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Abstract: This paper describes a new cryptographic digital signature scheme based on Mandelbrot and 
Julia fractal sets. Having fractal based digital signature scheme is possible due to the strong connection 
between the Mandelbrot and Julia fractal sets. The link between the two fractal sets used for the 
conversion of the private key to the public key. Mandelbrot fractal function takes the chosen private 
key as the input parameter and generates the corresponding public-key. Julia fractal function then used 
to sign the message with receiver's public key and verify the received message based on the receiver's 
private key. The propose scheme was resistant against attacks, utilizes small key size and performs 
comparatively faster than the existing DSA, RSA digital signature scheme. Fractal digital signature 
scheme was an attractive alternative to the traditional number theory digital signature scheme. 
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INTRODUCTION 
 
Cryptography is the science of information 

security. Cryptographic system in turn, is grouped 
according to the type of the key system: symmetric 
(secret-key) algorithms which utilizes the same key (see 
Fig. 1) for both encryption and decryption process, and 
asymmetric (public-key) algorithms which uses 
different, but mathematically connected, keys for 
encryption and decryption (see Fig. 2). In general, 
cryptography protocol employs public-key algorithm to 
exchange the secret key and then uses faster symmetric 
algorithms to ensure secrecy of the data stream [1, 2].  

Public-key scheme is based on the idea that a user 
can possess two keys, one key is known to the public 
and the other is private to the owner. The public-key 
algorithm uses the public key to encrypt the data to be 
sent, and then at the recipient side, uses the private key 
to decrypt the ciphered data. Digital signature is a 
verification mechanism based on the public-key scheme 
that is focusing on message authenticity. The output of 
the signature process is called the digital signature [2]. 
Digital signatures are then used to provide 
authentication of the associated input, which is called a 
message [3, 4] (see Fig. 3). In digital signature public-key 
algorithms, the private key is used to sign a message, 
while the public key is used to verify the authenticity of 
the message. 

 

 

 
Fig. 1: Secret-key scheme. 

 
Fig. 2: Public-key scheme. 

 
Digital signatures scheme used to provide the following 
[4]:  
• Data integrity (the assurance that data has not been 

changed by unauthorized party). 
• Message authentication (the assurance that the 

source of data is as claimed). 
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• Non-repudiation (the assurance that an entity 
cannot deny commitments). 

 
In 1976, The first notion of a digital signature 

scheme was given by Whitfield Diffie and Martin 
Hellman, although at that time they only conjectured 
the existence of such scheme [5, 6]. Soon after that, in 
1978,  Rivest,  Shamir, and Adleman invented the first 
digital signature scheme which is called RSA digital 
signature algorithm [7]. Subsequently, there are a few 
more proposed digital signature algorithms such as 
ElGamal signature scheme [8], Undeniable signature [9] 
and others. 

 
Fig. 3: Digital signature scheme. 

 
This paper proposes a new fractal (based on 

Mandelbrot and Julia fractal sets) digital signature 
scheme as a secured method to sign and verify the 
corresponding message. The working of the proposed 
scheme depends on the strong connection between the 
Mandelbrot and Julia sets [10] by using their special 
functions, Mandelfn and Juliafn functions [11], which 
generate the corresponding private and the public keys. 
 
Fractals: A complex number is a number of the form a 
+ bi, where a and b are real numbers, and i is the 
imaginary unit defined as i2=-1 [12]. The real number, a, 
is considered as the real component, and the unit i and b 
are considered as the imaginary component of the 
complex number. The sum and product of two complex 
numbers are formulated as shown by Equations 1 and 
Equation 2. 
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In the late 19th century, Henri Poincaré, Felix 
Klein, Pierre Fatou and Gaston Julia used the iterated 
function in the complex plane, but their findings were 
dwarfed by the absent of visualization effect. In the 

1960’s the modern computer graphics era had shed new 
light on the study of iterated function, which soon gave 
the birth to the field of fractal geometrics.  

Fractal was made famous by Mandelbrot. In fact, 
the word fractal itself was coined by Benoit Mandelbrot 
in 1960. The word fractal came from a Latin word 
"fractus" meaning "broken" or "fractured". As defined 
by Benoit, fractal is a fragment of geometric shape, 
created interactively from almost similar but smaller 
components (some changes in scale). From another 
viewpoint, fractals are irregular in shape [13, 10], and they 
do not cohere with the typical mathematical 
dimensions. One of the unique things about fractals is 
that they have no integer dimension, instead they have a 
real and a imaginary part as described earlier. Because 
of the imaginary part, generally fractal can be classified 
into two types: fractal curves, in which the dimension 
of the fractal curves fall between the first and second 
dimensions (1-D and 2-D), and fractal surface, in which 
shapes have a dimension between the second and third 
dimension (2-D and 3-D). There is another kind of 
fractal that is called "fractal dimensions" which can fall 
between the 0.64th to the 1.58th dimensions of the non-
integer dimension [15]. The fractal dimension is a 
statistical quantity that shows how the fractal is filling 
the space completely during the zooms down to finer 
scales. There are many applications of fractal. One 
major example is the use  of fractal to create a realistic 
image of nature such as the image of  clouds, snow 
flakes, fungi, bacteria, mountains, river networks, 
systems of blood vessels and others [12,16]. 

 
Julia and Mandelbrot Fractal Sets: Other than 
imitating the image of nature, fractal geometry has also 
permeated many area of science, such as astronomy, 
physics, and biological sciences. Fractal geometry has 
also been classified as one of the most important 
techniques in computer graphics [12]. One of the 
interesting fractal sets is the Julia fractal set. Julia 
fractal set (see Fig. 4), developed by Gaston Julia [10], is 
the set of points on a complex plane. Julia fractal image 
can be created by iterating the recursive Julia function 
(see Equation 3). Later in 1982, Benoit Mandelbrot 
expanded his ideas in the fractal geometry of nature [10] 
by refining the Julia fractal set. He was looking for the 
connection on the value c from the Julia fractal 
equation [14]. As the result, Mandelbrot fractal was 
defined, and it was defined as the set of points on a 
complex plane by applying Equation 4 iteratively (see 
Fig. 5). Although Mandelbrot fractal set iterates z2 + c 
with z starting at 0, and Julia set iterates z2 + c  starting 
with varying non-zero z which is a slight difference 
from Mandelbrot equation, but actually they are both 
using the same basic fractal equation as we can see 
from Equation 3 and 4. The connection between 
Mandelbrot fractal set and Julia fractal set is that, each 
point c in the Mandelbrot is actually specifies the 
geometric structure of a corresponding Julia set. On the 
other hand if c is in the Mandelbrot set, the Julia set 
will be connected. However, if c is not in the 
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Mandelbrot set, the Julia set will become a Cantor dust 
[15]. 

          Z.C; ∈∈+= n z c,  c; zz n
2

-1nn            (3) 

       Z.C; ∈∈=+= nz c,  0;z c; zz 1-n0
2

1-nn   (4)  

 
 

Fig. 4: Julia fractal image. 

 
Fig. 5: Mandelbrot fractal image. 

 
DIGITAL SIGNATURE 

  
The well known digital signature schemes can be 

classified according to the inherited mathematical 
problems. As now, there are three different NP-hard 
problems where the most known digital signature 
schemes are based from: 
1. Integer Factorization (IF) schemes. The security in 

integer factorization schemes are based on the 
complexity of the integer factorization problem. 
Examples of IF scheme implementation are RSA 
digital signature scheme [7] and Rabin digital 
signature scheme [16]. 

2. Discrete Logarithm (DL) schemes. Discrete 
logarithm schemes are based on the complexity of 
the discrete logarithm problem in a finite field. 
Examples of DL scheme implementation are 
ElGamal [8], and DSA [17]. 

3. Elliptic Curve (EC) schemes. The security in 
elliptic curve schemes are based on the complexity 
of the elliptic curve discrete logarithm problem. 
Examples of EC scheme is the elliptic curve digital 
signature [18]. 

 
DSA Digital Signature Algorithm: In 1991, the U.S. 
National Institute of Standards and Technology (NIST) 
proposed the digital signature algorithm (DSA) and was 

specified in a U.S. Government Federal Information 
Processing Standard [17]. The algorithm is called Digital 
Signature Standard (DSS). Fig. 6 illustrates the steps in 
the DSA digital signature algorithm. The DSA can be 
viewed as a variant of the ElGamal signature scheme. 
Both signature schemes are based on the same 
mathematical problem - discrete logarithm problem. 
DSA base its security on the complexity of the discrete 
logarithm problem in field of Zp, where p is a prime [18]. 

 

 
 

Fig. 6: DSA digital signature scheme. 
 
The DSA Algorithms: Key generation algorithm 
(generated by receiver, Alice) 
Alice must do the following (referring to Steps 1 to 6 
on Fig. 6): 
 
1. Choose a prime numbers (p), where 2L-1 < p < 2L 

for 512 � L � 1024 and L a multiple of 64. 
2. Choose a prime numbers (q), where q divisor of (p 

– 1), and 2159 < q < 2160. 
3. Compute g as follows: g = (h(p-1)/q) mod p, where 

1<h<(p – 1), and g > 1. 
4. Choose a random integer x, with 0 < x < q. 
5. Compute y as follows: y = gx mod p. 
6. Send (p, q, g, and y) to Bob (verifier). 

 
Signing and verifying algorithms: Signing (sender - 
Alice)  
Alice must do the following (referring to Steps 7 to 11 
on Fig. 6): 
7. Determine the message m to be signed such that:   

0 < m < p. 
8. Choose a random integer k, with 0 < k < q. 
9. Compute r as follows r = (gk mod p) mod q. 
10. Compute s as follows: s = ((k-1)× (SHA-1(m)+ 

x× r)) mod q. 
11. The signature is (r, s). 
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• Send the signature(r, s) and the message to the 
receiver. 

• k-1 is a multiplicative inverse of k in Zq. 
 

Verifying (receiver - Bob): Bob must do the following 
(referring to Steps 12 and 16 on Fig. 6): 
12. Obtain the keys (p, q, g, and y). 
13. w = s-1 mod q. 
14. u1 = ((SHA-1(m))×w) mod q. 
15. u2 = (r ×w) mod q. 
16. v = ((gu1 ×  yu2) mod p) mod q. 
 

• If v = r, then the signature is verified. 
• If v does not equal r, then the message should 

be considered as invalid. 
 

RSA Digital Signature Scheme: In the RSA digital 
signature algorithm, the private key is used to sign the 
message. The signed message will be send to the 
receiver with the sender’s electronic signature. Fig. 7 
shows the steps of the RSA digital signature algorithm. 
To verify the contents of digitally signed data, the 
recipient generates a new verification key from the 
signed message that was received, by using his public 
key, and compares the verified value with the original 
message value. If the two values match, then the 
message is verified and authenticated.  

 

 
Fig. 7: RSA digital signature scheme. 

 
The RSA Digital Signature Scheme: Key generation 
algorithm (generated by receiver, Bob) 
Alice must do the following (referring to Steps 1 to 5 
on Fig. 7): 

1. Choose two prime numbers (p, q) randomly, 
secretly, and roughly of the same size. 

2. Compute the modulus n as follows:                         
n = p�×  q. 

3. Compute the �(n), as follows:                                
�(n) = (p-1) ×  (q-1). 

4. Choose the key e, such that 1 < e < �(n), and 
GCD (e, �(n)) = 1. 

5. Compute the private key d,                                   
such as d = e-1 mod �(n). 

 
Signature and verification algorithms: Signature 
(sender - Alice) : Alice must do the following 
(referring to Steps 6 to 8 on Fig. 7): 
 

6. Determine the message m to be signed such 
that    0 < m < n.  

7. Sign the message as follows, s = md mod n. 
8. Send the signature s with the message m to 

Bob (receiver). 
 
Verification (receiver - Bob): Bob must do the 
following (referring to Steps 9 and 12 on Fig. 7): 
 

9. Obtain the keys (d, n). 
10. Obtain s, m from Alice. 
11. Compute u as follows, u = se mod n. 
12. Verify the message m as follows: m= u-1. 

 
MATERIALS AND METHODS 

 
Digital Signature Based on the Mandelbrot and 
Julia Fractal Sets: Mandelbrot and Julia fractal shapes 
(see Fig. 4 and 5) consists of complex number points, 
computed by the recursive functions as defined earlier 
in Subsection 2.1 (Equation 3, and 4). In this Section, 
with the aids of Fig. 8, we are going to explain in brief 
the proposed idea of the fractal digital signature scheme 
based on fractal set. The detail explanation of the 
proposed method will be given in the following 
Subsection. As mentioned earlier Mandelbrot and Julia 
properties were used in the design of the new proposed 
digital signature scheme. 

In the proposed algorithm, sender and receiver 
must agree and use the public domain value, c. The 
receiver, Bob, will generate e and n as the private keys, 
while the sender, Alice, generates k and d as her private 
keys. Sender and receiver use their private values as 
well as the value c as inputs to the Mandelbrot function 
to produce the public keys znd and zke. Then Bob and 
Alice must exchange their public keys. Alice will 
obtain Bob’s public key, znd and uses these values 
together with her private key and the plaintext, as inputs 
to the Julia function to produce the signature s, which 
will then send with the message to Bob. Bob must 
obtain Alice’s public key, zke, the signature s and the 
message m from Alice which will be used as input 
values together with his own private key to Julia 
function, to verify the message v. 
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Fig. 8: Fractal digital signature algorithm. 

 
Mandelfn and Juliafn: The fractal based digital 
signature used a specific Mandelbrot function, 
Mandelfn and similarly, a specific Julia function, 
Juliafn [15]. Fig. 9 and 10 show images which were 
generated from the Mandelfn and the Juliafn. In 
Mandelfn and Juliafn functions, we can substitute the 
function f( ) (see Equation 5 and 6) with well known 
functions such as sin( ), cos( ), exp( ), etc. However, the 
value which is generated by Mandelfn must belong to 
the Mandelbrot set, and likewise, the value generated 
by Juliafn must belong to the Julia set [11]. In the 
proposed scheme we set f( ) as shown by Equation 7 for 
Mandelfn function and Equation 8 for Juliafn function. 
 

 
Fig. 9: Mandelfn image with the sine function (sin( )) [19]. 

 
Fig. 10: Juliafn image with the cosine function (cos( ))  [20] 

             (n)).f(z c  1)(nz ×=+              (5) 
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        (6) 

 
Proposed Fractal Digital Signature Scheme: In the 
following we will describe the fractal digital signature 
scheme in details (see Fig. 11). The first step of the 
proposed scheme is to generate the private key and 
public key by using Mandelbrot function Mandelfn 
(Equation 7) and Julia function Juliafn (Equation 8). 
     Z.C; ∈∈=×=+ nzc, c;  (0)z   (n));(z  fc  1)(nz    (7)     

Z.C; ∈∈=×=+ nzc,y,  y  z(0)  (n));(z  fc  1)(nz ;  (8) 
As shown in Fig. 8 earlier, fractal digital signature 

scheme involves a sender and a receiver. The receiver 
must generate the public key from the chosen private 
key, and then send the public key to the sender. The 
sender will then generate his public key by using 
Mandelfn function and send it to the receiver. 

    Z.C; ∈∈××= − nd,c,z;dcz dz nn
2

1            (9) 
 As indicates by Fig. 11, znd is the generated public 

key, generated by the receiver by executing Equation 9 
(see Step 1 of Fig. 11). The receiver’s private key is the 
value (d, n). Similarly for the sender, with the private 
value of (e, k), the sender will produce the 
corresponding public key, zke (Step 3 from Fig. 11), 
generated by using Mandelfn. The Mandelfn is given in 
Equation 10. 

       Z.C; ∈∈××= − ke,c,z;ecz ez kk
2

1       (10) 
In Steps 5 and 6 (Fig. 11), executing Juliafn by the 

sender will sign the message m to produce the signature 
s. The signature s with the message m, will then send to 
the receiver. Similarly (Fig. 11, Step 7), the receiver 
will execute Juliafn to produce v which then is used to 
verify the message m (Fig. 11, Step 8). 
 

 
 

Fig. 11: Fractal digital signature algorithm. 
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After exchanging the public keys (see Steps 2 and 
4 from Fig. 11) and executing the Juliafn function 
(Steps 5 and 7 from Fig. 11), sender Alice and receiver 
Bob had completed the proposed secured digital 
signature scheme. The process from Fig. 11, Step 5 is 
also being illustrated by Equation 11. The 
corresponding signature process, which is Step 7 of Fig. 
11, is further illustrated by Equation 12. 

 

.mkx,n, de,c,s,

m;  ed)(z c s kn
 x-k

R Z;C; ∈∈∈
××=

            (11) 

 

R.   Z;C; ∈∈∈
××=

mkx,n, de,c,v,

m;  de)(z c v nk
x -n

               (12) 

 
Security Analysis of  the Proposed Scheme: It is 
impossible to mount an attack on the proposed scheme 
because of the iteration k and the variation constant e, 
which are unknown to the public. Hence, we can 
identify that the hard problem for the proposed fractal 
digital signature is through the chaos property of the 
fractal function which in this case depends on the 
private key selection. This is true since the generated 
public keys (znd and zke) produced by Mandelfn 
depends on the number of iterations, n, as well as the 
variation constant, d and e, which makes the Mandelfn 
values jump path chaotically. This will prevent attack 
on the private values, given that d and e are being 
represented appropriately. We are suggesting the value 
of d and e to be represented by a 128-bit value which 
should give 2128 possibilities for every values of n (or k) 
that is being brute force. 
Working Example of the Proposed Scheme: Table 1 
shows a working example of the proposed scheme. In 
this example each complex number is being represented 
by a 64-bit value. We use GMP [21] to simulate the 64-
bit complex numbers. In this example, the public 
information, c, is initialized to a complex value                      
(-0.022134) + (-0.044)i, and variable x is initialized to 
3. The value of x is used to reduce the final calculation, 
see Equation 13 and Equation 14. The value x can be 
set to 0, if desired.  

 At the beginning, receiver and sender need to 
choose their private keys (see Table 1, Row 2). Then 
they have to calculate the corresponding public keys by 
using the Mandelbrot function, Mandelfn, as shown by 
Table 1, Row 3. These values are znd (receiver’s public 
key) and zke (sender’s public key). Table 1, Row 4, 
shows both parties exchanging their public keys. 
Following this process is the calculation of the 
signature by using Julia function, Juliafn. Sender will 

produce the signature, s, after executes the Juliafn with 
input parameters k and d (sender’s private key) as 
shown by Table 1, Row 5. Table 1, Row 6, shows the 
signature of the hashed message M by using the 
security hash algorithm SHA-1 (m = SHA-1(M)), after 
the Juliafn is executed with parameters n and e 
(receiver’s private key) by the receiver. 

A hash function is a reproducible method of 
turning the data relatively into a small digest. Hash 
function takes a random sized input message to produce 
a fixed sized digest. The outcome of the resulted digest 
is based on the hash technique used (SHA-1, SHA-224, 
SHA-256, SHA-384, and SHA-512, which are designed 
by the National Security Agency (NSA) and published 
by the NIST as a U.S. government standard) [22].  

 
Table 1: Example of fractals based digital signature 

scheme. 

 
 

RESULTS  
 

The chaotic nature of the fractal functions ensures 
the security of the proposed scheme. However, to 
prevent a brute force attack, the choice of the key size 
becomes essential. The key space in fractal digital 
signature depends on the size of the key. For example 
in 128 bits key, there are 2128 possible key values, as is 
the case in the symmetric scheme. RSA and DSA keys 
are basically different from fractal keys. The RSA and 
DSA algorithms depend on large prime numbers (see 
Fig. 12) [23]. The 128-bit RSA and DSA keys space are 
limited by how many primes exist in the finite field of 
Zp, where p is the largest prime that can be represented 
by a 128-bit value. Hence, RSA and DSA keys size 
space are considerably smaller than the fractal key 
space for a given finite field [4].   Table 2 shows the key 
size for RSA, DSA and symmetric scheme, regarding to 
the resistance to brute force attacks. The keys space for 
RSA and DSA were calculated based on the number of 
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primes existed for particular key sizes. The computation 
was based on Equation 13 [24]. 

 
Z.∈= n  n; log / nn)[0, in  prime of  No.   (13) 

 
Performance evaluation based on equivalent key 
sizes for fractal and digital signature schemes: We 
compare the performance of the fractal based digital 
signature scheme against the well known RSA and 
DSA digital signature schemes. Table 3 shows the 
performance of fractal, RSA and DSA digital signature 
approaches. These algorithms were coded in Turbo C 
with GMP library, and run on a computer with 1.6 GHz 
Intel® M Pentium processor and 256MB RAM. Also, 
we used Miller-Rabin algorithm [25] for primality test 
which was coded using C and GMP. 

The comparison between fractal, RSA and DSA 
digital signature schemes show that fractal key digital 
signature performs better than RSA and DSA in 
general. Note that, in our implementation we increased 
the number of iterations k and n (see Fig. 11) 
proportionate with the key size to get suitable 
comparisons as shown by Fig. 13, 14, 15, and 16.  As  
those Figure indicate, the fractal based digital signature 
scheme provides higher level of security at a much 
lower cost, both in term of key size and execution time.  

The strength of the algorithm and the size of the 
key used, play the main role in the security of digital 
signature scheme. Fractal, RSA and DSA schemes can 
provide equal strength in security, all in terms of the 
algorithm complexity and the key size used. 
Nevertheless, fractal digital signature algorithm is more 
efficient than RSA and DSA since the algorithm used 
smaller key size and executes faster. Note that the 
performance of the propose scheme is amplified further 
in a multi-verification scenario, which is most likely to 
happen in real implementation. 
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Fig. 12:  Key space comparison between fractal key, RSA and DSA 

digital signatures implementation. 
 

Table 2: Key space comparison between symmetric, 
RSA and DSA schemes [23]. 

Symmetric scheme 
Key size 

RSA/DSA 
Key size 

80 1024 
112 2048 
128 3072 
192 7680 
256 15360 

  
Table 3: Performance evaluation between Fractal based 

digital signature and RSA digital signature 
scheme. 
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Fig. 14: Fractal, RSA and DSA keys generation time. 
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Fig. 15: Fractal, RSA and DSA signature time. 

0

50000

100000

150000

200000

250000

M
ill

is
ec

on
d

Verification Fractal
RSA
DSA

Fractal 6 9 26 30 2952 30597

RSA 17 270 770 9600 20442 188393

DSA 20 470 900 10120 22456 211215

64/512 bit 80/1024bit
112/2048 

bit
128/3072 

bit
192/7680 

bit
256/15360 

bit

 
Fig. 16: Fractal, RSA and DSA verification time. 
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Fig. 13:  Overall time comparison between fractal, RSA 

and DSA digital signature algorithm time. 
 

CONCLUSION 
 

This paper shows the possibility of establishing a 
fractal based digital signature, derived from the logical 
connection between the Mandelbrot and Julia fractal 
sets. The security protection of the proposed fractal 
digital signature depends partially on the number of 
iterations needed to convert the initial value c in the 
Mandelbrot fractal equation to the starting value of z in 
Julia fractal equation. Adding the key e and d during 
the iteration of Mandelbrot and Julia functions will 
establish the needed complexity of the proposed 
scheme. As a result, the proposed signature scheme 
requires small key size and performs faster when 
compared to RSA and DSA. 
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