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Abstract: The Space Time Adaptive Processing (STAP) is a promising approach in the improvement 
of the wireless communication systems. Since it makes possible to reduce interferences ISI (Inter 
Symbol Interference) and CCI (Co-Channel Interference) but its disadvantage is the intensive 
treatment which reduces the speed of convergence of the algorithm LMS (Least Mean Square) and 
SMI (Sampling Matrix Inversion). Our approach resides in the use of a fast algorithm which calculate 
the weighting coefficients of the equalizer in frequential field with faster convergence.  
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INTRODUCTION 

 
 Signal processing in wireless communications 
include modulation / demodulation, coding/decoding, 
channel equalization and estimation of the transmitted 
signals and reduction of interferences ISI and CCI. As 
the mobile communications are developing toward the 
higher speed digital networks[1], the associated 
communication channels become severely frequency 
selective, which makes (ISI) highly pronounced. 
Additionally, due to frequency reuse (CCI) signals are 
present against the desired user signal. Therefore, the 
system capacity and the communication quality are 
greatly affected by both the ISI and CCI problems[2]. 
 Adaptive arrays, particularly under space-time 
adaptive processing (STAP)[3,4], provide effective ways 
to suppress both the ISI and the CCI, subsequently 
improving the system capacity and the communication 
quality[3-7]. A STAP system Fig. 1 is usually composed 
of an antenna array and a set of FIR filters after the 
array elements to perform joint spatial and temporal 
adaptive processing.  
 In spite of its performances, a STAP system faces 
the problems of a high computational burden and a low 
convergence rate. These problems become particularly 
serious when operating in the severe fading 
environments where longer FIR filters are needed[8]. 
For example, when algorithms LMS[3] are used, the 
convergence speed becomes extremely slow and 
thereafter a long training sequence is needed[8]. 
 To solve these problems of convergence we 
propose an iterative method which operates in the 
frequencies field.  
 
Signal model: Consider a base station using an antenna 
array of N Elements (N>=1) with P(P>=1) users. The 
signal   of  the  desired  user  is  denoted s1(t),  whereas  

 
Fig. 1: The scheme of the fractionally spaced STAP 
 
signals from other users are denoted sp(t), p =2,…,P. 
The array output vector x(t) is expressed as: 
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where hp(t) represents the space time impulse response 
of the channel p. and : 

{ }p p p
l l l, ,θ τ ξ  Angle-of-arrival (AOA), time delay and 

propagation loss corresponding to the lth path of the pth 
user. 
a( )θ : Array steering vector corresponding to θ . 

pS (m) : mth information symbol of the Pth user. 
�p(t) : Pulse shaping function of the Pth user. 
 Lp : Total number of multipath rays of the Pth user. 
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T : Symbol duration. 
n(t) : Array noise vector. 
 At the receiver we sample the signal x(t) at 
sampling cycle ∆ and let J=T/∆ be the factor of 
oversampling[9]. Sampling x(t) at t = i∆+nT, equation 
(1) becomes 

pDP

p p
p 1 d 0

x(i nT) S (n d)h (i dT) n(i nT)
= =

∆+ = − ∆+ + ∆+��  

 With the exploitation of the cyclostationarity of 
user signals[2], the extended multichannel model of 
STAP can be established as : 

PDP

p p
p 1 d 0

x(n) S (n d)h (d) n(n)
= =

= − +� �  (2)  

where: 
TT T(n) (nT),..., (nT (J 1) )� �α = α α + − ∆� �  

� : �represents x, h, or n. 
 By considering the consecutive samples for one 
period of M symbols, we define the following vectors: 

TT T TX(n) x (n), x (n 1),....x (n m 1)� �= − − +� �  (3) 
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Thus, X(n) can be defined like : 
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  Where the columns of H express the space-time 
response associated with users delayed sequences. The 
limit of the number of the extended channels by over 
sampling is discussed in[6]. 
 
The MMSE criterion: The output of STAP system[8], 
as shown in Fig. 1 is defined: 
y(n) = WT X(n) (5) 
    
where W is the weighting vector of FIR filters. 1t is 
known that in the absence of the noise, one of the 
necessary conditions for a perfect adaptive 
processing[1], i.e, the perfect equalization of the desired 
signals of the user and the perfect removal of CCI 
signals, is that the matrix H is of full row (non 
singular).Under the MMSE criterion, optimal 
weightings are obtained starting from the following 
equations: 
e(n)= S1(n) – y(n). 
e(n)= S1(n) – WHX(n). 
E{e(n)2}= E{S1(n)2} – WHRxs1

*- WTRxs1+WT Rxx W 
∇ w E{|e(n)|2}= -2 Rxs1 + 2 Rxx W =0 
2 Rxx W =2Rxs1 

Rxx W = Rxs1 (6) 
Wopt = Rxx

-1 Rxs1 (7) 

 It is the optimal solution of Wiener[5] to calculate 
Wi, there are several methods which we can quote two: 
LMS[3] (Least Mean Square) and SMI[10] (Sampling 
Matrix Inversion). 
 Here user 1 is considered as a desired user and 
s1(n) is regarded as the training sequence of the desired 
signal. 
 RXS1 represents the intercorrelation vector between 
the reference signal s1(n) and the signal vector X(n). 
From (6), the power of the residual error under MMSE 
criterion of  STAP system is obtained as: 
σ2

MMSE(v)= 1 – RXS1 
H(v) R-1

XX RXS1(v) (8)  
 Equation (6) represents a convolutive system[11]. 
Thus, we can directly apply the Fast Fourier transform 
FFT to equation (6). Since the autocorrelation function 
is an even function, therefore its Fourier transform is 
real and even. In the deterministic case the Fourier 
Transform of the autocorrelation function is the power 
spectral density of the original signal. The power 
spectrum is always positive and/or null. And it does not 
contain information about the phase. 
F{w}. F{Rxx}= F{Rxs} (9)  
F{Rxx}=|X(f)|2 
F{Rxs}=S(f).X(f)* 
F{w}. F{Rxx}= F{Rxs}    
F{Rxx}=|X(f)|2 
F{Rxs}=S(f).X(f)*  
(10) 
F{w}=W(f).  
F : represents Fourier transform. 
 (*): represents complex conjugate. Therefore the 
equation (10) becomes: 
|X(f)|2W(f)= S(f).X(f)* (11)  
 Since |X(f)|2 is always positive and does not 
contain information on the phase of the signal. We can 
normalize its values between 0 and 1. That will not 
affect the results which we can obtain. 
One poses, now,  
H=|X(f)|2.  
x=W(f);     
y=S(f).X(f)*. 
Then we have the system : 
H.x = y (12) 
 
Iterative techniques: Let the signal of interest be 
denoted as x. Often, this signal is distorted and after a 
transformation H, is given by: 
y = H.x (13)  
 The problem is to estimate x, given y and H in 
(13). This objective may be achieved by applying the 
inverse transformation H-1 to y to obtain x as follows: 
x = H-1 y (14)  
 However, the solution of (14) may not be as 
straight forwards the equation itself[12,13], especially 
when: 
i. The inverse of H does not exist,  
ii. H has singular points, that is H-1 has some points in 

its domain where it does not exist and 
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iii. The problem of finding H-1 is ill-conditioned. 
 Under such conditions, the iterative techniques[13] 
can be used. In general, iterative techniques have the 
followings advantages: 
a. The inverse H-1 is not explicitly required and 

therefore the above-mentioned difficulties are 
circumvented. 

b. Restoration can be carried out for nonlinear or shift 
variant degradations. 

c. Nonlinear constraints can be incorporated in the 
restoration process. 

 To study the solution of x in (13) by iterative 
methods, it is assumed that x and y belong to a linear 
vector space S which is a Banach space[8]. In such a 
space, the distance between any two element x and y is 
denoted by d{x,y} and the norm of an element x by 
��x��. Further, in such a space Cauchy convergent 
sequence {xk} converges to a limit point x in S such 
that d{xk, x} → 0 as k → ∞. 
 In addition to the assumption on S, the operator T 
on S including the distortion operator H in (14) has the 
following properties:  
a. Both the domain and the range of T are subsets of S. 
b. An operator T on S is bounded[7,10] if  
d(Tx, Ty) ≤ Md (x, y) (15)  
Where M is a constant called the bound of T and is 
denoted by ��T��. If 0≤ M<I, the operator T is defined 
as a contraction operator. 
c. I is the identity operator. 
d. The zero operator Φ has the property Φx=0, ∀ x∈ S. 
e. For an iterative operator T, Tk would mean that the 
operator T is applied k times. 
 
A generalized approach: Let the applications of an 
iterative technique for solving x in (13) generate a 
sequence {xk}. An associated error sequence {ek} is 
defined as follows: 
 ek = x - xk (16) 
 The iterative technique will be deemed to be 
successful if the sequences {xk} and {ek} have x and 0 
as their respective limit points. 
 If, after the kth iteration, ek is known, then the limit 
point x can be exactly calculated as: 
x = xk + ek (17)  
 However, in practice, ek would not be known and 
at best only its estimate êk may somehow be computed. 
Using this estimate in (17), instead of the exact limit 
point x, its estimate denoted xk+1 is obtained. Therefore, 
the general recursive equation for iterative techniques is 
derived from (17) as follow. 
xk+1 = xk + êk (18) 
 For the purpose of evaluating the sequence of 
estimates (êk) an associated residual error sequence 
{ey,k} is calculated from the observations y in (13) and 
iteration sequence {xk} as follows: 
ey,k = y -Hxk (19) 

if for k → ∞, xk → x then Hxk � Hx and equations (13) 
and (19) imply that ey,k →0 as k → ∞. Therefore the 
sequence {ey,k} can be used as a control to test the 
desired convergence of {xk}. The existing iterative 
techniques thus derive (êk) as a transformation F of 
{ey,k} as follow: 
êk = F ey,k (20)  
The general iteration (14) can now be written as: 
xk+1 = xk +Fey, k (21) 
 
Convergence: The various iterative techniques that 
follow (21) can be alternatively expressed in the 
following form of the Banach fixed point theorem[14]: 
xk+1 =R xk +Fy = T xk                                                                             (22) 
 
 Where the operators R and T are respectively given 
as R=(1 – FH) and Tx = Rx + Fy. If T is a contraction 
operator as defined in (15), then the sequence {xk} 
generated by (22) converge to a unique fixed point or 
the limit point x. The error at the kth iteration or distance 
between the solution xk and the true limiting point 
solution x is: 
d(xk, x) = d(Txk-1, Tx) 
≤ Md(xk-1, x) (23a) 
≤ Mkd ( x0, x) (23b) 
Where the use of the definition of fixed point, that is,  
Tx = x, and of equation (14) and (22) has been made. 
The convergence is thus linear form one step to the next 
iteration (23a) and follows a geometric progression 
with reference to the initial starting point x0 (inequality 
(23b)). 
 
The proposed algorithm: For the solution of x in (14), 
equation (18) forms the basis of the iterative technique. 
However, in the proposed technique, êk is not derived 
according to equations (19) and (20) as in the other 
iterative techniques. Let a transformation Hk be defined 
as  
xk =Hkx ∀k=0;1;… (24) 
Then, (4) can be written as 
ek =(1-Hk)x (25a) 
= Bkx (25b) 
Where  
Bk = I - Hk ∀k=0;1;… (26) 
 Now, given the estimate xk of x, the estimate is 
obtained from (21) as: 
êk= Bk xk  (27) 
The basic iteration equation (18) is, know, given as: 
xk+1 = xk + Bk xk= (I + Bk )xk (28a) 
= (2I - Hk) xk (28b) 
Where use of (26) (22) has been made in the derivation 
of (28b). Substituting (24) in (28b), we have: 
xk+1 = (2I - Hk)Hkx (29) 
Comparison of (24) and (29) indicates 
Hk+1 = (2I - Hk)Hk (30) 
Equations (28b) and (30) constitute the proposed 
technique. From (30)  
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1 - Hk+1 = 1 - 2Hk+ Hk² 
1 - Hk+1 = (I -Hk)² (31) 
Equation (26) and (31) imply 
Bk+1 = Bk² (32) 
 Equations (28a) and (32) constitute the alternative 
form of the proposed technique. If the iterations are 
started with x0 = y then (14) and (24) amply that H0 = 
H. The proposed algorithm is resumed by equations 
(26), (28a), (32), respectively: 
B0 = 1 - H0 
xk+1 = xk + Bk xk (33) 
Bk+1 = Bk² 
  
Principle of the proposed method: The method 
suggested by[8] is based on the use of the MMSE 
criterion which led to the form (7) and they use LMS 
algorithm to calculate the weighting coefficients Wi of 
the filters. For the validation of their results they used: 

2L M
2 T1

1LSTAP m
n 1 m 1

(l) S (n) (l)x(n m 1)w
= =

= − − +� �ε  (34)  

 According to the equation (7), we can show that 
the difficulty lies especially in the inversion of the 
matrix Rxx. In the literature we can find several 
algorithms which treats the inversion of this matrix and 
which are especially based on the use of algorithms 
SMI[10] and LMS[5]. 
 Moreover one improved version NLMS 
(Normalized LMS) was introduced by Horner[15] but it 
always suffers from the problem of convergence 
speed[7]. 
 To circumvent the problem of convergence of 
algorithm LMS Yang et al.[8] have proposed the use of 
the sub-band STAP[16,17]. They have find that with their 
algorithm convergence is faster than conventional 
STAP. Convergence is reached in the neighborhoods of 
2000 iterations[8].  
 In our work we dealt with the problem in the 
frequential field. In section 3 we have obtained 
equation (12) H.x = y. Witch is similar to (13). 
 Then we can apply the algorithm (33) and we can 
obtain the weights vector W iteratively. The next 
paragraph shows the simulation results. 
  

RESULTS 
 
 Here, the results of simulations are presented to 
prove the effectiveness of our algorithm in the 
improvement of the performances of  STAP.  
 An ULA network of 3 omni directional identical 
antennas spaced of 2/λ  is used. The factor of over 
sampling J=2. The scenario of several users is 
considered (Table 1). All the signals are binary 
modulated in QAM4 with raised-cosine pulse shaping 
filtering ρ=0.35. Each user presents six signals arriving 
by various angles of arrival to the network of antennas. 
The size of the signals is N=5000 symbols and we 
added a noise at the reception of SNR =100dB. For the 

convergence of our method, the steady state is reached 
at the end of only 10 iterations.  
 
Table 1a: Parameters of the desired user 
N° θ(deg) τ(sym) ξ(Fading) 
1 -12.3 0 1.0 
2 -28.0 0.99 0.02-0.84i 
3 -13.1 1.16 0.09+0.80i 
4 -0.80 3.89 -0.75-0.26i 
5 -24.0 5.69 -0.54-0.44i 
6 -26.0 7.41 -0.52-0.29i 
 
Table 1b: Parameters of the interference user #1 
N° θ(deg) τ(sym) ξ(Fading) 
1 -8.6 0 1.0 
2 -12.7 0.65 0.78+0.06i 
3 -21.2 1.09 0.65-0.33i 
4 -27.2 6.43 -0.58-0.17i 
5 -10.9 6.69 0.06+0.54i 
6 -26.0 9.46 -0.39-0.34i 
 
Table 1c: Parameters of the interference user #2 
N° θ(deg) τ(sym) ξ(Fading) 
1 -6.6 0 1.0 
2 -3.3 1.29 0.04+0.86i 
3 -8.7 1.74 0.26+0.76i 
4 -9.4 5.73 0.70+0.29i 
5 -14.0 6.47 0.49+0.06i 
6 -0.30 8.15 -0.37-0.25i 

 
 The Fig. 2 and 3 represents the evolution of the 
result according to the time of execution T1 for signals 
QAM4. We see that the recovered signal S1r(n) is 
obtained with high resolution after 10 iterations or T1 
(depends on machine speed). The steady state for LMS 
was retched after 1000 iterations or 40 T1. Figure 4 and 
5 represent the residual error power according to the 
number of the iterations for QAM4 signal. 
 Figure 3-7 represent the evolution of LMS 
equalization in function of the same time T1 that is 
performed by our algorithm. Thus, we can see that the 
LMS algorithm starts to give something after 15 T1. In 
Fig. 8 the steady state is reached by LMS algorithm 
after 40 T1. 
 

 
Fig. 2: Left: Transmitted signal, Right: received signal  
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Fig. 3: Left: Residual error power for our method after 

time T1, Right: Equalisation result  
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Fig. 4: Left: Residual error power for LMS after time 

of execution T1. 
             Right: Result of equalisation by LMS algorithm 

after time T1 

0 50 100 150 200 250 300 350 400
-44

-42

-40

-38

-36

-34

-32
Convergence

iterations

E
rro

r 
e(

n)

 
Fig. 5: Left: resudual error power. After time t=15T1, 

Right: Equalisation result by LMS after time 
t=15T1 
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Fig. 6: After time t=35T1 (LMS)  
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Fig. 7: After time t=50T1 (LMS) 
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Fig. 8: The residual error power in function of time 

T1 for LMS 

CONCLUSION 
 
 The effectiveness of our method is improved by the 
results so obtained. From the point of view of speed 
convergence our algorithm is faster than LMS, the 
convergence was reatched after 5 iterations,. The performance 
of LMS was attained after 50 T1, i.e., after 1500 iterations. 
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