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Abstract: In this study the interaction of blood flow with arterial wall has been investigated using FSI 
(Fluid-Structure Interaction) modeling. Computer simulation of pulsatile blood flow was carried out on 
the basis of the time dependent axisymmetric Navier-Stokes equations for an incompressible 
Newtonian fluid flow. An elastic incompressible material with large deformation was considered for 
the arterial wall and momentum and continuity equations of elastodynamics have been solved. The 
specified boundary conditions for the Navier-Stokes equations were the pulsatile pressure waveforms 
of the brachial artery at inflow and outflow to the given pulse wave form of a cardiac cycle. Fluid and 
solid equations were solved with the ALE-based loose coupling method for FSI problems. Resultant 
flow, wall displacement, wall shear stress and wall circumferential strain waves, and their phase 
differences were determined. Stiffening of the arterial wall resulted in a significant decrease in the 
mean values of flow and wall shear stress and altered waveforms. A tenfold increase in wall stiffness 
caused 33% drop in flow and negative values of shear stress in 21% of the pressure pulse. For elastic 
moduli corresponding to wall displacements less than 1% the blood flow and wall shear stress were not 
sensitive to wall stiffness. Stress phase angle was altered by stiffening of the arterial wall. It was 
concluded that FSI modeling with pressure boundary conditions provides a proper evaluation of 
hemodynamic parameters that may determine endothelial injury.  
 
Key words: Elastic artery, Large displacement, Pulsatile blood flow, Hemodynamics, Fliud-Structure 
Interaction  

 
INTRODUCTION 

 It has been well established that many 
cardiovascular diseases are closely associated with 
hemodynamic parameters and vessel wall mechanical 
characteristics. The arterial endothelial lining is 
exposed to both wall shear stress caused by pulsatile 
blood flow and circumferential stress caused by 
pulsating arterial pressure. These two stresses and their 
interaction are believed to play an important role in 
determining remodeling of the blood vessel and 
development of arterial diseases[1]. 

The human arterial system is formed by a network 
of distensible vessels that can be regarded as hollow 
tubes of variable diameters. Arteries deform under 
pressure fluctuation generated by the heart. 
Transmission of pressure waves through the blood is 
the result of the energy exchange between the blood 
and the vessel wall; therefore modeling of the time 
dependent arterial deformation or pulse propagation, is 
a fluid-solid interaction problem[2]. 

Studies have modeled such phenomena. Witzing [3], 
as a pioneer, solved the equations of motion for an 

inviscid fluid-filled elastic tube. Womersley [4] derived 
the coupled harmonic solution for a viscous fluid and 
wall motion in a deformable vessel, initiating research 
in this field. He solved the linearized Navier-Stokes 
equations for a thin walled isotropic elastic cylinder 
containing viscous Newtonian fluid. 

Cox presented a complete review of this subject in 
1969 [5]. This dealt with the extension of Womersley’s 
theory to thick walled tubes, viscoelastic material 
behavior, anisotropic material behavior, initially 
stressed tubes and incorporation of non-linear terms in 
the Navier-Stokes equations. All computations of wall 
motion were geometrically and physically linear. 

Development of numerical methods in moving 
boundaries was the first step in the application of fluid-
structure interaction methods in cardiovascular systems. 
Reuderink [6], Pietrabissa and Inzoli [7] used a decoupled 
method, in which for a given flow, the pressure wave 
was computed using linear wave propagation theory. 
Then, the equilibrium equations for the wall were 
solved with the previously computed pressure as natural 
boundary condition. The mesh for the fluid motion 
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computation was deformed accordingly. Reuderink et 
al. deformed the outermost elements of their 3D carotid 
artery mesh [6], whereas in their later publication on a 
2D tube model, all elements were deformed [8]. In both 
cases (2D and 3D) the velocity of the nodal points with 
respect to stationary frame was neglected. Van de 
Vosse et al. computed the fluid motion using penalty 
function finite element method [9]. 

Because a suitable wave propagation model has not 
been available due to material and/or geometrical 
complexities, decoupled methods have been used for 
simple models. Hilbert [10], Steinman and Ethier [11] and�
Perktold and Rappithsch [12] solved the equations of 
motion with a weakly coupled method. At the entry of 
their models the flow was prescribed, at the ends the 
experimentally recorded pressures were used. In the 
computation for a periodic solution several flow cycles 
were applied. Steinman and Ethier [11] used a method 
similar to the one presented by Hilbert [10]. They solved 
the fluid motion equation with a penalty function 
method and computed the outlet pressure with a linear 
wave theory, rather than prescribing experimental data. 

Perktold and Rappithsch [12] reported a 25% 
decrease in wall shear stress in an elastic model 
compared to a solid model. Rutten [13] used a loose 
coupling method to simulate pulsatile blood flow in 2D 
and 3D isotropic and anisotropic models. He used the 
strain energy density function for simulating nonlinear 
behavior of vessel wall. Qiu and Tarbell [1] used the free 
surface function of FIDAP7.62 to simulate the 
moving walls of coronary artery based on experimental 
measurements in dogs. De Hart et al. [14] used a 
fictitious domain technique and loose coupling method 
to simulate 2D aortic valve motion in systolic phase. 
Their model was simplified with assumptions such as a 
solid vessel wall and neglected inertia of valve. They 
also used implicit coupling methods to simulate 3D 
aortic valve motion to the increase accuracy and 
stability of the algorithm [15]. Cebral et al. [16] simulated 
pulsatile flow of a real carotid artery obtained from MR 
images using an independent ring model for the elastic 
wall of the artery. They concluded that in rigid models, 
the regions with low shear stress (<10 dyn/cm2) were 
smaller compare to those in elastic models. Lee and Xu 
[17] coupled ABAQUS and CFX4.2 to simulate blood 
flow in elastic arteries.  

Most of the researchers have treated their models 
with pulsatile flow as a boundary condition. Since the 
pressure gradient is the cause of flow, application of 
pressure based boundary conditions might be more 
realistic in FSI modeling of arteries. In present study 
models of human brachial artery have been developed 

to evaluate effects of wall stiffness on mechanical 
parameters such as flow, wall shear stress and wall 
circumferential stress. Since critical values of those 
stresses contribute to endothelial damage the results 
may be applied in study of arterial pathology.  

In addition to values of shear and circumferential 
stresses a quantitative parameter has been introduced to 
study effects of phase shift between wall shear stress 
caused by blood flow and wall circumferential stress 
caused by blood pressure.  Brachial artery has been 
chosen due to the availability of pressure pulse data 
together with mechanical and geometrical parameters.  
Physiological pressure waves at the inlet and outlet of 
the model were used as boundary conditions. Results of 
the FSI algorithm were validated with published 
experimental data. The capability of the model to obtain 
hemodynamic parameters was discussed. The effects of 
stiffness of the arterial wall on flow rate and wall shear 
stress were studied and their application in endothelial 
pathology were discussed.  Since aging is correlated 
with stiffening of the arterial wall the results are 
applicable in change of hemodynamic parameters such 
as pulsatile flow, pulsatile wall shear stress and 
circumferential stresses and their phase shift with age.  
 
Mathematical representation: 

The fluid model: To model the arterial system with 
the FSI model, the mechanical properties of blood and 
arterial wall should be studied. Blood is a complex 
suspension of different corpuscles. In large arteries, 
these corpuscles have dimensions much smaller than 
the diameter of the vessel and blood can be considered 
a homogeneous and incompressible fluid. Furthermore, 
it can be assumed to behave as a Newtonian fluid at 
high shear stress [1, 16, 18, 19, 20, 21]. 

Continuity and momentum equations of Newtonian 
fluid with negligible body forces are described as Eq. 
(1): 

    

ρf ∂tv f +  ρ f v f ⋅∇v f  -  divT(v f , pf ) = 0

div v f =0

� 

� 
� 

� 
� 

 

(1) 

In this equation, ),( tf xv is the fluid velocity 

vector, ),( tp f x the fluid pressure, fρ the fluid 

density and fµ  the fluid viscosity; 

    T(v f , p f ) = −p f I+ 2µ f D(v f )  is the Cauchy stress 

tensor, and ))((2/1)( T
fff vvvD ∇+∇= is the 

deformation rate tensor. Character "I" stands for the 
unit matrix. 
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 The wall model: The arterial wall as the solid part 
of the FSI model is comprised of three layers: intima, 
media and adventitia, each of them being constituted of 
different materials with different mechanical features 
such as collagen fibers, elastin fibers, smooth muscle 
cells, ground substances, and water [22, 23]. Elastin in the 
media bears most of the pressure load at low strains. 
The collagen fiber network limits the radial 
deformability at higher blood pressures, and causes the 
steep rise in wall stiffness at higher strains, resulting in 
a material with nonlinear elasticity.  

In the physiological range of blood pressure, the 
collagen fibers are stretched and the stress-strain 
relationship of the arterial wall may be considered as 
linear during the pressure pulse. Large deformation 
theory was used to model arterial wall deformation. 

The continuity and momentum equations of 
elastodynamics for the wall are written as shown in Eq. 
(2): 
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In this equation su  is the solid displacement 

vector, s�  the Cauchy stress tensor, f the body force 
vector and sρ  the solid density. 

The gradient in Eq. (2) is defined based on moving 
coordinates and is different from the gradient in Eq. (1). 
If solid is assumed as elastic and isotropic material 
obeying hook’s law, Cauchy stress tensor can be used 
as Eq. (3): 

εσ :4Cs =  
(3) 

where C4  is a fourth order elasticity tensor, :  is the 

product sign and ))((2/1 Tuu ∇+∇=ε is the strain 
tensor for small deformations. 

Due to large deformations, the above strain is not 
applicable for the description of deformations that 
occur in pressurized arteries. The Green-Lagrange 
strain is objective and will be used instead. To use this, 
corresponding stress measure that relates stresses to the 
reference situation must be adopted. The resulting 
invariant stress tensor S is called the 2nd

 Piola-Kirchhoff 
stress tensor [13]. Since S is invariant, it is a proper 
description for large deformation computations. To 
determine the stress in the material, Cauchy stress has 
to be computed afterwards as Eq. (4): 

T
s FSF

J
⋅⋅= 1σ

 

(4) 

������
TxF )( 0

�∇= is the deformation gradient 
tensor with respect to a reference configuration of the 
solid and J is the determinant of F. This tensor 
describes both rotation and displacement. Therefore, the 
Green-Lagrange strain tensor E  is defined as Eq. (5): 

)1(
2
1 −= FFE T

 
(5) 

This tensor is reduced to the linear strain tensor for 
small deformations. Continuity equation for large 
deformation is defined as Eq. (6): 

1)det( =F   (6) 
Coupling conditions: In order to obtain a complete 

FSI model of coupled system, two coupling conditions 
on the fluid-solid interface are required [18,19,24-34]. The 
first condition describes the fluid-solid interface as a 
Dirichlet boundary for the fluid i.e. the preset velocity 
values of the fluid must be equal to the structural nodal 
velocities describing by Eq.(7a):  

c
sf onuv Γ= �  

(7a) 

where
cΓ  is the fluid-structure interface.  

The second condition indicates that the fluid-solid 
interface is treated as a Neumann boundary for a solid, 
i.e. the fluid boundary tractions tf are surface loads for 
the structure and is given by Eq. (7b): 
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(7b) 

where characters 0 and t show reference and 
changed configurations of fluid-solid interface, 
respectively. The negative sign refers to opposite 
directions of the normal vectors on the interface of fluid 
and structure with respect to a reference configuration. 
The formulation implies that the fluid boundary moves 
with the structure. The coupling conditions ensure 
conservation of mass, momentum and mechanical 
energy on the interface. 

 
METHOD OF SOLUTION 

 
Models of brachial artery were developed for 

analysis. Compared to other same level arteries wall 
stiffness of brachial artery is lower, hence effects of 
arterial stiffening on hemodynamic parameters can be 
studied with more details in a wide range of elastic 
moduli. Furthermore the geometrical conditions of 
brachial artery such as no branching between 
measurement sites make brachial artery a proper model 
for the analysis. The availability of pressure data on two 
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close sites together with available data on mechanical 
and geometrical parameters were other reasons for 
choosing brachial artery.  

Two different experimental pressure waveforms 
from previously published data were used as fluid 
boundary conditions [23]. These data were obtained from 
measurements along the human brachial artery at two 
points five centimeters apart. The time difference 
between the pressure waves was derived from Moens-
Korteweg equation for wave velocity using the 
mechanical properties of the arterial wall (Fig. 1). 
Because of differing wave velocities for models with 
different elastic moduli, alterations in calculated 
pressure gradient wave were observed while the mean 
value for the pressure gradient pulse remained constant. 
Therefore stiffening of the arterial wall led to an altered 
pressure gradient wave. Mechanical properties and 
model dimensions used for the model are summarized 
in Table 1. 

80

90

100

110

120

130

0.0 0.2 0.4 0.6 0.8 1.0
t/T

P
re

ss
ur

e 
[m

m
H

g]

t / T=0.08

t /T=0.14

t / T=0.37

t / T=0.5

t / T=0.29

 

-1

-0.5

0

0.5

1

1.5

0.0 0.2 0.4 0.6 0.8 1.0

t/T

P
 [m

m
H

g/
cm

]

Y=0.45 MPa
Y=0.9 MPa
Y=1.8 MPa
Y=4.5 MPa

�

 
Fig. 1: Inlet pressure wave form (top) [19] and pressure 
gradient for differing wall stiffness (bottom) 
 

Axial displacement of the arterial wall was 
restricted at inlet and outlet boundaries. The tethering 
effect (axial pre-stretch) was not considered in the 
model. For the symmetrical model the adopted 
cylindrical coordinates also show the principal 
directions of stress tensor. Therefore considering 
boundary conditions the pre-stretch in axial direction 

does not affect the circumferential stress as a major 
model output.  

Fluid and solid equations together with coupling 
conditions were solved by ALE-based loose coupling 
algorithm using FIDAP8.5 software in an axisymmetric 
model of the artery. Quadrilateral 4-node elements were 
used for fluid and solid mesh. The element numbers for 
the fluid and wall models were 2800 and 1120 
respectively. Maximum aspect ratio and skewness were 
3.9 and 0.01 respectively. That the results were 
independent of the computational mesh was verified. 
The governing finite element equations for both the 
solid and fluid were solved by segregated iterative 
algorithm. Each period was divided into 87 uniform 
time steps and convergence criteria were set to 0.001 
for both velocity and displacement. 

Using finite element method to reach a good 
convergence, the model was loaded to 80 mmHg at 1 s 
duration, then problem solved for five cardiac cycles 
with 0.863 s period corresponding to 70 bpm for a 
healthy human. Computational results showed that wall 
displacements reached the time-average absolute 
difference of 0.001 mm after the second period and 
velocities reached the time-average absolute difference 
of 0.001 m/s after the fourth period. These values were 
chosen as convergence criteria with an order of 
magnitude significantly smaller than the average 
outputs. The results were recorded from the fifth cycle 
at the mid cross section of the arterial model. The 
results included wall shear and circumferential stress 
waves, pulsatile flow, pressure pulse at different sites, 
and pulsatile radial displacement. Effects of arterial 
wall stiffness on the above parameters were studied. 
The values of the wall elastic moduli were chosen in the 
range from a healthy to an aged brachial artery. 

 The FSI algorithm was validated by comparing the 
results of the FSI model with a very high stiffness to a 
solid model without the FSI algorithm. Velocity 
convergence was reached after the eighth cycle in the 
model without the FSI algorithm. Similar results were 
obtained with negligible differences in velocity values 
at some stage of arterial pulse. 

Results of FSI modeling were validated using FSI 
models of canine thoracic aorta with geometrical and 
material parameters similar to those of published 
experimental data [35] and obtaining similar results. The 
experimental data included the measurements of 
pressure waveform and radial displacements. The flow 
waveform obtained from experimental data with 
applications of long wavelength approximation theory. 
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Table 1: Mechanical properties and geometrical dimension of model [20, 23, 36-38].  
 Viscosity 

 
(mPa.s) 
 

Density 
 
(Kg/m3) 

 

Young’s 
Modulus (Y) 
(MPa) 
 

Poisson 
Ratio 
(mm) 
 

R0
* 

 
(mm) 
 

H0
8 

 

(mm) 
 

R88 

 
(mm) 
 

H88 

 
(mm) 
 

Length 
 
(mm) 
 

Model 
 

– – 
 

– – 1.8 0.73 1.98 0.69 50 

Blood 
 

3.5 
 

1050 10-3 10-2      

Vessel wall 
 

– 1100 0.450 0.45      

8R0, H0 represent dimensions at zero pressure. **R, H represent dimensions at mean pressure. 
 

The FSI modeling results showed a good agreement 
with published data. 

 
RESULTS AND DISCUSSION 

 
Effect of elastic modulus on hemodynamic parameters: 
Flow rate: The effects of wall stiffness on flow rate are 
shown in Fig. 2. The stiffer the arterial wall, the faster 
pressure wave velocity. Since the pressure gradient 
wave is derived from the difference between pressure 
waves at proximal and distal sites and their time 
difference, it can be concluded that the pressure 
gradient waveform is highly affected by the wall 
stiffness (Fig. 1(bottom)). The pressure gradient wave 
is dependent on the wave velocity which is in turn 
related to the wall stiffness. But this change is only for 
the shape of pressure gradient and not the average value 
(or the total value in an arterial pulse). This results in an 
altered flow waveform. Results show a significant drop 
in peak systolic flow by stiffening of the arterial wall 
and a further marked flow rate drop in the rest of the 
systolic phase. It can be seen that for a model with a 
highly stiffened wall (Y=4.5 MPa) flow becomes 
negative in late systole.  

Effects of wall stiffening on mean blood flow rate is 
depicted in Fig. 3 and shows that there is a significant 
decrease in average flow rate by elevation of the wall 
stiffness: a two fold increase in wall stiffness results in 
a 17% decrease in average flow rate and a ten fold 
increase causes a 33% drop in average flow rate. 
Results show that an increase in stiffness to more than 
4.5 MPa has no significant effect on flow due to the 
very low distensibility of the arterial wall. Published 
experimental data [19] point to a significant decrease in 
blood flow by aging which is correlated with wall 
stiffening. 

The dependency of flow to the elastic modulus 
value is due to the fact that the stiffened arterial wall is 
less distensible with smaller radial displacements. 
Assuming the same geometry for depressurized normal 
and stiffened models, the elastic model expands less  

 
after loading compared to the stiff model resulting to 
limited flow for stiff models. 

Since aging correlates with stiffening of the arterial 
wall, the results may be used to study the effects of 
aging. By stiffening of the arterial wall, the flow rate 
decreases markedly, and to maintain the flow level the 
pressure level needs to be evaluated in such a way that 
the artery expand to the previous level. This might be 
considered as one of mechanisms for the increase of 
mean arterial pressure by aging. The correlation of 
aging with arterial wall stiffening might lead to altered 
pressure gradient wave and backflow in late systole in 
aged arteries. 
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Fig. 2: Alteration of pulsatile flow rate with differing 
wall elastic modulus 
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Fig. 3: Effect of vessel wall elastic modulus on mean 
flow rate 
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Velocity profiles: Figure 4 compares velocity profiles 
for models with two different wall elastic moduli at 
different stages of pressure pulse. As can be seen there 
are marked differences between velocity profiles in 
systolic phase (t/T=0.08, 0.14) while in diastolic phase 
(t/T=0.5) there are no significant differences. Backward 
flow near the arterial wall is observed for models with 
stiff wall in systolic phase (t/T=0.14) as already 
discussed. Backward velocity profiles result in negative 
wall shear stress in systolic phase for models with stiff 
wall. 
 
Wall Shear Stress: Wall shear stress variation with 
stiffening of the arterial wall is shown in Fig. 5.  The 
WSS wave shows a major fluctuation during systole. 
The systolic peaks are highly sensitive to the stiffness 
of the arterial wall which markedly decreases systolic 
peak values. A 10 fold increase of wall stiffness causes 
maximum WSS values to decrease 51%. This causes a 
negative minimum shear stress. Further increase of the 
elastic modulus has no significant effect on WSS 
values. 
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Fig. 4: Centerline velocity profiles at different stages of 
pressure pulse for distensible (Y=0.450 MPa) and stiff 
(Y=4.5 MPa) wall  
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Fig. 5:  Alteration of wall shear stress with differing 
arterial wall elastic modulus during a pressure pulse 

 
Since endothelial damage is correlated with WSS 
values, FSI modeling may provide useful information 
on WSS values and its relationship with arterial 
stiffening. The results may be applied in aging. Figure 5 
indicates a significant decrease in the WSS minimum 
value with wall stiffening. It can be seen that for a 
model with a stiff wall the WSS remains negative in 
21% of the pressure pulse duration, but for a distensible 
artery model the WSS remains positive throughout. 
While for distensible model with appropriate 
mechanical and geometrical parameters WSS remains 
in the positive domain, for a model with stiffened wall 
WSS fluctuates in negative and positive regions. 
Phase difference between biaxial loads on 
endothelial lining: The FSI method provides a suitable 
model to study the effect of the phase difference 
between wall shear stress and circumferential stress 
during the pressure pulse representing a biaxial 
pulsatile loading system, on the endothelial lining. In a 
study of endothelial pathology not only the critical 
values of shear and circumferential stresses are 
important but also the phase shift between them that 
might be a major determinant [1].  

The value of the circumferential stress is obtained 
by the quantification of the circumferential strain on the 
inner wall and the value of the endothelial cell elastic 
modulus. The CFD modeling of rigid vessel will not 
present the wall circumferential strain. However, FSI 
modeling provides a simultaneous solution for shear 
stress and circumferential strain and their phase shift. 
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Fig. 7: Stress and impedance phase angle changes in 
first harmonic with wall stiffening 
 

To analyze the phase difference between these two 
waves a mathematical algorithm based on the discrete 
Fourier transform is done and the phase angle between 
two waves is calculated. Figure 6 shows the stress 
phase angle (SPA) between CS and WSS for different 
harmonic frequencies. The first harmonic frequency is 
1.16 Hz corresponding to 70 bpm for an average 
healthy heart. The results are shown for models with 
different elastic moduli. Figure 7 shows the first 
harmonic values of SPA and the impedance phase angle 
between pressure and flow (IPA) for different wall 
elastic moduli. The results show a non-linear decrease 
in both SPA and IPA with stiffening of the arterial wall. 
Experimental results have shown that the more negative 
the SPA values the higher risk of arterial diseases [1]. 
As can be seen this trend occurs with stiffening of the 
arterial wall. Since mechanical and geometrical 
parameters affect the values of CS and WSS, FSI 
modeling may be used to study atherogenesis at 
different arterial sites. 
 

CONCLUSION 
 
 FSI modeling is used to analyze the interaction 
between the elastic wall and blood flow in a model of 
brachial artery. The pressure based boundary conditions 
are utilized using physiological data and wave velocity. 
Evaluation of the model shows the capability to predict 
flow and wall mechanical parameters. 

Results showed that FSI modeling with pressure 
boundary conditions provides a proper evaluation of 
hemodynamic shear stress and wall circumferential 
stress values which are major determinants of 
endothelial injury and atherogenesis. The availability of 
non-invasive pressure recording at different sites 
facilitates application of pressure boundary condition-
based FSI modeling.  

FSI modeling showed marked influence of wall 
stiffness on mechanical parameters based on the fact 
that wall stiffness effects markedly on the pressure 
gradient wave shape considering wave velocity. A 
tenfold increase in wall stiffness caused 33% drop in 
flow and negative values of shear stress in 21% of the 
pressure pulse resulting in fluctuation of shear stress in 
negative and positive regions, a high risk of endothelial. 

For elastic moduli corresponding to wall 
displacements less than 1% the blood flow and wall 
shear stress were not sensitive to wall stiffness. The 
stress phase angle was also sensitive to wall stiffness. 
Due to the correlation of aging with arterial wall 
stiffening (arteriosclerosis) the results can be extended 
in study of aging effects. By aging arterial wall stiffens 
resulting in a decrease of blood flow rate. Due to 
metabolic requirements of organs a sustainable blood 
flow in the physiological range is needed. This is 
achieved by control mechanisms such as elevation of 
mean arterial pressure and arterial wall remodeling. 
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