
American Journal of Applied Sciences 4 (8): 613-618, 2007
ISSN 1546-9239
© 2007 Science Publications

Corresponding Author: Azam Sleit, King Abdulla II School for Information Technology, University of Jordan, Amman

613

A Dynamic Object Fragmentation and Replication Algorithm

In Distributed Database Systems

Azzam Sleit, Wesam AlMobaideen, Samih Al-Areqi, and Abdulaziz Yahya
King Abdulla II School for Information Technology, University of Jordan, Amman, Jordan

Abstract: This paper proposes an enhancement for the ADRW algorithm to achieve dynamic
fragmentation and object allocation in distributed databases. The algorithm adapts to the changing
patterns of object requests with the objective to dynamically adjust the allocation schemes of objects in
order to minimize the total servicing cost of all requests. Objects may be replicated or fragmented
depending on patterns of reads and writes. Qualitative analysis was used to characterize the
performance of the enhanced algorithm.

Keywords: Distributed Database, ADRW algorithm, Fragmentation, E-ADRW

INTRODUCTION

Distributed systems are an important development
in computing technology which is concerned with the
delivery of constantly expanding data to points of query.
Collections of data in the forms of partitions or
fragments can be distributed or replicated over multiple
physical locations. Local autonomy, synchronous and
asynchronous data distributions are examples of
distributed database design schemas which can be
implemented depending on business needs and data
sensitivity/confidentiality. Data reliability and
availability are basic requirements for system design.
Reliability is the possibility that a system is running at a
certain point in time while availability is the probability
that the system is continuously available during a time
interval. Both data reliability and availability can be
enhanced by distributing data and DBMS software over
several sites. The database administrator (i.e.; DBA)
carries the responsibility of ensuring that the distributed
nature of the system is transparent. Users need not know
that they deal with multiple disparate systems, instead of
one big repository. Consequently, during the database
design process, extra care must be taken into account to
minimize the impact of the disconnected nature of the
database on the overall performance of the system. For
example, join-operation may become prohibitively
expensive when performed across multiple platforms.
Several research activities were conducted to improve
distributed database techniques and to cope with their
challenges to solve the abovementioned challenges. The
Adaptive Distributed Request Window (i.e. ADRW)[1] is
one example of such techniques. ADRW captures the
requests for an object and the number of read/write
requests with its servicing cost to make the decision
concerning replication. A replication may be eliminated
depending on the write requests from other requesters in

case of excessive overload due to updating replica. In
case write requests do not affect the replication, it will
be sent to the server that will propagate the update to the
others. While working on requests, a server which hosts
a particular object may find that another server
intensively asks to update the object whereas the hosting
server rarely accesses the object. Assuming that the
object is not duplicated elsewhere, the server may decide
to reallocate this object to the server with intensive
requests and announce to other servers to deal with this
new allocation. The window mechanism as illustrated in
the ADRW algorithm helps to keep track of all
transactions taking place between the owner of an object
and other servers. This paper proposes an enhanced
ADRW algorithm (E-ADRW) which opens two
windows per object per requester at the data server. The
first window keeps track of requests made for the object
by the requesting server and the other window keeps
track of requests by other servers. The algorithm uses
the windows related to an object to make decisions
concerning reallocation of the object whenever
necessary. Section 2 discusses related work while
section 3 introduces the ADRW algorithm. Section 4
proposes an enhancement for ADRW (i.e. E-ADRW)
based on fragmentation. Section 5 analyzes the E-
ADRW algorithm and provides a case study example.
Section 6 provides a comparison between the E-ADRW
algorithm and other dynamic fragmentation algorithms.

The single data allocation problem has been shown
to be intractable which means that as the problem size
increases, problem search space increases
exponentially[5, 6, 7, 8, 15]. Static data allocation implies
that no change in data allocation as a function of time,
while dynamic data allocation tends to relocate data as
necessary[9, 10, 11]. Initial studies on dynamic data

Am. J. Applied Sci., 4 (8): 613-618, 2007

 614

allocation gave a framework for data redistribution [12,

13]. Brunstorm proposed a dynamic data allocation
algorithm for non-replicated database system, but no
model was proposed to analyze the algorithm[14].
Heuristic approaches to dynamically allocate data were
proposed based on data replication [1,2]. Other
researches proposed allocation algorithms based on
fragmentation for distributed database systems [3, 4].

Fragmentation: A fragment (horizontal, vertical) of a
database object in an object-oriented database system
contains subsets of its instance objects (or class extents)
reflecting the way applications access the database
objects. Allocating well-defined fragments of classes to
distributed sites has the advantage of minimizing
transmission costs of data to remote sites as well as
minimizing retrieval time of data needed locally. A re-
fragmentation of the data is needed when application
access and schema information have undergone
sufficient changes. The importance of fragmentation in
distributed database and subsequent allocation to
distributed sites (relations or classes) has been argued
by many works[3]. Most distributed database designs are
static based on a priori probabilities of queries
accessing database objects in addition to their
frequencies which are available during the analysis
stage. It is more effective for a distributed system to
dynamically check the goodness of an object
fragmentation scheme to determine whenever re-
fragmentation is necessary.

ADRW Algorithm: The goal of the ADRW algorithm
is to dynamically adjust the replication and allocation of
objects in order to minimize the total servicing cost of
the requests coming to the distributed database system
(DDS) [1]. The servicing cost is defined to consist of
three components as follows:
Cc: Cost of sending the query for the object from the

requesting (i.e. non-data) processor to the (i.e.
data) processor.

Ci/o: Cost of fetching/updating the object to/from the
local memory of the processor that hosts the
object [Assumed to be one unit of time].

Cd: Cost of transferring the object from the main
memory of the hosting (i.e. data) processor to the
requesting (i.e. non-data) processor.

S(o): Initial allocation servers for object o.

 The processor is considered a data processor for a
particular object if the object is hosted in the local
memory of the processor. All other processors are non-
data processors for the object. Assuming we have three

processors p1, p2, and p3 and p2 is the data processor for
object o. The cost for p2 to access object o is one unit of
time. Moreover, p2 will create a k-bit size window
corresponding to object o. For every new request
coming to p2 for object o from p1, a 0 is added to
Win(o, p1), while a 1 is added to Win(o, p3) for every
new request coming to p2 from p3 for object o. If
another process, say p3, is writing to the object o, then
p2 will add 1 to the window. So, if the number of read,
Nr, from p1 is greater than the write, Nw, from p3, then
p2 will make a replication for o to p1 with its window
and add p1 to the data_list(o) which is a list of all the
processors that have a replica of the object o. p1 now is
a data processor. It will save the object in its local
memory and access it directly. If any write to the object
arrived to p2 then it will update the object and send the
update to all the processors that hold the object found in
the data_list(o). Now, if processor p1 reads the object, it
will add 0 to the window and 1 if others write to it. If
the number of writes is greater than the number of
reads, then it will delete the replication and return the
window to the owner processor p2.

E-ADRW Algorithm: In the ADRW
algorithm, read requests play an important role in
deciding whether to replicate an object or remove a
replica of it. On the other hand, the E-ADRW algorithm
handles write transactions with special care. Let’s say
that processor pi is a non-data object processor for
object o and wants to write to it. A write request is
issued to the nearest processor in S(o). Assume it is
processor pj. When pj receives a write request, it first
checks if it is the first request in order to create the
request windows for pi. The E-ARDW algorithm
creates two-windows for object o. Win1(o, pi) is created
for processor pi of size k1 bits to record read and write
requests (Nir of pi is the number of read requests and Niw
is the number of write requests). Also, Win2(o, pa) of
size k2 bits is created to record the reads and writes
from the other processors. When pi sends a write
request to pj, (1 + Cd) time is needed as per the ADRW
algorithm (Cd units is needed to transfer the update
from pi to pj and Ci/o to locally write the object). As pi
writes to object o, there may be other processors which
write to the same object and have similar effect but Cd
is different from one processor to another. When pi
increases the frequency of writes to object o while the
need of this object is rare by other processors, then it is
better to give pi the whole object as a fragment to
reduce overhead and cost. This is assured if the object
is not replicated by checking the R_data_list(o) which
holds the id’s of the processors that have a replication
of the object.

Am. J. Applied Sci., 4 (8): 613-618, 2007

 615

The algorithm checks if
() () NarNawCdNiwCd ++>>+ 2111 (3)
then, pj will consider pi as a write-intensive node. In
this case, pj will add pi to the fragment data list
F_data_list(o) which includes the list of processors
where the object is fragmented and sends the object to
pi as a fragment. In addition, the E-ADRW algorithm
sends the new allocation of object o to all the
processors through broadcasting which will change the
allocation to pi and delete the copy of o from pj as well
as from other locations. The algorithm is illustrated in
figure 1.

Algorithm: Write Request
If (Req is Write request for object o)
{If (pi == pj) {EXIT ;} // Write is locally
 Else
 {If (Req is the first request from pi)
 {Generate:

an initial Wind1 (o, pi);
an initial Wind2 (o, pa);

 }
 Insert 1 into Wind1 (o, pi)
 Insert 1 into Win2 (o, pb) ;
 // inserted into all existing windows
 // for object o in pj Except Wind2 (o, pa)
 If () () NarNawCdNiwCd ++>>+ 2111
 {If (o not in R_data_list (o))

Fragment (o, pi) {
 Send o to pi;

Add processor pi into
F_data_list (o);

 Delete o from pj
 Bcast (o, pi) // send the new allocation
 // to others.
 }
 }
}

Fig. 1: Write Request

The purpose of the broadcast function (i.e. Bcast) is to
notify all other processors about the new allocation.
Bcast (o, pi)
{

Add the new allocation pi of object o to S (o);
 Delete the old allocation;
}
The E-ADRW algorithm handles read requests
following the same mechanism of the ADRW algorithm
as illustrated in figure 2. The difference is that the E-
ADRW algorithm gives priority to fragmentation.
When the replication condition is the algorithm checks
the fragmentation condition. If the fragmentation
condition is also satisfied, fragmentation occurs rather
than replication. However, if the replication condition is
satisfied while fragmentation condition is not,
replication occurs.

Algorithm: Read Request
If (Req is read request)
 {If (pis == pj) {EXIT ;}
 Else
 {If (Req is the first request from pi)

{Generate:
an initial Wind1 (o, pi);
an initial Wind2 (o, pa);

}
 Insert 0 to Win1 (o, pi);
 Insert 0 to Win2 (o, pb);
 If ((Cc + Cd) NiR ≥ (1 + Cd) NaW)
 If () () NarNawCdNiwCd ++>>+ 2111 And

 (o not in R_data_list (o))
Fragment (o, pi)

Else {
 Indicate pi to enter Ao;
 Add processor pi
 into R_data_list (o);
 Transfer Wind1 (o, pi)
 and Wind2 (o, pa) to pi;
 Delete Wind1 (o, pi)
 and Wind2 (o, pa) in pj;
 pi saves object o
 and changes its relative
 status to 1; /*data processor*/
} }}

Fig. 2: Read Request

Object Re-allocation: The status of the object after
replicated or fragmented in the new processor pi will
be:
• If the object is replicated then as illustrated in[1], it

will follow the TEST-and-EXIT algorithm in the
processor pi so the object may exit the allocation.

• If it was fragmented then pi will act as the owning
processor; i.e. pi will apply the E-ADRW algorithm
and re-allocate the fragment or replicate the
object/fragment to other processors who have the
priority and so on.

Cost Model: In this section we discuss the cost model
of the E-ADRW algorithm for the servicing costs of the
read and write requests. While this algorithm is
following the same mechanism of the ADRW
algorithm, the model is the same except that we add the
fragmentation cost in case of write requests. As
presented in the ADRW algorithm[1], the servicing read
request is:
Cost E-ADRW (pi

o R) (1)

=

Ao is the allocation scheme. The first case is when pi is
a data processor where the object is either fragmented
or replicated. In the second case, the object is not

∉++

∉++
∈

read-saving R Cd Cc 2
fragm.or replica !, if CdCc 1

 if 1

pi
o , isAp

Ap
Ap

oi

oi

oi

Am. J. Applied Sci., 4 (8): 613-618, 2007

 616

replicated or fragmented and pi is non-data processor.
The cost is 1 unit for I/O servicing and Cc + Cd for
control and data transfer costs respectively. The third
case is when pj makes a replica or fragment for the
object in pi. Therefore, the cost is 1 unit for saving the
object in the local memory of pi. Consequently, pi
becomes a data processor and acts as per the first case.
The servicing cost for the write request is not as in
ADRW algorithm. In our algorithm we focus on the
effect of the write transaction which causes
fragmentation. As in [1], we considered the servicing
cost of a write request with an allocation scheme Ao on
the request and `||Ao for the allocation scheme after
servicing the request. The cost is as follows:
Cost E-ADRW (pi

o W)

=

When the object is in pi and it issues a write request, it
must be propagated to all the servers that hold the
object except pi itself. The cost of saving the object in
their local memory locations is `||Ao . If the object is not
replicated or fragmented in pi then the cost is the data
transfer cost to all the servers in Ao. The last situation
occurs when the object is fragmented then it is just cost
of I/O which is 1 unit. The summary of the cost model
is in the table 1.

Table1: Cost of read and write for the E-ADRW algorithm
 Non-

replicated
Object ReplicateObject Fragmente

Read
requests pi

1+Cc+Cd

1 1

Write
requests pi

|Ao|Cd+ `||Ao

(|Ao|-1)Cd +

 `||Ao

1

E-ADRW Analysis: In[1], competitive analysis is used
to quantify the performance of the ADRW algorithm. It
stated and proved that the ADRW is

]21[
t

C
C

CCk d

d

dc
+

++
+ competitive, where t is the object

availability. In the E-ADRW algorithm, write requests
are used to make decision whether fragmentation is
needed or not. So, we extend the algorithm by adding
a specific condition for achieving fragmentation.
Following the same analysis used in ADRW, the
following can be concluded:

K1 = Nir+Niw (4)
K2 = Nar+Naw (5)
K3 = Nir + Naw (6)

The fragmentation condition is exactly the same as (3)
as follows:

(1+Cd1) Niw >> (1+Cd2) Naw + Nar (3)

From (4), (5) and (6)
Nar = K2 - Naw
Naw = K3 - Nir
Nir = K1 - Niw

Using (3) and substituting the above equations,

(1+Cd1) Niw >> (1+Cd2)(K3 – (K1 - Niw))+ K2 – (K3 – (K1 - Niw)),
equivalently
 (1+Cd1) Niw >>(1+Cd2)(K3–K1) + (1+Cd2) Niw + K2 –K3 + K1 - Niw ,
equivalently

 (1+Cd1) Niw + Niw -(1+Cd2) Niw >> (1+Cd2)(K3–K1) + K2 –K3 + K1

Therefore,

Niw >>) - C C(1
) K) K (K(C

d2d1

2 13d2 -
+

+

 (7)

Using the condition in (7), the fragmentation of object o
to processor pi may occur. The total cost before object o
is fragmented on pj is as follows:
Cost E-ADRW (oW) = (1+Cd1) Niw+(1+Cd2) Naw + Nar (8)
where, (1+Cd2) Naw is the total cost of all the other
processors and computed as (∑+ 2daw CN). The
servicing cost of the fragmented object is reduced. As
mentioned in the cost model, when the processor is a
data processor where the object is fragmented, the cost
locally is a unit cost. Using (8),
Cost E-ADRW (oW) = Niw + (1+Cd2) Naw + Nar (9)
This is clearly less than the servicing cost before
fragmentation. In case of read requests, the total
servicing cost before replication is similar to that of the
ADRW algorithm[1].
Cost E-ADRW (oR) = (Cc + Cd) Nir + (1+Cd) Naw(10)

Example: In this section, we present an example which
illustrates the impact of applying the E-ADRW
algorithm on reducing service cost. Assume that there
are six processors located in Syria, Iraq, Kuwait,
Riyadh, Jeddah, and Jordan as per figure 3. The
processor in Jordan is the data processor for object o.
Let the cost of transferring data (Cd) from Jordan to
other requesting processors be as follows: Syria= 12,
Iraq= 4, Kuwait= 7, Riyadh= 8 and Jaddah= 10 units.
Processor Syria (pi) requests Jordan (pj) for object o.
Jordan creates the two windows win1 and win2. After
k1 requests by Syria, the following is obtained using (4),
(5), and (6):

35
,10
,75
,30

=
=
=
=

aw

ar

iw

ir

N
andN

N
N

∈
+

∉+

∈

replicated and
1

fragmentedor replicated
not and

fragmented 1
`

oi

`
odo

oiod

oi

Ap
| |A) C|-(|A

 A p | |A|Ao|C
A p

 (2)

Am. J. Applied Sci., 4 (8): 613-618, 2007

 617

Table 2: The servicing cost using replication and fragmentation

TCBR: Total Cost Before Replicated, TCBF: Total Cost Before fragmentation, TCAR: Total Cost After Replication, TCAF Total Cost After Fragmentation

Table3: Comparison between E-ADRW and Other Algorithms

When Syria issues a read request for the object,

Jordan will decide based on the replication and
fragmentation conditions (i.e. ((Cc + Cd) NiR ≥ (1 + Cd)
NaW)) , (1+Cd1) Niw >> (1+Cd2) Naw + Nar respectively)
whether to give Syria a replica or fragment. Evaluating
the replication condition 360 is not greater than 385.
However, if the request is a write request, Jordan will
check for the possibility of fragmenting o to processor
Syria. Evaluating the fragmentation condition results in
825 is much greater than 300.

The total service cost before fragmentation using (8),
Cost E-ADRW (oW) = (1+Cd1) Niw +(1+Cd2) Naw +Nar

Cost E-ADRW (oW) = 1125 units
The service cost after fragmentation using (9),
Cost E-ADRW (oW) = Niw + (1+Cd2) Naw + Nar

 Cost E-ADRW (oW) = 375 units
In table 2, we summarize various combinations of Nir,
Niw, Nar, and Naw of Syria to demonstrate reduction in
service cost as a result of using the E-ADRW
algorithm.

Fig. 3: Example for the connection to processor

Jordan

Comparison analysis: Few algorithms are currently
available for dynamic object fragmentation in
distributed database systems. The Optimal algorithm
utilizes an mXn matrix, where n denotes the number of
servers and m the number of fragments. It offers a
solution based on counting number of accesses of each
server for a fragment. A row of the matrix shows the
access counts of all nodes to a particular fragment,
whereas a column shows the access counts of all

Nir Niw Nar Naw TCBR TCAR Reduction RatioTCBF TCAF Reduction
Ratio

Result

30 75 10 35 Replication
condition is
not satisfied

1125 376 67% Fragmentatio
will occur

75 30 10 35 1105 420 61% Fragmentation
condition is
not satisfied

Replication
 will occur

100 200 50 50 1750 600 66% 2730 580 79% Fragmentatio
will occur

10 80 12 8 382 96 75% 956 83 91% Fragmentatio
will occur

Optimal Algorithm

Threshold Algorithm

E-ADRW Algorithm

Mechanism Creates an array for each fragment in its
associated
 node (server) whenever the fragment
migrates its associated counters

Creates an array for each fragment in
its associated node with only one
counter per fragment

Creates two windows for each
object requested by a remote
processor

Fragmentation
condition

Counter for remote node is greater than
that counter of the owning node

Counter associated with the fragment
greater than the threshold value

Number of write requests for
remote node is much greater tha
all other node requests

Cost - Extra storage space is needed for the
access counter matrix
- Generates overhead on
the network because of the condition for
transferring
 the fragment

- Extra storage space is needed
 (less than Optimal algorithm)
- Generates overhead on the network
because of the condition for
transferring the fragment

- Space is only
needed for the fragment which
has write remote access
- The fragmentation condition
more strict

Am. J. Applied Sci., 4 (8): 613-618, 2007

 618

fragments for a particular node[2]. For each fragment,
the server with the highest access counter value is the
current owner server of the fragment in which case the
fragment is stored in this server. The potential storage
requirements and the static allocation for the local
fragments at the first step with counter 0 are two major
drawbacks.

The threshold algorithm overcomes the Optimal
algorithm, where only one counter per fragment is
stored to decrease the potential storage. The counter
value is increased for each remote access to the
fragment and reset to zero for a local access. The
counter reflects the number of successive accesses.
When the counter exceeds the threshold value, the
owner transfers the fragment to the last server which
accessed the fragment. Compared with our algorithm,
the window is created when the first request is issued.
Therefore, the storage is potentially less than that
required by the Optimal and Threshold algorithms as
per table 3. The E-ADRW algorithm takes into account
the type of operation (read/write) when deciding
replication versus fragmentation. On the other hand, the
threshold algorithm grants the fragment to the last
processor accessing the fragmented object, whereas the
E-ADRW algorithm gives the priority to the processor
with the largest number of requests. Furthermore, the E-
ADRW algorithm may replicate an object under certain
conditions.

CONCLUSION

 This research presented an enhancement for the
ADRW algorithm by allowing dynamic fragmentation
of objects. The E-ADRW algorithm is studied and
evaluated in terms of the effect of write requests. The
advantage of the E-ADRW algorithm is that it requires
less storage when compared with the Optimal and
threshold algorithms. The reduction in servicing cost of
the E-ADRW algorithm due to replication and
fragmentation was analyzed.

REFERENCES

1. Wujuan, L. and Veeravalli, B, 2003. An Adaptive

Object Allocation and Replication Algorithm In
Distributed Databases, IEEE Proc. 23rd Int’l Conf.
Distributed Computed System.

2. Ulus, T. and Uysal, M, 2003. Heuristic Approach
to Dynamic Data Allocation in Distributed
Database Systems, Pakistan Journal of Information.
And Techn., Asian Network for Scientific
Information.

3. Ezeife, C.I. and Zheng, J, 1998. Measuring the
Performance of Database Object Horizontal
Fragmentation Schemes, Supported by NSERC of
Canada.

4. Menon, S, 2005. Allocating Fragments in
Distributed Database, IEEE transactions on parallel
and distributed systems, 16:577 – 585.

5. Porcar, H, 1982. File Migration in a Distributed
Computing System, PhD thesis, University of
California.

6. Daudpota, N, 1998. Five steps to construct a model
of data allocation for distributed database system,
Journal of intelligent information systems, 11:153-
168.

7. Apers, P, 1988. Data allocation in distributed
database systems, ACM transactions on database
systems, 13: 263-304.

8. Ceri, S, Navathe, S. and Gio, 1983. Distributed
Design Of Logical Database Schemas, IEEE
Transactions on Computers, SE-94:487-504.

9. Theel, O. E. and Pagnia, H, 1996. Bounded
Dynamic Data Allocation in Distributed Systems,
The 1996 3rd International Conference on High
Performance Computing, pp. 126-131.

10. Wolfson, O, Jajodia, S. and Huang, Y, 1997. An
Adaptive Data Replication Algorithm, ACM
Transactions on Database Systems, 22(2):255-314.

11. Levin, K.D., and Morgan, H.L, 1982. A Dynamic
Optimization Model for Distributed Databases,
Operations Research, 26(5):824-835.

12. Wilson, B. and Navathe, S. B, 1986. An Analytical
Framework for the Redesign of Distributed
Databases, Proceedings of the 6th Advanced
Database Symposium, Tokyo, Japan, pp. 77-83.

13. Rivera-Vega, P.I., Varadarajan, R. and Navathe,
S.B, 1990. Scheduling Data Redistribution in
Distributed Databases, IEEE Proceedings of the
Sixth International Conference on Data
Engineering, 166-173.

14. Brunstrom, A, Leutenegger, S.T. and Simha, R,
1995. Experimental Evaluation Of Dynamic Data
Allocation Strategies In A Distributed Database
With Changing Workloads, Proceedings of the
1995 International Conference on Information and
Knowledge Management, Baltimore, MD, USA,
pp. 395-402.

15. Ahmad, I, Karlapalem, K, Kwok, Y. K. and So, S.
K, 2002. Evolutionary Algorithms for Allocating
Data in Distributed Database Systems, Distributed
and Parallel Databases, 11: 5-32.

