The positions and 
velocities of the atoms are stored for subsequent 
analyses, together with other relevant data such as 
energy and pressure (Durrant and McCammon, 2011). 
The initial model often presents interactions with 
artificially high potential energy (e.g., overlapping 

atoms). To alleviate this problem, the system is typically 
subjected to one or more rounds of structural 
optimization. The desired temperature of the system is 
then slowly reached, typically within the NVT ensemble 
(constant number of particles, volume and temperature). 
An equilibration stage follows, often in the NPT 
ensemble (constant number of particles, pressure and 
temperature), to allow the system density to converge 
and for the structure to relax. The desired relaxation is 
evaluated by checking the convergence of time-
dependent system properties such as energy, density, 
temperature, pressure and root mean square deviation 
(RMSD) to the initial structure. The equilibrated system 
can now enter a production phase, in which the goal is to 
generate enough representative conformations in a 
trajectory to satisfy the ergodic hypothesis, which states that 
the average values over time of physical quantities that 
characterize a system are equal to the statistical average 
values of these quantities. If enough representative 
conformations are sampled, the relevant biophysical 
properties can then be calculated (Nurisso et al., 2012). 

 Although MD simulations of systems with up to 1 
million atoms for over 50 ns have been reported 
(Freddolino et al., 2006), considerable efforts continue to 
be devoted to the development of theories, algorithms, 
software and hardware for the purposes of reducing the 
cost of performing MD simulations. These contributions 
facilitate application to systems of larger sizes and 
performance of simulations of a larger number of 
systems of interest. Also, these improvements permit to 
extend the simulation time to the millisecond range, 
which has already been reached for a 58-residue protein 
(Shaw et al., 2010). Among these efforts, Coarse-
Graining (CG) reduces some of the accuracy in speeding 
up the calculations. In CG, some sort of vast 
approximation is made to greatly increase the simulation 
speed. For instance, certain united atom methods of CG 
represent groups of atoms with one large pseudo-atom 
for representing the overall properties of the represented 
atoms (Balabin et al., 2009). A large number of 
calculations are employed on solvent molecules. Implicit 
solvent models attempt to reduce explicit solute-solvent 
interactions to their mean field characteristics, which are 
expressed as a function of the solute configuration alone 
(Feig and Brooks, 2004). While implicit solvent 
modeling has been shown to study well with proteins 
(Chopra et al., 2008), these methods may not be 
adequate to study systems where solvent molecules have 
been shown to be crucial for binding affinity, such as the 
case of Small-Molecule (SM) inhibitors of blood 
coagulation reported by Abel et al. (2011). The 
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Accelerated Molecular Dynamics (AMD) paradigm is 
another method available, where a non-negative bias 
potential is added to the potential energy when the latter 
lies below a certain threshold (Hamelberg et al., 2004). 
This increase in the potential energy accelerates the 
exchange between low-energy conformational states 
while still maintaining the essential details of the 
potential energy surface. This paradigm has been shown 
to yield accurate free energy statistics and its potential 
application in studying functional dynamics in 
biomolecules has been evaluated by Mangoni and 
McCammon (2011). In the context of preventing MD 
simulations from getting trapped in local minimum-
energy states, the method of Replica-Exchange 
Molecular Dynamics (REMD) can be of help. In a 
REMD study, several MD simulations of the same 
system (replicas) are started at different temperatures. 
Pairs of replicas corresponding to neighboring 
temperatures are exchanged periodically, which results 
in a random walk in the “temperature space” that allows 
the simulation to escape from local minima-energy states 
(Sugita and Okamoto, 1999). The combination of REMD 
generalized ensemble sampling with ensemble docking 
and free energy pathway analysis has been recently 
proposed as a novel research protocol for the simulation 
of protein-ligand induced-fit recognition (Park and Li, 
2010). A powerful technique for reconstructing the Free-
Energy Surface (FES) as a function of few selected 
degrees of freedom is known as metadynamics, first 
introduced by Laio and Parrinello (2002). In 
metadynamics, the exploration of the FES is guided by 
forces along the selected degrees of freedom and these 
forces are scaled by the estimated size of the FES basin, 
which would allow the CG dynamics of the system to 
escape the local minima. After their calculation, the 
forces are replaced by a history-dependent term that 
discourages the system from revisiting points, thus 
encouraging an efficient exploration of the FES. The 
difficulty of choosing an appropriate set of degrees of 
freedom has been the focus of recent developments in 
metadynamics (Barducci et al., 2011) and the 
applications of this technique have expanded to binding 
profile determination, as in the study by Fidelak et al. 
(2010). Another MD based protocol worth mentioning is 
Steered Molecular Dynamics (SMD), developed with the 
aim of providing atomic level descriptions of the 
underlying events in single-molecule measurement 
techniques. SMD applies forces that are external to the 
force field model to investigate the mechanical properties 
of biopolymers and accelerate processes that are otherwise 

too slow to simulate (Isralewitz et al., 2001). SMD can be 
used to pull the ligand from a ligand-receptor complex to 
obtain the irreversible mechanical work necessary for the 
undocking and to discern active from inactive enzyme 
inhibitors, as reported by Colizzi et al. (2010). 

 Other commonly used methods with lower 
computational cost are continuum electrostatic 
calculations and Brownian Dynamics (BD), a variation 
of MD in which the use of approximations makes long 
timescale calculations possible (Dodson et al., 2008). 
Another time-saving approach used to study the 
dynamics of a biomolecule is Normal Mode Analysis 
(NMA), in which the simple harmonic motions of the 
molecule about a local energy minimum are calculated 
by means of a Hessian matrix built from a Hookean 
potential model of the system. This method has been 
suggested as a preliminary step in drug design 
(Floquet et al., 2006). Although NMA does not 
produce time-dependent trajectories, it can provide 
insight into the large-scale and long-time conformational 
motions of proteins (Bahar and Rader, 2005). Another 
problem with MD simulations is that, despite the 
continuous enhancement of force-field parameters over 
time (Lindorff-Larsen et al., 2012), the native 
conformation may not be the lowest free energy state 
of the system (Nurisso et al., 2012). In particular, 
some force fields tend to favor commonly seen 
secondary structures such as alpha helices and beta 
sheets (Best et al., 2008; Patapati and Glykos, 2011; 
MacKerell et al., 1998). 

Different approaches have aimed to expand the scope 
of physical and chemical phenomena that can be 
represented by conventional MD models and thus allow 
them to simulate processes such as charge transfer 
between atoms and breaking/making bonds. These 
proposals include polarizable models, which simulate 
induced point dipoles (Wu et al., 2012; Wang et al., 
2011) and reactive force-fields, which simulate bond 
breaking and formation (Farah et al., 2012), as well as 
methods that include quantum mechanics information 
(Braga, 2012). Despite the advantages of these 
enhanced MD simulations, their high computational 
cost tends to make them unattractive for the 
simulation of biomolecular systems. 

1.2. Methods for Achieving Docking Studies 

Every bimolecular reaction begins with a recognition 
event for which shape complementarity, as well as the 
chemical surfaces involved, are crucial for reaching the 
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most stable ligand-protein complexes. The 
intermolecular forces of recognition between molecules 
are often weak and of short range and include mechanical 
anchoring, hydrogen bonds, metal bonds, salt bridges and 
aromatic stacking (Rebek, 2009). Molecular recognition is 
useful in biology because biological processes such as the 
formation of the double helical structure of DNA 
(Leblanc, 2006; D’Abramo et al., 2012), the ligand- 
receptor interaction (Okazaki and Takada, 2008; 
Razzaghi-Asl et al., 2012) and the enzyme-substrate 
interaction (Vitorovic-Todorovic et al., 2010; Mazur et al., 
2010) are driven by this phenomenon. 

Docking methods can depict the ligand-receptor 
interaction, which can be divided into three general 
strategies: (1) rigid ligand and receptor; (2) flexible 
ligand and rigid receptor; and (3) flexible ligand and 
flexible receptor. Although limited, the interaction 
between rigid bodies in a three-dimensional coordinate 
space is computationally affordable. A certain amount of 
flexibility is usually initially calculated for the ligand, 
generating a set of ligand conformations before intensive 
calculations are initiated (Meng et al., 2011). In the case 
of a flexible ligand and rigid receptor, the structures 
involved are considered complementary following the 
Koshland’s Induced-Fit (IF) model, where the fit occurs 
only after the structural changes, induced by the ligand 
itself,  take   place   (Koshland, 1963; Hammes, 2002) (Fig. 

1). This suitable coupling, however, is improved by 
including receptor flexibility, although a high 
computational cost is incurred. It is worth mentioning 
that MD simulations are an alternative to acquire the 
conformations of the ligand-receptor system, although 
the technique requires high computational resources. 
Perhaps the screening of a large chemical database 
could make MD simulations unaffordable. 

Because there are several different positions of atoms 
into an interface ligand-protein, the possible binding 
modes are sampled for. Therefore, computational cost-
benefit methods are designed to find these molecular 
interactions: geometry-based algorithms (Fischer et al., 
1993; Norel et al., 1994), fragment-based and docking 
incrementally (Rarey et al., 1996; DesJarlais et al., 
1986), fragment-based methods for the de novo design 
(Miranker and Karplus, 1991; Eisen et al., 1994; Bohm, 
1992), stochastic searches in the form of Monte Carlo or 
genetic algorithms (Goodsell et al., 1993; Hart and Read, 
1992; Jones et al., 1997; Oshiro et al., 1995) and MD 
simulations (Cornell et al., 1995; Weiner et al., 1984; 
Brooks et al., 1983) are some of the strategies reported. 
MD simulations are used for further protein refinement 
before and after docking simulations (Cornell et al., 
1995; Weiner et al., 1984; Brooks et al., 1983). 

 
 
Fig. 1. General scheme of docking and MD. MD before or 

after docking calculations provides flexibility and 
refinement to the structures studied. Additionally, the 
three determinant components of the docking 
methodology are shown: protein flexibility, ligand 
sampling and scoring function. These components 
define a strategy for computational molecular 
recognition (Huang and Zou, 2010) 

 
Once a general strategy to simulate molecular 

recognition has been selected, a function capable of 
evaluating the mutual interaction between the ligand and 
the receptor will guide the evaluation of the proposed 
complexes. Scoring functions can be based on force-
fields or on the knowledge of a type of interactions 
(Kitchen et al., 2004). 

Some mathematical expressions of scoring functions 
can be obtained by taking into account the binding free 
energy values, which are calculated by the sum of the 
non-bonded interactions such as electrostatics and van 
der Waals forces and other restrictions such as bond 
angles. Along with the rest of the parameters for these 
equations, classical force-field-based scoring functions 
have been defined (Aqvist et al., 2002; Carlson and 
Jorgensen, 1995). Additionally, some software programs 
include extensions of force-fields that consider the 
hydrogen bonds, solvations and entropic contributions 
(Kuntz et al., 1982; Verdonk et al., 2003; Morris et al., 
1998). Moreover, when the binding energy function is 
explicitly dependent on the hydrogen bonds, ionic 
interactions, the hydrophobic effect and the binding 



Ilizaliturri-Flores Ian et al. / American Journal of Agricultural and Biological Sciences 8 (1): 89-106, 2013 

 
94 Science Publications

 
AJABS 

entropy, the scoring function is catalogued as empirical, 
whereby a ponderation of each component in the 
function is employed (Bohm, 1998; Verkhivker et al., 
2000; Gehlhaar et al., 1995). In contrast, knowledge-
based scoring functions consider that the most favorable 
interaction presents the greatest frequency of occurrence; 
thus, a statistical analysis of the complex’s crystal 
structure is performed, focusing on inter-atomic contacts 
and distances. For the screening of large databases and 
the modeling of particular interactions, as sulfur-
aromatic or cation-π, scoring functions are used (Muegge 
and Martin, 1999; Ishchenko and Shakhnovich, 2002; 
Feher et al., 2003). In addition, some physics-based 
scoring functions are used to assess the solvation effect 
(Kollman et al., 2000; Srinivasan et al., 1998; Still et al., 
1990; Guimaraes and Mathiowetz, 2010). Another 
strategy termed consensus scoring, which unites the 
results of various schemes of docking, also offers virtual 
screening to improve the predictions of bound 
conformations (Charifson et al., 1999; Feher, 2006). 
Finally, because the ligand-binding process is 
cooperatively driven by enthalpic and entropic effects, 
the scoring functions should address the limited 
resolution of crystallographic models, the inherent 
flexibility permitted in the simulation, the binding 
dependency of conformational changes and the influence of 
water molecules. Thus, docking methods are an attractive 
area of study because of the complexity of the theory 
(Gorse and Gready, 1997; Kitchen et al., 2004; Mangoni et 

al., 1999; Hildebrandt et al., 2007; Roy and Mandal, 2008). 

1.3. Combining Docking and MD Simulations 

The chemical structure of a molecule is a critical 
factor that determines its physical properties and 
mechanisms of action. Although recent biological 
investigations have focused on discovering the 
functionality of biomacromolecules, SMs have 
demonstrated their vital role in regulating metabolism, 
biosynthesis and signaling in cellular networks. 
Moreover, SMs are widely used as therapeutic products 
because these drugs inhibit or activate enzymatic 
reactions (Chepelev and Dumontier, 2009). 

The conformational variations of a molecule offer 
different options for how they interact with a 
biomacromolecule. The combinatorial chemistry of SMs 
has benefited from a collection of algorithms that 
produce several dispositions of the atoms in a molecule. 
For short polypeptide chains, the thermodynamics and 
kinetics are distinct from those in proteins because of the 
different dimensionality of their free energy 
hypersurfaces (Daura et al., 2002). 

The role of a SM, as a counterpart of a larger 
molecule, is evaluated by algorithms that simulate this 
interaction. For instance, a protein-ligand docking 
program has two essential components, sampling and 
scoring. First, sampling is the process used to generate 
the putative ligand binding orientations/conformations 
close to the binding site of a protein; the ligand sampling 
and flexibility of the protein are taken into account. 
Second, the prediction of the binding tightness for each 
ligand pursuant to its orientations/conformations is 
termed scoring. In this calculation, the physical or 
empirical energy function is used, as mentioned above. 
Finally, after sampling and the scoring evaluation, the 
lowest energy score of the orientation/conformation is 
used to predict a binding mode (Huang and Zou, 2010). 

A classification of strategies to obtain putative 
conformers has proposed four methods: a Key-Lock 
model (KL) using rigid-backbone docking, a Conformer 
Selection model (CS) using a novel ensemble docking 
algorithm, an Induced Fit model (IF) using energy 
gradient-based backbone minimization and a Combined 
Conformer Fit model (CS/IF) (Koshland, 1958). In a 
comparative study of these methods, a set of 21 
complexes of unbound crystal structures were analyzed. 
The steps required to achieve this goal considered the 
backbone flexibility only for the smaller partner of the 
complex, an algorithm to generate the structural 
ensembles and a docking procedure by local 
perturbations around the complexed conformation. As a 
result, the lowest energy in the complexes showed more 
than 30% of native contacts for KL, CS, IF and CS/IF 
docking. Even when 15 targets using NMR ensembles of 
the smaller protein were studied, a similar result was 
obtained (Chaudhury and Gray, 2008). 

Given that changes in backbone conformation 
influence the intra- and intermolecular energies of 
putative complexes, more information to distinguish 
near-native structures is needed. Thus, both backbone 
conformational sampling and discrimination of contacts 
should be considered together in a flexible docking. 
Koshland’s Induced-Fit (IF) model affirms that a protein 
recognizes a ligand to form a complex because of the 
structural modifications in the binding site required for 
the interaction with the ligand. In other words, the 
conformation of a protein is the result of the presence of 
the partner in the complex and the backbone 
conformation should be obtained during molecular 
recognition by evaluating the local energetics of the 
interface (Koshland, 1958). Therefore, docking 
algorithms currently incorporate flexibility in the ligand 
and to a lesser extent, in the protein; the internal energy 
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of the protein continues to be evaluated as a parameter of 
interest and the analysis of the interaction is also 
restricted to selected residues (Alonso et al., 2006). 

Variations in the interacting rules, for instance, 
decreasing the van der Waals repulsion to increase the 
atom-atom proximity between the receptor and ligand, 
result in flexibility in the receptor (Jiang and Kim, 1991; 
Gschwend et al., 1996). Furthermore, the use of rotamer 
libraries provides a set of side chain conformations with 
experimental origins that improve the sampling and 
prevent the minimization barriers, consequently 
conferring flexibility to the system (Leach, 1994). An 
ensemble of proteins is also considered as a 
conformational preselected set that provides more 
options for adjustability in the molecular recognition, 
although it contains rigid targets (Knegtel et al., 1997; 
Cavasotto and Abagyan, 2004). Changes in the protein 
backbone, giving rise to alternative conformations, can 
also be used to generate an average structure that 
maintains its most conserved features, which can be 
considered when the docking is subsequently performed. 
In this pretreatment of the set of coordinates, some loop 
movements that are involved reveal their participation 
(Alonso et al., 2006). Some methods focusing around the 
binding site have been developed that form an ensemble-
based grid or employ precalculated two-body potentials 
to determine the interaction energy of the ligand. 
Particularly, ensemble-based grids reduce the effect of 
steric clashes in the interaction and therefore, lead to the 
selection of reliable conformations (Alonso et al., 2006). 

The modeling of the ligand-receptor interaction 
should consider the mobility of both backbone and side 
chain flexibility. A refinement stage primarily includes 
the choice of atoms and the method by which these will 
result in an increase in mobility, with specific spatial 
restrictions (Andrusier et al., 2007). FireDock, a program 
devoted to refine and re-score rigid-body protein-protein 
docking, restricts the side chain flexibility exclusively in 
the clashing interface residues, smoothing the atomic 
radii of the partners. In this method, the scoring of the 
candidates is based on softened van der Waals 
interactions, Atomic Contact Energy (ACE), 
electrostatic and binding free energy calculations. In 
summary, algorithms dedicated to refining docking 
include at least three procedures: side chain 
prediction, rigid-body optimization and ranking of the 
candidates (Andrusier et al., 2007). 

 Other computational techniques that involve MD, 
energy minimization and gradient-based methods in 
Monte Carlo Minimization (MCM) have also been used 
to model backbone flexibility (Dominguez et al., 2003; 

Smith et al., 2005; Krol et al., 2007; Vries et al., 2007). 
Moreover, a high refinement of protein models is 
required because slight variations (1-2 Å) of atomic 
positions can regulate the formation of hydrogen bonds 
or steric clashes. Previous optimization of the 
participating molecules will prevent inappropriate 
docking (Katritch et al., 2012). 

 MD simulations have been shown to be helpful to 
study the dynamic behavior of the bound conformation 
of proteins complexed to synthetic ligands. For instance, 
Novak et al. (2009) used MD simulations to highlight the 
importance of protein flexibility in the specificity of Bcl-
xL to bind different inhibitors. MD, as a very popular 
simulation approach, is often unable to overcome high-
energy barriers within reasonable simulation time 
periods. Therefore, when both docking and MD are 
coupled to simulate the protein-ligand interaction, the 
spatial disposition of the molecules can only be a 
representation of an energetic local minimum. 
Different temperatures and alternative starting 
positions of the ligand are evaluated to address this 
inconvenience and even Monte Carlo-type algorithms 
are proposed to enhance the strategy (Kitchen et al., 
2004; Joannis et al., 2011). 

 The use of MD for simulating the interactions of 
proteins with synthetic ligands as organic and peptide 
molecules is a common tool. MD simulations have 
enabled researchers to rationalize experimentally 
measured properties, to analyze the ligand-receptor 
interactions and to refine models of biomolecules 
determined by X-ray or NMR methods (Alonso et al., 
2006). A properly constructed MD simulation, in which 
a solvated protein and its unbound ligand are subjected 
to physical laws, can yield a stable protein-ligand 
complex (Brooks et al., 2009). Using MD, it is possible 
to theoretically characterize how protein structure and 
stability are affected by an explicit solvent. Furthermore, 
time-averaged properties such as density, conductivity, 
dipolar moment, thermodynamic parameters, energies 
and entropies can be assessed by a sampling of the 
conformational space (Alonso et al., 2006). The solvent 
also impacts molecular recognition because water 
molecules can shield the interactions. Fortunately, at 
least a parametrization of the solvent is also included in 
the above mentioned force-fields (Brooks et al., 2009). 
Furthermore, when the effect of mutations in the receptor 
on protein-ligand interactions is evaluated, the inclusion 
of flexibility is essential because subtle variations in the 
content of atoms should be determined (Gorse and 
Gready, 1997; Kitchen et al., 2004; Mangoni et al., 
1999). An analysis of the atomic behavior, induced fit 
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effects, the role of explicit solvent and stability of the 
complex over time can be achieved by MD simulations. 
Additionally, the final optimized structures can be 
utilized for calculating the binding-free energies 
(Alonso et al., 2006). A total failure, even if the ligand 
has been positioned into the putative binding pocket, 
occurs when the docking calculation results in 
unfavorable steric overlaps between ligand and receptor. 
Some homology models can result in imprecision that 
effect an appropriate interaction between molecules; 
therefore, a previous refinement of the model is always 
suggested. In some cases, the formation of the complex 
induces local conformational adjustments involving 
changes in the secondary structure; in this context, full 
flexibility of the receptor protein might lead to 
unrealistic complexes because of force field limitations 
and the omission of solvent molecules. These problems 
can be addressed by MD simulations, taking into account 
the limitations of the force-field and the requested level 
of resolution (Zacharias, 2004). 

MD simulations methods can be combined with 
docking protocols to predict reliable protein-ligand 
complexes. The particularities of both techniques are 
complementary: the rigidity and driven strategy of some 
docking methods and the force-field-dependent 
flexibility of MD simulations can be combined for a 
common goal. The positioning of a ligand within a 
binding site is predicted by a docking calculation, 
thereby yielding the energy-dependent location and 
conformation. Once the ligand is in the most probable 
site, the MD simulation models the movements of the 
atoms involved in the interaction (Alonso et al., 2006). 

The MM-PB/SA method combines Molecular 
Mechanics (MM) and the Poisson-Boltzmann/solvent-
accessible Surface Area (PB/SA) continuum solvent 
approaches to estimate binding energies; this MM-PB/SA 
function is also proposed as a post-docking filter during the 
virtual screening of compounds. It must be considered that 
the ligand affects the structure of the binding site and the 
dynamic equilibrium between distinct conformational states 
of the protein, providing information to identify the most 
likely complex ligand-protein (Alonso et al., 2006). A 
similar method that uses the Generalized Born equation 
(GB) to estimate the electrostatic contribution to the 
solvation free energy is known as MM-GB/SA and has 
been recently applied to SRC Kinase inhibitor potency 
prediction (Kohlmann et al., 2012). 

2. CONCLUSION 

The use of MD before and after docking is an 
appropriate way to study the conformational space of the 

protein-receptor complex (Fig. 1). Thus, MD simulations 
of the final docked structures in an aqueous environment 
can help in rationalizing the dynamics of molecular 
recognition. MD simulations are an attractive option 
for structural refinements of docked complexes, 
incorporating the freedom of both ligand and receptor, 
improving interactions and enhancing 
complementarity and thus accounting for the induced 
fit. Additionally, time-dependent evolution provides a 
dynamic picture of the complex and helps to 
distinguish the correctly docked conformations from 
the unstable ones (Alonso et al., 2006). Table 1 shows 
some examples where a molecular recognition 
technique has been combined with MD simulations. 

2.1. Glycolitic enzymes as Drug Targets 

Analyzed by Combining MD Simulations 

and Docking Strategies 

Glycolytic enzymes are targets for drug design, 
particularly against those organisms that depend mainly 
on glycolysis for ATP production. We present a study of 
Triosephosphate Isomerase (TIM). 

This enzyme is an established target for drugs against 
various organisms, particularly protozoan parasites from 
the genera Giardia, Entamoeba, Plasmodium and 
Trypanosoma (Rodriguez and Rodrik, 2001; Joubert et al., 
2001; Enriquez-Flores et al., 2008; Olivares-Illana et al., 
2006; Ogungbe and Setzer, 2009). The enzyme is a 23 
kDa protein that catalyzes the isomerization between 
glyceraldehyde 3-phosphate and dihydroxyacetone 
phosphate in glycolysis and gluconeogenesis, with a 
turnover number approaching the diffusion limit 
(Blacklow et al., 1998). The crystal structure of TIMs 
from several species have been solved by X-ray 
crystallography. This enzyme is a periodical arrangement 
of alternate α-helices and β-strands. The β-strands of this 
arrangement form an inner cylinder, whereas the α-
helices form an outer cylinder. This topology is known 
as (β/α)8 barrel or TIM barrel (Banner et al., 1975) and 
approximately 10% of the proteins whose structure is 
known share this scaffold. TIM is only active as a dimer, 
even though each monomer possesses its own complete 
catalytic site. Exceptions are found in archaea and some 
thermophilic bacteria, in which TIM forms a tetramer 
(Kohlhoff et al., 1996). The TIM dimer is held by an 
extended interface in which loop 3 of one subunit aids in 
the arrangement of the positions of the catalytic amino 
acids of the other subunit, forming a favorable placement 
for catalysis. This implies that alterations in the 
intersubunit contacts of the dimer should bring about the 
abolition of catalysis (Tellez-Valencia et al., 2004). 
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Table 1.  Some examples of the applications of a combination of docking and MD simulations. The complex studied, software, force-
field and reference of these works are summarized 

Complex Software Force-field Ref. 

Modeled the holo-ACP: DH and holo-ACP: KR FTDOCK (Gabb et al., 1997) AMBER (Anand and 
 AutoDock (Cerqueira et al., 2009)  Mohanty, 2012) 
The TM4/TM5 dimerization HADDOCK (Dominguez et al., 2003) CHARMM (Gorinski et al., 2012) 
interface of the serotonin 5-HT1A I-TASSER (Roy et al., 2010)   
Binding modes of flavonoid derivatives with VEGA ZZ (Pedretti et al., 2004) AMBER (Lu and Chong, 2012) 
the neuraminidase of the 2009 NAMD   
H1N1 influenza A Virus (Phillips et al., 2005) 
 Autodock vina (Trott 
 and Olson, 2010) 
Prediction of the human EP1 GROMACS (Lindahl et al., 2001) Gromos87 (Zare et al., 2011) 
receptor binding site HyperChem 
 (Froimowitz, 1993) 
Derivatives of peptide epoxyketone and Surflex (Jain, 2003) AMBER (Liu et al., 2011) 
tyropeptin-boronic acid as inhibitors against 
the β5 subunit of human 20S proteasome 

 
Regarding drug design, the overall structure and the 

catalytic site are highly conserved among TIMs. 
Therefore, the efforts for drug design must focus on 
inhibitors that interact with non-catalytic residues. The 
interface represents a particularly attractive region to focus 
on because of the loss of activity upon subunit dissociation. 

The first studies mediated by docking and/or MD 
simulations were inspired by the interest in structurally 
describing the interaction of potential inhibitors found by 
in vitro analysis. In 2004, a low-molecular-weight 
compound, 3-(2-benzothiazolylthio)-1-propanesulfonic 
acid (compound 8), was found to bind to the dimer 
interface of the triosephosphate isomerase from 
Trypanosoma cruzi (TcTIM) and to abolish its function 
with a high level of selectivity (Tellez-Valencia et al., 
2004). In this study, it was hypothesized that compound 
8 would likely bind Cys 15, a conserved residue within 
several parasites (Trypanosoma brucei (Garza-Ramos et al., 
1996), Leishmania Mexicana (Garza-Ramos et al., 1998), 
Plasmodium falciparum (Maithal et al., 2002), Entamoeba 
histolytica (Rodriguez-Romero et al., 2002)) but not in 
Homo sapiens (Tellez-Valencia et al., 2004). To further 
describe the possible binding sites of benzothiazoles at the 
interface of tripanosomal TIM, fully flexible 
benzothiazoles were docked onto the dimer interface. 

It was found that dimer disruption did not occur via 
Cys 15 but instead through the unstabilization of π-π 
interactions of two aromatic clusters present at the 
interface (Espinoza-Fonseca and Trujillo-Ferrara, 2004). 
Later, the same research group presented the docking of 
seven benzothiazoles into the interface of both human 
and trypanosomal triosephosphate isomerases using the 
program AutoDock. Structural and energetic analysis of 

the complexes showed that large benzothiazoles could 
form more stable complexes with the trypanosomal 
triosephosphate isomerase than with the human 
triosephosphate isomerase (Espinoza-Fonseca and 
Trujillo-Ferrara, 2005).  

From this study, it was concluded that the distribution 
of the residues forming the aromatic clusters at the 
enzyme’s interface as well as the size of the inhibitors 
ligands may play crucial roles in the selective inhibition 
of TcTIM. This information was largely improved when 
the same research group performed a series of combined 
docking/molecular dynamics simulations to determine 
the factors that play a role in the selectivity of certain 
benzothiazoles over parasite TIMs. The interaction of the 
compound 6,6’-bisbenzothiazole-2,2’ diamine depicted 
V7 with TIMs from Trypanosoma cruzi, Trypanosoma 
brucei, Entamoeba histolytica, Plasmodium falciparum, 
yeast and humans was analyzed. It was found that 
different accessibilities of the protein’s interface of TIMs 
are a key determinant of the inhibitory activity of 
benzothiazoles on the enzyme. It was found that V7 
directly interacted with both aromatic clusters located at 
the interface of the TIM from T. cruzi. These aromatic 
clusters are formed by Phe75 from one monomer and 
Tyr102 and Tyr103 from the adjacent monomer.  

Similarly, V7 had direct contact with Tyr101 and 
Tyr102, which, together with Phe74 from the adjacent 
monomer, constitute the aromatic clusters of TIM from 
T. brucei. In contrast, it was found that V7 does not 
interact very tightly with TIMs from E. histolytica, P. 
falciparum, yeast and human TIMs due to the reduced 
accessible surfaces of interfaces and to the packing of the 
aromatic clusters that did not allow for the formation of a 
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well-defined binding site for V7 (Espinoza-Fonseca and 
Trujillo-Ferrara, 2006).  

Undoubtedly, combining docking and molecular 
dynamics simulation strategies has provided a complete 
view on the dynamics of the complexes between anti-
trypanosomatid agents and TIMs from different species. 
This improves our understanding of how parasite TIMs 
could be effectively and specifically inhibited, leading to 
better rational drug design. 

2.2. Identification of Neuropharmacological 

Targets and their Importance 

The activities of single neurons, neural networks and 
neural centers have dynamic behavior that can be 
addressed using dynamical systems theory (Nowacki et al., 
2012; Ghorbani et al., 2012; Serletis et al., 2011). The 
analysis of the spatiotemporal characteristics of brain cells 
offers a perspective in which even biomolecules as proteins 
can be incorporated to obtain a multivariable mathematical 
model. Computational neuroscience and computational 
methods in neuropharmacology address how to 
distinguish normal information processing from 
pathological information processing, with the purpose of 
finding therapeutic alternatives for neurological and 
psychiatric disorders. The combined use of the above 
disciplines is called computational neuropharmacology 
(Aradi and Erdi, 2006). In an attempt to expand the 
scope of this interdisciplinary approach to 
neuropharmacology, diverse computational methods 
such as cheminformatics and bioinformatics can be 
included, with the aim of improving drug design. Thus, 
information on the three-dimensional structure of the 
target macromolecule and its binding molecules, to 
model the receptor-ligand interactions, can be enhanced 
with computational simulations of brain signals produced 
by the information of integrative physiology of neurons. 
These latter signals are compared with 
electrophysiological measures (Veselovsky and Ivanov, 
2003; Schneider and Fechner, 2005). 

Approximately 140 types of voltage-gated channels 
and even more ligand-gated channels have been 
identified (Yu et al., 2005; Novere and Changeux, 2001). 
These channels are tissue-specific and they are 
associated with different phases of development. 
Furthermore, diverse diseases, including epilepsy, cystic 
fibrosis and some forms of diabetes, are related to 
dysfunctional channels (Kass, 2005).  

When a compound binds a regulatory site of a neural 
receptor to regulate the efficiency of the binding, a so-
called allosteric modulator enhances or suppresses the 
electrical signal and consequently alters the synaptic 
transmission. The description of the mechanism of this 

modulation is still insufficient; however, the 
computational methods that integrate conductance-based 
techniques promise a conceptually new perspective for 
the computational design of drugs. Searching for novel 
target-specific drugs can be aided by the simulations and 
experimental results of spatiotemporal neural activity 
patterns, whereby pathological and normal dynamical 
states can be identified by a previous calibration of the 
integrated system (Aradi and Erdi, 2006). Meanwhile, a 
wider integration system of information is still improved 
and molecular recognition and molecular dynamics 
simulations are the most widely used techniques to design 
drugs to regulate the activity of the nervous system.  

An efficient presynaptic transport is necessary to 
upload the neurotransmitters into small vesicles at the 
axon terminals. In particular, the amino acid glutamate, 
the main excitatory neurotransmitter, exhibits an 
uploading system driven by Vesicular Glutamate 
Transporters (VGLUTs) (Takamori, 2006). To study the 
stability of the human VGLUT1 protein, a structural 
model was built based on a bacterial homologue, the 
glycerol-3-phosphate transporter GlpT from Escherichia 
coli. This model was analyzed by docking and molecular 
dynamics techniques. Furthermore, the latter was 
simulated into a lipid bilayer (Almqvist et al., 2007). 
This simulation confirmed that the VGLUT1 model 
stably maintains all transmembrane helices and that 
these structures display the lowest RMSD fluctuations 
over the simulated 10 ns. Furthermore, to draw a 
conclusion about the orientation of the amino acids 
embedded into the membrane, docking studies with 
the VGLUT substrates such as L-glutamate and 
inorganic phosphate were performed. 

2.3. Concluding Remarks 

Drug design must consider the intrinsic flexibility of 
the proteins when any strategy devoted to model the 
ligand-receptor interaction is implemented. Moreover, 
understanding the flexibility of biomolecules in diverse 
contexts is an area of interest. Pharmaceutical targets can 
be favored by backbone and side chain flexibility 
increasing or decreasing the ligand binding. A future 
challenge is developing conjugate algorithms such as 
docking and MD as well as hybrid schemes, where a 
combination of efficient modeling and computational 
cost could guide an exhaustive search of molecular 
interactions with pharmacological applications. 
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