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Abstract: This paper proposes an enhancement for the ADRW algorithm to achieve dynamic 
fragmentation and object allocation in distributed databases.  The algorithm adapts to the changing 
patterns of object requests with the objective to dynamically adjust the allocation schemes of objects in 
order to minimize the total servicing cost of all requests.  Objects may be replicated or fragmented 
depending on patterns of reads and writes. Qualitative analysis was used to characterize the 
performance of the enhanced algorithm. 
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INTRODUCTION 
 

Distributed systems are an important development 
in computing technology which is concerned with the 
delivery of constantly expanding data to points of query. 
Collections of data in the forms of partitions or 
fragments can be distributed or replicated over multiple 
physical locations. Local autonomy, synchronous and 
asynchronous data distributions are examples of 
distributed database design schemas which can be 
implemented depending on business needs and data 
sensitivity/confidentiality. Data reliability and 
availability are basic requirements for system design.  
Reliability is the possibility that a system is running at a 
certain point in time while availability is the probability 
that the system is continuously available during a time 
interval. Both data reliability and availability can be 
enhanced by distributing data and DBMS software over 
several sites. The database administrator (i.e.; DBA) 
carries the responsibility of ensuring that the distributed 
nature of the system is transparent. Users need not know 
that they deal with multiple disparate systems, instead of 
one big repository. Consequently, during the database 
design process, extra care must be taken into account to 
minimize the impact of the disconnected nature of the 
database on the overall performance of the system. For 
example, join-operation may become prohibitively 
expensive when performed across multiple platforms. 
Several research activities were conducted to improve 
distributed database techniques and to cope with their 
challenges to solve the abovementioned challenges. The 
Adaptive Distributed Request Window (i.e. ADRW)[1] is 
one example of such techniques. ADRW captures the 
requests for an object and the number of read/write 
requests with its servicing cost to make the decision 
concerning replication.  A replication may be eliminated 
depending on the write requests from other requesters in 

case of excessive overload due to updating replica. In 
case write requests do not affect the replication, it will 
be sent to the server that will propagate the update to the 
others. While working on requests, a server which hosts 
a particular object may find that another server 
intensively asks to update the object whereas the hosting 
server rarely accesses the object. Assuming that the 
object is not duplicated elsewhere, the server may decide 
to reallocate this object to the server with intensive 
requests and announce to other servers to deal with this 
new allocation. The window mechanism as illustrated in 
the ADRW algorithm helps to keep track of all 
transactions taking place between the owner of an object 
and other servers. This paper proposes an enhanced 
ADRW algorithm (E-ADRW) which opens two 
windows per object per requester at the data server. The 
first window keeps track of requests made for the object 
by the requesting server and the other window keeps 
track of requests by other servers. The algorithm uses 
the windows related to an object to make decisions 
concerning reallocation of the object whenever 
necessary. Section 2 discusses related work while 
section 3 introduces the ADRW algorithm. Section 4 
proposes an enhancement for ADRW (i.e. E-ADRW) 
based on fragmentation. Section 5 analyzes the E-
ADRW algorithm and provides a case study example. 
Section 6 provides a comparison between the E-ADRW 
algorithm and other dynamic fragmentation algorithms.  

The single data allocation problem has been shown 
to be intractable which means that as the problem size 
increases, problem search space increases 
exponentially[5, 6, 7, 8, 15]. Static data allocation implies 
that no change in data allocation as a function of time, 
while dynamic data allocation tends to relocate data as 
necessary[9, 10, 11]. Initial studies on dynamic data 
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allocation gave a framework for data redistribution [12, 

13]. Brunstorm proposed a dynamic data allocation 
algorithm for non-replicated database system, but no 
model was proposed to analyze the algorithm[14]. 
Heuristic approaches to dynamically allocate data were 
proposed based on data replication [1,2]. Other 
researches proposed allocation algorithms based on 
fragmentation for distributed database systems [3, 4]. 

 
Fragmentation: A fragment (horizontal, vertical) of a 
database object in an object-oriented database system 
contains subsets of its instance objects (or class extents) 
reflecting the way applications access the database 
objects. Allocating well-defined fragments of classes to 
distributed sites has the advantage of minimizing 
transmission costs of data to remote sites as well as 
minimizing retrieval time of data needed locally. A re-
fragmentation of the data is needed when application 
access and schema information have undergone 
sufficient changes. The importance of fragmentation in 
distributed database and subsequent allocation to 
distributed sites (relations or classes) has been argued 
by many works[3]. Most distributed database designs are 
static based on a priori probabilities of queries 
accessing database objects in addition to their 
frequencies which are available during the analysis 
stage. It is more effective for a distributed system to 
dynamically check the goodness of an object 
fragmentation scheme to determine whenever re-
fragmentation is necessary. 

 
ADRW Algorithm: The goal of the ADRW algorithm 
is to dynamically adjust the replication and allocation of 
objects in order to minimize the total servicing cost of 
the requests coming to the distributed database system 
(DDS) [1]. The servicing cost is defined to consist of 
three components as follows: 
Cc: Cost of sending the query for the object from the 

requesting (i.e. non-data) processor to the (i.e. 
data) processor. 

Ci/o: Cost of fetching/updating the object to/from the 
local memory of the processor that hosts the 
object [Assumed to be one unit of time]. 

Cd:  Cost of transferring the object from the main 
memory of the hosting (i.e. data) processor to the 
requesting (i.e. non-data) processor. 

S(o): Initial allocation servers for object o. 
 
 The processor is considered a data processor for a 
particular object if the object is hosted in the local 
memory of the processor. All other processors are non-
data processors for the object. Assuming we have three 

processors p1, p2, and p3 and p2 is the data processor for 
object o. The cost for p2 to access object o is one unit of 
time. Moreover, p2 will create a k-bit size window 
corresponding to object o. For every new request 
coming to p2 for object o from p1, a 0 is added to 
Win(o, p1), while a 1 is added to Win(o, p3) for every 
new request coming to p2 from p3 for object o. If 
another process, say p3, is writing to the object o, then 
p2 will add 1 to the window. So, if the number of read, 
Nr, from p1 is greater than the write, Nw, from p3, then 
p2 will make a replication for o to p1 with its window 
and add p1 to the data_list(o) which is a list of all the 
processors that have a replica of the object o. p1 now is 
a data processor. It will save the object in its local 
memory and access it directly. If any write to the object 
arrived to p2 then it will update the object and send the 
update to all the processors that hold the object found in 
the data_list(o). Now, if processor p1 reads the object, it 
will add 0 to the window and 1 if others write to it. If 
the number of writes is greater than the number of 
reads, then it will delete the replication and return the 
window to the owner processor p2.  

E-ADRW Algorithm: In the ADRW 
algorithm, read requests play an important role in 
deciding whether to replicate an object or remove a 
replica of it. On the other hand, the E-ADRW algorithm 
handles write transactions with special care. Let’s say 
that processor pi is a non-data object processor for 
object o and wants to write to it. A write request is 
issued to the nearest processor in S(o). Assume it is 
processor pj.  When pj receives a write request, it first 
checks if it is the first request in order to create the 
request windows for pi. The E-ARDW algorithm 
creates two-windows for object o. Win1(o, pi) is created 
for processor pi of size k1 bits to record read and write 
requests (Nir of pi is the number of read requests and Niw 
is the number of write requests). Also, Win2(o, pa) of 
size k2 bits is created to record the reads and writes 
from the other processors. When pi sends a write 
request to pj, (1 + Cd) time is needed as per the ADRW 
algorithm (Cd units is needed to transfer the update 
from pi to pj and Ci/o to locally write the object). As pi 
writes to object o, there may be other processors which 
write to the same object and have similar effect but Cd 
is different from one processor to another. When pi 
increases the frequency of writes to object o while the 
need of this object is rare by other processors, then it is 
better to give pi the whole object as a fragment to 
reduce overhead and cost. This is assured if the object 
is not replicated by checking the R_data_list(o) which 
holds the id’s of the processors that have a replication 
of the object.  
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The algorithm checks if  
( ) ( ) NarNawCdNiwCd ++>>+ 2111  (3) 
then, pj will consider pi as a write-intensive node. In 
this case, pj will add pi to the fragment data list 
F_data_list(o) which includes the list of processors  
where the object is fragmented and sends the object to 
pi as a fragment. In addition, the E-ADRW algorithm 
sends the new allocation of object o to all the 
processors through broadcasting which will change the 
allocation to pi and delete the copy of o from pj as well 
as from other locations. The algorithm is illustrated in 
figure 1. 
 

Algorithm: Write Request 
If (Req is Write request for object o)  
{If (pi == pj) {EXIT ;} // Write is locally 
   Else 
   {If (Req is the first request from pi) 
      {Generate: 

an initial Wind1 (o, pi); 
an initial Wind2 (o, pa); 

       }           
       Insert 1 into Wind1 (o, pi)  
       Insert 1 into Win2 (o, pb) ; 
        // inserted into all existing windows  
       // for object o in pj Except Wind2 (o, pa) 
     If ( ) ( ) NarNawCdNiwCd ++>>+ 2111   
     {If (o not in R_data_list (o)) 

Fragment (o, pi) { 
               Send o to pi; 

Add processor pi into           
F_data_list (o); 

               Delete o from pj 
               Bcast (o, pi) // send the new allocation                                
                                    // to others. 
                    } 
       } 
} 

Fig. 1: Write Request 
 

The purpose of the broadcast function (i.e. Bcast) is to 
notify all other processors about the new allocation. 
Bcast (o, pi) 
{ 

Add the new allocation pi of object o to S (o); 
   Delete the old allocation; 
} 
The E-ADRW algorithm handles read requests 
following the same mechanism of the ADRW algorithm 
as illustrated in figure 2. The difference is that the E-
ADRW algorithm gives priority to fragmentation. 
When the replication condition is the algorithm checks 
the fragmentation condition. If the fragmentation 
condition is also satisfied, fragmentation occurs rather 
than replication. However, if the replication condition is 
satisfied while fragmentation condition is not, 
replication occurs.  

Algorithm: Read Request 
If (Req is read request)   
  {If (pis == pj) {EXIT ;}  
     Else 
       {If (Req is the first request from pi) 

{Generate: 
an initial Wind1 (o, pi); 
an initial Wind2 (o, pa); 

} 
          Insert 0 to Win1 (o, pi); 
          Insert 0 to Win2 (o, pb); 
          If ((Cc + Cd) NiR ≥ (1 + Cd) NaW) 
  If ( ) ( ) NarNawCdNiwCd ++>>+ 2111  And  

      (o not in R_data_list (o)) 
Fragment (o, pi)  

         
Else { 
   Indicate pi to enter Ao; 
   Add processor pi  
   into R_data_list (o); 
   Transfer Wind1 (o, pi)  
   and Wind2 (o, pa) to pi; 
   Delete Wind1 (o, pi)  
   and Wind2 (o, pa) in pj;  
   pi saves object o  
  and changes its relative  
  status to 1; /*data processor*/ 
}     }} 

Fig. 2: Read Request 
 

Object Re-allocation:  The status of the object after 
replicated or fragmented in the new processor pi will 
be: 
• If the object is replicated then as illustrated in[1], it 

will follow the TEST-and-EXIT algorithm in the 
processor pi so the object may exit the allocation.  

• If it was fragmented then pi will act as the owning 
processor; i.e. pi will apply the E-ADRW algorithm 
and re-allocate the fragment or replicate the 
object/fragment to other processors who have the 
priority and so on.  

 
Cost Model: In this section we discuss the cost model 
of the E-ADRW algorithm for the servicing costs of the 
read and write requests. While this algorithm is 
following the same mechanism of the ADRW 
algorithm, the model is the same except that we add the 
fragmentation cost in case of write requests. As 
presented in the ADRW algorithm[1], the servicing read 
request is: 
Cost E-ADRW ( pi

o R )  (1) 
 
 
=                                      
 
 

Ao is the allocation scheme. The first case is when pi is 
a data processor where the object is either fragmented 
or replicated. In the second case, the object is not 
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replicated or fragmented and pi is non-data processor. 
The cost is 1 unit for I/O servicing and Cc + Cd for 
control and data transfer costs respectively. The third 
case is when pj makes a replica or fragment for the 
object in pi. Therefore, the cost is 1 unit for saving the 
object in the local memory of pi. Consequently, pi 
becomes a data processor and acts as per the first case. 
The servicing cost for the write request is not as in 
ADRW algorithm. In our algorithm we focus on the 
effect of the write transaction which causes 
fragmentation. As in [1], we considered the servicing 
cost of a write request with an allocation scheme Ao on 
the request and  `||Ao for the allocation scheme after 
servicing the request. The cost is as follows: 
Cost E-ADRW ( pi

o W )             
    
 
 
= 
 
 

 

 

When the object is in pi and it issues a write request, it 
must be propagated to all the servers that hold the 
object except pi itself. The cost of saving the object in 
their local memory locations is  `||Ao . If the object is not 
replicated or fragmented in pi then the cost is the data 
transfer cost to all the servers in Ao. The last situation 
occurs when the object is fragmented then it is just cost 
of I/O which is 1 unit. The summary of the cost model 
is in the table 1. 

Table1: Cost of read and write for the  E-ADRW algorithm 
 Non- 

replicated 
Object ReplicateObject Fragmente

Read  
requests pi 

 
1+Cc+Cd 

1 1 

Write  
requests pi 

 

|Ao|Cd+   `||Ao  

(|Ao|-1)Cd + 

 `||Ao  

1 

 

E-ADRW Analysis:   In[1], competitive analysis is used 
to quantify the performance of the ADRW algorithm. It 
stated and proved that the ADRW is 

]21[
t

C
C

CCk d

d

dc
+

++
+  competitive, where t is the object 

availability. In the E-ADRW algorithm, write requests 
are used to make decision whether fragmentation is 
needed or not. So, we   extend the algorithm by adding 
a specific condition for achieving fragmentation. 
Following the same analysis used in ADRW, the 
following can be concluded: 

K1 = Nir+Niw    (4) 
K2 = Nar+Naw    (5) 
K3 = Nir + Naw    (6) 

The fragmentation condition is exactly the same as (3) 
as follows: 

(1+Cd1) Niw >> (1+Cd2) Naw + Nar  (3) 
      

From (4), (5) and (6) 
Nar = K2 - Naw     
Naw = K3 - Nir     
Nir = K1 -   Niw     

 
Using (3) and substituting the above equations, 

 
(1+Cd1) Niw >> (1+Cd2)( K3 – ( K1 -   Niw ))+ K2 – (K3 –  ( K1 -   Niw )), 
equivalently 
 (1+Cd1) Niw >>(1+Cd2)( K3–K1 ) + (1+Cd2) Niw +  K2 –K3 + K1 -   Niw , 
equivalently 

 (1+Cd1) Niw  + Niw -(1+Cd2) Niw >> (1+Cd2)( K3–K1 ) +  K2 –K3 + K1  
 

Therefore, 

Niw >> ) - C C(1
)  K ) K ( K( C

d2d1

2 13d2 -
+

+

  (7) 
 

Using the condition in (7), the fragmentation of object o 
to processor pi may occur. The total cost before object o 
is fragmented on pj is as follows: 
Cost E-ADRW ( oW ) = (1+Cd1) Niw+(1+Cd2) Naw + Nar  (8) 
where,  (1+Cd2) Naw  is the total cost of all the other 
processors and computed as ( ∑+ 2daw CN ). The 
servicing cost of the fragmented object is reduced. As 
mentioned in the cost model, when the processor is a 
data processor where the object is fragmented, the cost 
locally is a unit cost. Using (8), 
Cost E-ADRW ( oW ) = Niw + (1+Cd2) Naw + Nar (9) 
This is clearly less than the servicing cost before 
fragmentation. In case of read requests, the total 
servicing cost before replication is similar to that of the 
ADRW algorithm[1]. 
Cost E-ADRW ( oR ) = (Cc + Cd) Nir + (1+Cd) Naw(10) 
 
Example: In this section, we present an example which 
illustrates the impact of applying the E-ADRW 
algorithm on reducing service cost.  Assume that there 
are six processors located in Syria, Iraq, Kuwait, 
Riyadh, Jeddah, and Jordan as per figure 3. The 
processor in Jordan is the data processor for object o. 
Let the cost of transferring data (Cd) from Jordan to 
other requesting processors be as follows: Syria= 12, 
Iraq= 4, Kuwait= 7, Riyadh= 8 and Jaddah= 10 units. 
Processor Syria (pi) requests Jordan (pj) for object o. 
Jordan creates the two windows win1 and win2. After 
k1 requests by Syria, the following is obtained using (4), 
(5), and (6): 
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Table 2: The servicing cost using replication and fragmentation  

TCBR: Total Cost Before Replicated, TCBF: Total Cost Before fragmentation, TCAR: Total Cost After Replication, TCAF Total Cost After Fragmentation 

 
Table3: Comparison between E-ADRW and Other Algorithms  

 
When Syria issues a read request for the object, 

Jordan will decide based on the replication and 
fragmentation conditions (i.e. ((Cc + Cd) NiR ≥ (1 + Cd) 
NaW)) , (1+Cd1) Niw >> (1+Cd2) Naw + Nar respectively) 
whether to give Syria a replica or fragment.  Evaluating 
the replication condition 360 is not greater than 385. 
However, if the request is a write request, Jordan will 
check for the possibility of fragmenting o to processor 
Syria. Evaluating the fragmentation condition results in 
825 is much greater than 300.  

 
The total service cost before fragmentation using (8),  
Cost E-ADRW ( oW ) = (1+Cd1) Niw +(1+Cd2) Naw +Nar 

Cost E-ADRW ( oW ) = 1125 units 
The service cost after fragmentation using (9), 
Cost E-ADRW ( oW ) = Niw + (1+Cd2) Naw + Nar  

 Cost E-ADRW ( oW ) = 375 units 
In table 2, we summarize various combinations of Nir, 
Niw, Nar, and Naw of Syria to demonstrate reduction in 
service cost as a result of using the E-ADRW 
algorithm.  

 
Fig.  3: Example for the connection to processor 

Jordan 
 
Comparison analysis: Few algorithms are currently 
available for dynamic object fragmentation in 
distributed database systems. The Optimal algorithm 
utilizes an mXn matrix, where n denotes the number of 
servers and m the number of fragments. It offers a 
solution based on counting number of accesses of each 
server for a fragment. A row of the matrix shows the 
access counts of all nodes to a particular fragment, 
whereas a column shows the access counts of all 

Nir Niw Nar Naw TCBR TCAR Reduction RatioTCBF TCAF Reduction 
Ratio 

Result 

30 75 10 35 Replication 
condition is  
not satisfied 

 
 -------- 

 
   --------- 

1125 376 67% Fragmentatio
will occur  

75 30 10 35 1105 420 61% Fragmentation   
condition is  
not satisfied 

 
---------- 

 
 ------------ 

Replication  
 will occur 

100 200 50 50 1750 600 66%    2730 580 79% Fragmentatio
will occur 

10 80 12 8 382 96 75%    956 83 91% Fragmentatio
will occur 

 
 

 
Optimal Algorithm 

 
Threshold Algorithm 

 
E-ADRW Algorithm 

Mechanism Creates an array for each fragment in its 
associated 
 node (server) whenever the fragment 
migrates its associated counters  

Creates an array for each fragment in 
its associated node with only one 
counter per fragment 

Creates two windows for each 
object requested by a remote 
processor  

Fragmentation 
condition 

Counter for remote node is greater than 
that counter of the owning node   

Counter associated with the fragment 
greater than the threshold value 
 

Number of write requests for 
remote node is much greater tha
all other node requests  

Cost  - Extra storage space is needed for the 
access counter matrix  
- Generates overhead on  
the network because of the condition for 
transferring 
 the fragment  

- Extra storage space is needed 
 (less than Optimal algorithm) 
-  Generates overhead on the network 
because of the condition for 
transferring the fragment 

- Space is only  
needed for the fragment which 
has write remote access  
- The  fragmentation condition  
more strict  
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fragments for a particular node[2]. For each fragment, 
the server with the highest access counter value is the 
current owner server of the fragment in which case the 
fragment is stored in this server. The potential storage 
requirements and the static allocation for the local 
fragments at the first step with counter 0 are two major 
drawbacks.  

The threshold algorithm overcomes the Optimal 
algorithm, where only one counter per fragment is 
stored to decrease the potential storage. The counter 
value is increased for each remote access to the 
fragment and reset to zero for a local access. The 
counter reflects the number of successive accesses. 
When the counter exceeds the threshold value, the 
owner transfers the fragment to the last server which 
accessed the fragment.  Compared with our algorithm, 
the window is created when the first request is issued. 
Therefore, the storage is potentially less than that 
required by the Optimal and Threshold algorithms as 
per table 3. The E-ADRW algorithm takes into account 
the type of operation (read/write) when deciding 
replication versus fragmentation. On the other hand, the 
threshold algorithm grants the fragment to the last 
processor accessing the fragmented object, whereas the 
E-ADRW algorithm gives the priority to the processor 
with the largest number of requests. Furthermore, the E-
ADRW algorithm may replicate an object under certain 
conditions. 

  
CONCLUSION 

   
 This research presented an enhancement for the 
ADRW algorithm by allowing dynamic fragmentation 
of objects.  The E-ADRW algorithm is studied and 
evaluated in terms of the effect of write requests. The 
advantage of the E-ADRW algorithm is that it requires 
less storage when compared with the Optimal and 
threshold algorithms. The reduction in servicing cost of 
the E-ADRW algorithm due to replication and 
fragmentation was analyzed.  
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