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Abstract: The influence of neutron irradiation on the nonlinear elastoplastic deformation of the 
constructions components under cyclic force disturbance was investigated. The formula of irradiation 
reinforcement was suggested depending on the experimental data, and the theorem of variable loading 
was proved. The problem of metal-polymeric sandwich beam was solved numerically. 
 
Keywords: Cyclic loading, Neutron flow, Boundary-value problem, Sandwich beam 
 

INTRODUCTION 
 
Radiation treatment of rigid bodies is known to 

produce numerous effects which result in the 
appearance of additional volume deformations, and 
changes in the elastic (especially plastic) properties of 
the substance. Therefore it is necessary to bring in 
appropriate corrections into posing and solving the 
boundary-value problems concerning single and cyclic 
loading of elastoplastic components of the 
constructions. The main factors are the irradiation 
reinforcement of the substance (increasing of the yield 
point) and the irradiation swelling (increasing of 
volume deformation). Below is an attempt to extend 
Moskvitin’s theory of variable loading[1] by using the 
aforementioned  class of boundary-value problems. 

 
Test Procedure   
Volume deformation and irradiation reinforcement: 
Consider initially a homogeneous isotropic body, 
occupying half-space z≥ 0. If parallel beam of  
neutrons with identical average energy and intention φ0 
falls upon the border (z = 0) parallel to the axe z, then 
the intention of neutrons reaching the plain z = const, 
will be[2, 3] zez µϕ=ϕ -

0)( . where µ is called the 
macroscopic effective section and defined as 1/m, 
where m is the mass.  

If φ0 is independent of time, the flow of neutrons 
that will pass through the section z up to the instance t  

zeIzI µ-
0)( = .   (1) 

where tI 00 ϕ= , which is the total flow of 
neutrons per unit area of the surface of the body. 

 In rough estimation we may consider, that the 
change of the volume of the substance is directly 
proportional to the flow I(z), and consequently 

)(zBII =θ , where  В is an experimental constant. In 
reactors φ0 lies in the range 1017-1018 neutrons/(m2.s), 
and then I0 can reach values of 1023–1027 neutron /m2. 
Consequently, depending upon the energy of the 
neutrons and the  properties of the irradiated substance, 
B can have the value of 10-28–10-24 m2/neutron and θI = 
0.1. 

The dependence of the elasticity modulus, yield 
and solidity points, and the whole tension diagram upon 
I0 for different neutron energies were experimentally 
investigated after irradiating the samples  in nuclear 
reactors. Experimental results show that -as usual- the 
elasticity modulus was slightly changed (it had 
increased by 1.5-5 % relative to that of the non-
irradiated sample). On the contrary, the yield and 
solidity points are very sensitive to irradiation 
especially the yield point. 

 
For massive bodies with a flat boundary, the 

number of neutrons passing at the depth z under this 
boundary is estimated by formula (1), that's why the 
yield point will vary along z.  At the surface of the body 
(z=0) the influence of irradiation upon the plastic limit 
σs was characterised by the formula of irradiation 
reinforcement[2]: 

( )( )[ ]21
00 exp11σσ ξIAss −−+=   (2) 

where σs0 is the plastic limit of the non-irradiated 
substance, A and ξ  are substance constants taken from 
the experiment. At the depth z the formula takes the 
form 
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( )( )[ ]21
0 exp11σσ ξIAss −−+= , 

 
where the value of neutron flow I(z)  is given by 

equation (1). Let's denote appropriate values of 
deformation as εs0, εs,; A, ξ – are substance constants, 
taken from experiment. Fig.1 shows the relation 
between the satisfaction and the flow. If for example, A 
= 1,09, 261073,9 −⋅=ξ  m2/neutron for aluminium 
alloy, then Fig.  1 indicates the satisfaction versus flow 
with known experimental data, where the dark points 
indicate the experimental data, and the solid line 
indicates the estimation by using formula (2). 
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Fig 1:  Satisfaction for aluminium alloy with A = 1.09 and 

261073.9 −×=ζ . (Dark points represent the 
experimental data, and the solid line represents the 
estimation from equation 2.) 
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Fig. 2: The relation between elasticity point and deformation ε . 
 
Statement of the problems of the theory of small-
scale elastoplastic deformations: Consider the process 
of complex influence of external force and radiation 

loading upon a deformable body within the theory of 
small-scale elastoplastic deformations. The body which 
is in the natural state is supposed to be simultaneously 
influenced by instant external forces Fi', Ri' with a 
moving boundary of velocity ui0', and neutron flow I0 = 
φ0t. Under such influence it is assumed that areas of 
elastic and plastic deformations will appear in the body. 
Changes in the elasticity modulus caused by the neutron 
irradiation are neglected. Stresses, deformations and 
velocity of the body  will be marked by one upper 
prime. 

Hooke's law is valid in elastic areas of the solid 
body and the relations connecting the deviators of stress 
and deformation ijij эs ′′ , and also their spherical 

components ε,σ ′′ , are  

ijij эGs ′=′ 2 ,   )-ε3(σ BIK ′=′ , 
where BI is the correction due to additional volume 
deformation, caused by neutron irradiation, G  denotes 
the shear modulus, and K the volumetric deformation 
modulus. 

For those areas of the solid body, where plastic 
deformations had appeared the relation between the 
deviators for simple loading can be represented by 

( )kuijij аIfэGs ′′′′=′ ,,ε2 . 

where ( )ku аIf ′′′ ,,ε  is the plasticity function which 
depends on the deformation intensity εu', the value of 
neutron flow I and the approximated parameters ak'. In 
the conditions of simple loading [1] this function will be 
universal, i. e. it can be found from experiments with 
extension, torsion etc. So in the general case the 
relation between stresses and deformations in the 
deformable body under active loading from the natural 
state and under the influence of neutron flow can be 
represented by 

( )kuijij аIfэGs ′′′′=′ ,,ε2 ,    

)-ε3(σ BIK ′=′ .                                                (3) 
In this case the plasticity function should be taken as  

( )ku аIf ′′′ ,,ε = 1 in those areas, where εu'≤ εs', where 
εs' is the deformation corresponding to the  plastic limit 
at the starting time. 

If the force loading is rather quick (instantaneous), 
the irradiation reinforcement will not occur and the 
originated areas of plastic deformations will be the 
same as in the case of no influence of neutron flow. 
Though if the active loading will be slow enough, 
external layers of the body will turn out to be reinforced 
and within these layers areas of plastic deformations 
will turn out to be smaller or will be missed at all, 
compared with the non-irradiated body. There is an 
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effect that can take place when the first plastic 
deformations appear not upon the external reinforced 
surface, but under it, where the deformation intensity is 
great and the plastic limit didn’t increase. So the 
influence of irradiation upon elastoplastic bodies is 
opposite to the thermal inflounce, which decreases the 
plastic limit and results in increasing the areas of plastic 
deformations under equal loading.  

Beside equation (3), Coshi relation and the 
following differential equations and the boundary 
conditions should be added on the assumption of 
infinitesimal deformations 

0,σ =′ρ+′ ijij F ;    

ijij Rl ′=′σ  on σS ,    

ii uu 0′=′  on uS ;    

ijiij uu ,,ε2 j′+′=′ .                          (4) 
where the comma in the inferior index refers to the 
differentiation along next coordinate. Consider, the time 
variation of the external loading and the velocity of the 
boundary occur in such a way, that appropriate loading 
trajectories are not related to the class of essentially 
complex loadings, and the irradiation reinforcement 
takes place after force deformation of the solid body. 
Hereinafter we shall suppose that boundary value 
problem (3), (4) is solved. 
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Fig. 3:   The shear ψ of the sandwich beam. The curves with one 

prime correspond to loading from natural state, while those 
with two primes represent the repeated cyclic winding due 
to alternating-sign loading: 1' – solution of elastic problem: 
2'  – instant elastoplastic without irradiation; 3' – 
elastoplastic winding of previously irradiated beam (I1 = 
5·1024 м–2). 

 

Problem definition for repeated alternating-sign 
loading: Suppose first that at t = t1 there is no influence 
of neutron flow (φ = 0). Second, the external forces are 
changing so that in all points of plastically deformable 
areas of the body Vр' the unloading and following 
alternating-sign loading- by volumetric Fi" and surface 
Ri" forces (at Sσ) with boundary velocity u0i" (at Su)- 
take place. The level of irradiation of the body remains 
constant and equals its value before unloading I1 = φt1. 
The plastic limit in the points of the body depends upon 
the z coordinate and becomes equal σs"(I1(z)), i. e. it 
depends upon the value of the deformation and the 
irradiation reinforcement. The scheme of the process 
discussed is shown at fig. 2. 

Refer to the appropriate stresses, deformations 
and velocities as σij",  εij",  ui". Equation (4) is valid for 
these values  

0,σ =′′ρ+′′ ijij F ;    

ijij Rl ′′=′′σ  on  

σS ,   ii uu 0′′=′′  on uS ; 

ijjiij uu ,,ε2 ′′+′′=′′ .                                          (5) 
The relation between stresses and deformations will be 
 ijij эGs ′′=′′ 2 ( )ku аIf ′′′′′′′ ,,ε,ε 11 , ε3σ ′′=′′ K   (6) 

Here ( )ku аIf ′′′′′′′ ,,ε,ε 11  is the plasticity 
function under repeated alternating-sign loading which 
depends upon the deformation intensity εu", the 
preceding values of deformation intensity ε1΄, the level 
of irradiation of the body I1, and the approximated 
parameters ak", describs the deformation curve of the 
second cycle. 

At that point the plasticity function f" is supposed 
to be equal to 1 in those areas where the new plastic 
deformations didn’t appear, i. e. εu"≤ εs", where εs" is 
the deformation that corresponds to the plastic limit σs"  
under repeated loading.  

Equations (5), (6) define a boundary value 
problem for variables with double prime. The 
complexity of the problem arises from the dependence 
of the desired decision upon the unloading point (ε1', 
σ1') since the boundary value problem must be defined 
and solved at every point in the solid body. We will 
discuss one of the methods to avoid such difficulties. 

For the values before the beginning of the 
unloading we shall retain designations σij', εij', ui'. 
Following Moskvitin [1] we shall define the following 
differences for times t > t1: 

ijijij sss ′′−′=* , ijijij эээ ′′−′=* .   (7) 
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Consider the physical state equations for the variables 
with asterisks. The following relations are valid in the 
unloading and elastic deformation zones Vе'and Vе" ; 

*
ij

*
ij Gэs 2= ,   )( 1

*
т

* Iu ε≤ε , 
the plastic deformation changes during variable loading 
in the area Vр", and the following relations must be 
valid  

*
ij

*
ij Gэs 2= )11(

* ,,ε,ε *
k

*
u aIf ′ .   (8) 

In general the function )
*

11
*

(
* ,,ε,ε ku aIf ′  appears as a 

new universal function depicting the nonlinearity of the 
deformation diagram σ* ~ ε* (see fig. 2). On the linear 
section f * = 0.  

The volumetric deformation remains elastic for all 
points of the body. Consequently before the beginning 
of the unloading and for current state, the following 
equalities are valid  

)-ε3(σ 1BIK ′=′ ,   )-ε3(σ BIK ′′=′′ , 
so that for values with asterisks, 

** 3 ε=σ K      (9) 
and the equilibrium equations, boundary conditions and 
Coshi relations for σij*,  εij*,  ui* will be  

iii
*
ijij FFFF ′′−′==ρ+ *

,
* ,0σ ;   

ii
*
i

*
ijij RRRRl ′′−′== ,σ* ,  on σS ; 

iiii uuuu 00
*
0

* ′′−′== ,  on   

uS ;   ijj
*
i

*
ij uu ,

*
,ε2 += .   (10) 

Equations (8) – (10) make a new boundary value 
problem for the variables with asterisks. If we suppose 
that the function f*- in all points of the deformation 
curve- can be approximated by the function f ', that is to 
describe it by the same analytical relation but with other 
parameters *

kа and exclude the dependence upon ε1, 
then it will be given as: 

( )*
1

** ,,ε ku aIff ′= . 
Comparing equations (3), and (4) for the body 

with loading from natural state and equations (8) –(10) 
with asterisks we find that they are very closely 
coincident within the approximations. Hence, the 
solution of the problem for the variables with asterisks 
can be obtained from knowing the solution of the 
problem of loading from the natural state by some 
replacements. For example, if the velocity 

),,,,( ksuii aIxuu ′ε′ε′′=′  is known, then the velocity 

),,,,( *
1

***
ksuii aIxuu εε′=  and the velocity under 

repeated alternating-sign loading are calculated from 

relation (7) *
iii uuu −′=′′ . Stresses and deformations are 

calculated by formulas of the same type. 
 

RESULTS 
 

Suppose that under n-loading by external forces 
Fi

n,  Ri
n with boundary velocity n

iu0 , the stresses n
ijσ , 

deformations n
ijε  and velocity n

iu  all appear. At the 
same time the equilibrium equations, boundary 
conditions and Coshi relations must be valid: 

0σ , =ρ+ n
i

n
jij F ;   n

ij
n
ij Rl =σ on  

σS ,   n
i

n
i uu 0=  on uS ;    

i
n
jj

n
i

n
ij uu ,,2 +=ε .                        (11) 

Consider the differences: 
)()1(),σσ()1(σ 11 n

ij
n
ij

n*n
ij

n
ij

n
ij

n*n
ij εε−=ε−= −

−
−

− ,   

).()1( 1 n
i

n
i

n*n
i uuu −

−−=  
Then equations (11) turn out to be also valid for the 
varaibles with asterisks: 

)()1(,0σ 1
,

n
i

n
i

n*n
i

*n
i

*n
ij FFFFj −

−−==ρ+ ;   
*n
ij

*n
ij Rl =σ  on σS ,   *n

i
*n
i uu 0=  on uS ; 

)()1(),()1( 0
1

00
1 n

i
n
i

n*n
i

n
i

n
i

n*n
i uuuRRR −

−
−

− −=−= ;   

i
*n
jj

*n
i

*n
ij uu ,,2 +=ε .                           (12) 

Assume that under any n-loading the relation 
between spherical components of stresses and 
deformation tensors remains elastic. Repeating the 
previous supposition about possibility of curves 

ijs′ ∼ ijэ′  and *n
ijs ∼ *n

ijэ  by nonlinear functions of 
identical analytic type 

( )*n
k

*n
u

*n
ij

*n
ij aIfGэs ,,ε2 1′= ,    (13) 

we conclude that the solution of the problem for 
variables with asterisks (12), (13) under any given n-
loading may be obtained from the problem concerning 
the loading from the natural state. For example, if the 
velocity is known,  

),,ε,ε,( т kuii aIxuu ′′′′=′ , 
then the appropriate value with asterisk will be 

),,ε,ε,( 1т
*n
k

*n*n
ui

*n
i aIxuu ′= .  

After this the desired velocity n
iu  can be calculated 

from the relation 

∑
=

−−′=
n

k

k
i

k
i

n
i uuu

2

*)1(     (14) 
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Stresses and deformations are calculated by formulas of 
the same type as (14). 

As an example the problem of cyclic irradiation-
force is winding of sandwich beam with one embed 
end. Asymmetry with respect to the thickness of the 
sandwich beam- with external bearing layers made of 
metal and incompressible with respect to the thickness 
of the internal layer (filler) made of polymer- is 
considered. For the description of the pack kinematics, 
the hypothesis of broken normal line is accepted: in the 
bearing layers Kirhgoff hypothesis is valid, and in the 
filler the normal line remains rectilinear without 
changing the length, but it turns on some additional 
angle )(xψ . Bearing layers are accepted to be 
elastoplastic, and the filler is elastic. Analytical solution 
of the appropriate problem of the theory of elasticity is 
considered in[3]. Solving the problem of small 
elastoplastic deformations under loading from natural 
state was found by the  method of elastic decisions. 
Aluminium alloy was used as a bearing layer, and 
Teflon was used as filler. 
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Fig.  4:  The flexure w of the sandwich beam. The curves with one 

prime correspond to loading from natural state, while those 
with two primes represent the repeated cyclic winding due 
to alternating-sign loading: 1' – solution of elastic problem: 
2'  – instant elastoplastic without irradiation; 3' – 
elastoplastic winding of previously irradiated beam (I1 = 
5·1024 м–2). 
 
 

Appropriate mechanical properties of the media 
are considered in[2]. Figs. 3, 4 show the shear ψ and 
flexure w of the sandwich beam, which are calculated 
with the use of different physical state equations.  

Under combined influence of force loading and 
neutron flow during interval t1 till the value I1 
deformation will correspond to the curve 2'. 
Consequent instant unloading and force of alternating-
sign loading with level of irradiation I1 will cause the 
shear and flexure of the beam, shown by curves 2". If 
the beam under cyclic loading was irradiated 
beforehand, then deformation would correspond to the 
curve 3". 

CONCLUSION 
 

 The theorem of cyclic loadings of elastoplastic 
bodies in neutron flow allows to simplify the whole 
class of boundary value problems. However, it is 
necessary to point out to the limits of its application. 
First, maximum level of neutron irradiation must not 
cause the loosening of the matter. Second, at every half-
cycle the conditions of simple loading must be fulfilled 
and deformations must be small. 
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