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Abstract: Dense underflows are continuous currents, which move down the slope due to the fact that, 
their density are heavier than ambient water. In turbidity currents the density differences arises from 
suspended solids. Vicinity of the wall make density currents and wall jets similar in some sense but 
Variation of density cause this flows more complex than wall jets. An improved form of ‘near-wall’ k-
ε turbulence model is chosen which preserve all characteristics of both density and wall jet currents 
and a compression is made between them. Then the outcomes from low Reynolds number k-ε model is 

compared with 2 −v f model which show similarity. Also results show good agreement with 

experimental data.  
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INTRODUCTION 

 
 The gravity currents on the inclined boundaries are 
formed when the inflow fluid has a density difference 
with the ambient fluid and a tangential component of 
gravity becomes the driving force. The salinity 
concentration and/or the temperature difference cause 
the density difference. Sometimes, the extra weight of 
suspend solids causes the density difference, for 
example turbidity currents in the ocean or in the large 
lake and powder snow avalanches in the mountains. 
Turbulent wall jets are an important test case for 
"general" turbulence models because they contain a 
near wall as well as a free layer, both interacting with 
each other. Vicinity of the wall make density currents 
and wall jets similar in some sense but Variation of 
density, dynamic instability due to shear forces at the 
interface of dense layer and ambient fluid with 
buoyancy forces effect cause this flows more complex 
than wall jets. 
 The k-ε model of turbulence is one of the most 
extensively used methods but it should be developed to 
exert damping of lateral velocity fluctuations due to the 
wall to predict the normal spreading of the wall jets 
truly. Commonly used eddy viscosity models do not 
account for the damping of lateral fluctuations by the 
presence of a wall (unless this is put in empirically) and 
thus tend to over predict the spreading of the wall jet 
when empirical constants are used that give the correct 

spreading for the free jet[1]. For example, the widely 
adopted k-ε model[2] produces a spreading rate more 
than 30 percent too high when the standard constants 
are used which are suitable for many other flows. One 
solution for this problem is using Reynolds stress 
equation models which are complex and expensive in 
application. However, wall damping effect in wall jets 
can also be obtained with a simpler model in which the 
stress equations are reduced to algebraic expression[1]. 
Furthermore density currents are flows, which become 
unstable and turbulent in low Reynolds number. Hence 
choosing the low Reynolds number k-ε model is 
necessary due to predominant effect of molecular 
viscosity on the flow structures in the immediate 
neighborhood of the wall[3]. There are researches on 
modeling turbulent laden density current such as[4,5] 
with high Reynolds number k-ε model. But this model 
couldn't enter all the characteristics of the density 
current flows. 
 Jones and Launder[6] were the first to extend the 
original k-ε model to the low –Reynolds-number form 
which allowed calculations right up to a solid wall. 
Later, improvements of the k-ε model are made 
successively for the same purpose[7-10]. 
 The objective of the present study is to simulate the 
flow characteristics of 2D turbulent particle laden 
density current with low Reynolds number k-ε 
model[10]. Then a compression is made between 
turbidity current and wall jets in order to specify how 
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the density differences effect on the structure of 
turbidity currents. Also the results from low Reynolds 

number k-ε model is compared with 2v f− model[11] 

,that solve 2v  transport equation due to enter damping 
of lateral velocity fluctuations, which have similarity 
with Herrero[10]. Also results show good agreement 
with experimental data.  
 
Nomenclature 
C= ∆  concentration, C= (ρ-ρw)/ (ρs - ρw) 
E value of entrainment 
h0 height of sluice gate 
h density current depth 
g gravitational acceleration 
g’ reduced gravitational acceleration, 
 g’=g (ρ−ρw)/ ρw 
P pressure 
Re Reynolds number, Re=uh/ν 

2

Re= =
%

t t

k
R

υε
 turbulence Reynolds number 

Re =k

y k

υ
 dimensionless distance 

*
Re += =yu

yτ υ
 dimensionless distance 

ρ
τ

= ω*u  friction velocity 

y 0

u

yω
=

∂τ = µ
∂

 shear stress at wall  

iu ,u , v′ ′  fluctuating velocity in ix direction 

inU  inlet velocity 

Uave average value of velocity 

maxU  Maximum velocity 

x stream wise co-ordinate 
y vertical co-ordinate 

maxy  height of velocity maximum 

1
2

y  height above velocity 

 maximum where maxu .5U=  

 
Greek symbols 
λ                         molecular diffusion  
ρ density of saline solution 
ρw water density 
ρs density of particles 
θ Angle of the bed 
 

1 2C ,C ,C ,µ ε ε 1 2 1 2C ,C ,C ,C ,Cω′ ′   

empirical constants in the ε−k  
model 

1 2f , f , f , fµ  damping functions 

k turbulence kinetic energy 
ε  turbulence energy dissipation rate 

tυ  turbulence viscosity 

Sc Schmidt number 
S∆  source term in Eq.(3) 

sζ  turbulence diffusivity 

,k εσ σ  turbulent Prandtl numbers for 

  diffusion of k and ε 
D,F source term in equations(7,9 ) 
 
Governing equation: Figure 1 shows the schematic 
sketch of turbidity current. In the present model 
computations are based on steady state turbulent 
turbidity current and wall jet. The concentration of 
turbid-water is so small that Bosinesque approximation 
can be used. With this assumption, the effects of 
density difference are neglected in the inertial term, but 
included in buoyancy force term in momentum 
equations. However, the equations of this current are 

i

i

U
0

x

∂
=

∂
 (1)  

wi i
j i j i

j w i j j w

U U1 P
U u u g

x x x x

  ρ − ρ∂ ∂∂ ∂= − + υ − +  ∂ ρ ∂ ∂ ∂ ρ 

 (2) 

i s
i i i

U ( ) S
x x x ∆

∂∆ ∂ ∂∆= λ + ξ +
∂ ∂ ∂

 (3)  

Where these equations are, continuity, momentum and 
mass balances. ∆  is the concentration of fluid defined 
as w s w( ) /( )∆ = ρ − ρ ρ − ρ  and ρ is the density of the 

mixture. ρs and ρw are the particles and water density. 
υ  and λ  are the viscosity and diffusivity of fluid, 
respectively. In the momentum equation, g′  is the 

reduced gravitational acceleration 

w

wgg
ρ

ρρ −='
 (4) 

In the concentration equation 
y

vS f ∂
∆∂=∆ θcos  is a source 

term which is added due to particles falling and fv  is 

the particles fall velocity which takes equal to .0014 
m/s for 50 micron diameter size and 

sζ  is the 

turbulence diffusivity. By using the turbulent Schmidt 
number Sc, eddy diffusivity  
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Sc
t

s

υζ =
 (5)  

 While the Schmidt number, similar to the Prandtl 
number is predictable to be affected by the buoyancy, it 
is assumed to be unity here. The particles in the current 
are assumed dilute and non-cohesive with equal settling 
velocities. Pressure term, p, denotes instantaneous 
pressure which is subtracted from the hydrostatic 
pressure. 
The wall jet governing equation is continuity (1) and 
momentum equation which expressed as  
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∂ υ
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1  (6) 

in the above equation P is the instantaneous pressure. 
 

 
Fig. 1: The schematic sketch of turbidity current 
 
Turbulence modeling: A rigid boundary has many 
different effects on turbulence[12], the most important of 
which are as follows :( 1) It reduces the length scale of 
the fluctuations, thus increasing the dissipation rate. (2) 
It reflects pressure fluctuations, thereby inhibiting the 
transfer of turbulence energy into fluctuations normal to 
the wall. (3) It enforces a no-slip condition, thus 
ensuring that within a wall-adjacent sub-layer, turbulent 
stresses are negligible and viscous effects on transport 
processes become of vital importance. Accounting to 
the second case will lead to correct prediction of normal 
spreading of wall jet. To note this problem, Ljuboja and 
Rodi[1] have proposed a modified version of the k-ε 
model. The turbulence scalar quantities (k andε ) used 

to calculate tν  are determined from the following 

modeled transport equations[10], here k
0

t t

∂ ∂ε= =
∂ ∂

%  due to 

steady solution. 
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D~ −ε=ε  (9) 

1=Kσ , 1=tσ , 3.1=εσ , 44.11 =εC , 92.12 =εC  are 

the constants in standard k-ε model. Also, the proposed 

value for ε3C  is .03[4].  

 The reason for including the extra term D in 
equation(7) is computational rather than physical; for, 
in solving the ε equation, there are decisive advantages, 
in letting ε go to zero at the wall. However, the 
turbulence dissipation rate is not zero there; it is in fact 
equal to 
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∂
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 So, introducing the extra term in equation (7) 
which is equal to the dissipation rate in the immediate 
vicinity of the surface and which is negligible in 
regions where the Reynolds number is high. Also, the 
last term in the equation (8) is one that found necessary 
to include in order that the distribution of kinetic energy 
within the viscosity –affected region should be in 
reasonable accord with experiment[6]. 

The Reynolds stress jiuu  appearing in the system of 

Eqs.(2,6) may be expressed as:  

2

3
ji

i j t ij
j i

UU
u u k

x x
υ δ
 ∂∂− = + −  ∂ ∂ 

 (11) 

The eddy viscosity tυ is related to k and ε~  through the 

Kolmogorov-Prandtl relations as: 
2

t

k
Cµυ

ε
=

%
 (12) 

 For the wall jets considered here, the Reynolds 

stresses uv ,
2v of are prime importance and modeling 

transport equations for these stresses are necessary, but 
these equations are differential because of the 
appearance of differential expression in the convective 
and diffusive transport term, an approximation has been 
made to reduce these equations to algebraic 
expressions. Finally, by simplifying differential 

equations of uv ,
2v  the µC function has been 

proposed which accounts for the damping effect of the 
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wall on the lateral fluctuations for high Reynolds wall 
jet problems as follow[1]: 

21GGFC µµ =  (13)  
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72.3,3.,6.,6.,8.1 2121 ==′=′== wCCCCC are 

empirical constants. 
 In order to impose the effect of low Reynolds in 
turbidity currents, a version of low-Reynolds-k-ε-model 
should be chosen. Here, Herrero-model[10] is chosen 
which contains the effect of the turbulence Reynolds 

number tR  , due to predominant effect of molecular 

viscosity near the wall, and the nondimensional 

distance from the wall kR , due to damping velocity 

fluctuations in direction normal to the wall, in damping 

function µf . In addition,[13] concludes that Herrero 

model[10] is more effective to determine the 
characteristics of wall jets rather than[3] and [9]. The 
damping functions and source terms in this model[10] 
are as follows: 

]Re/)Re0055.exp(5001[*)]0066.exp(1[ 2
tkKRf −+−−=µ

 (17) 
2

1 )/05(.1 µff +=  (18) 

)Reexp()/3(.1 2
2 tBf −−=  (19) 

)Reexp(7.1 kB −−=  (20) 

D=0  (21) 
F=0 

0~ =
∂
∂=
yw

εε  (22) 

 
Boundary condition: The boundary conditions at the 
inlet are known. It is similar to the experimental 
models[14,15], the turbidity current with uniform velocity 
and concentration enters the channel with 6m length 
and 1/1m height under the still bodies of water via a 
sluice gate of 3cm height, onto a surface inclined at 
angleθ .  
 

At the outflow-boundary, the stream wise gradients of 
all variables are set to zero. At the free surface, the 
symmetry condition is applied that includes zero 
gradients and zero fluxes perpendicular to the 
boundary. At the rigid wall, due to the no slip 

conditions and a pure depositing assumption, iu and 

gradient of concentration are set zero. Also for ε−k  
equations, at free surface, no flux conditions are 

imposed, i.e. 0.0=
∂
∂=

∂
∂

yy

k ε and at the inlet 

( )21.0 inin uk =  and 0
3 /0016.~ hu inin =ε . 

 
Solution procedure: The flow and the turbulent 
equations have to be accurately resolved to obtain 
concentration distribution predictions. All computations 
were performed in Cartesian coordinates with 
rectangular geometry. Cartesian grids were used, with a 
high resolution near all solid boundaries. In all cases, 
the first grid point was at y 1+ ≈  or less. Therefore, the 

solutions presented here are considered grid 
independent. 
 
Solver: The governing equations are discreted by a 
finite-volume method. The continuity, momentum, 
turbulence and particles mass balance equations are 
solved in the fixed Cartesian directions on a non-
staggered grid. All the variables are thus stored at the 
center of the control volume. The velocity components 
at the control volume faces are computed by the Rhie-
Chow interpolation method[16] and the pressure-velocity 
coupling is handled by SIMPLEC method. The 
convective terms are treated by the hybrid scheme. 
TDMA-based algorithms are applied for solving the 
algebraic equations. The solution procedure is iterative 
and the computations are terminated when the sums of 
absolute residuals normalized by the inflow fluxes were 
below 10-4 for all variables. 
 

RESULTS AND DISCUSSION 
 
 The height of the dense layer in laboratory is 
identified by the naked eye of its dim. Therefore, it 
should be a good opinion to define the height of the 
dense layer by using the boundary layer concept. Here, 
we assumed that the interface is a location where its 
concentration becomes about 1% of inlet concentration 

which denotes by in∆ . Figure 2 show the height of 

steady density current in comparison with experimental 

data[14] and 2 −v f model. 

 



Am. J. Applied Sci., 4 (11): 880-886, 2007 
 

 884 

X(m)

h(
m

)

1 2 3 4 5 6
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Herrero Model [10]
v2f Model [18]
Exp.Data [14]

 
Fig. 2: Height of the turbidity current simulated by 

Herrero model[10] compared with experimental 

data and 2 −v f model  
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Fig. 3: Velocity profile of the turbidity current along 

the channel which simulated by Herrero 
model[10] compared with experimental data and 

2 −v f model 

 
 Figure 3 shows velocity profile along the channel, 
which non-dimensionalized with average velocity 
versus non –dimensional height of the dense layer, 

comparing with Experimental data[15], inu  =.08m/s as it 

can be observed the present model simulate the flow 

properly and the results are similar to 2 −v f model due 

to the effects of damping function obtained from 

algebraic equation by simplifying 2v  and uv  transport 
equations[1] . 
 Figure 4 shows the horizontal velocity component 
profile and the along the channel which is simulated by 
Herrero model[10]. 
 Figure 5 shows the velocity profile of turbidity 
current and wall jet along the channel. By marching in  
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Fig. 4: Horizontal velocity vector and concentration 

line-isocontours of the turbidity current 
simulated by Herrero model[10] 
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Fig. 5: Comparing velocity profile of wall jet and 

turbidity current along the channel 
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Fig. 6: variation of maximum velocity along the 

channel for wall jet and turbidity current 
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Fig. 7: variation of average velocity along the channel 

for wall jet and turbidity current 
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Fig. 8: The heights of turbidity current and wall jet 

are compared  
 
the stream wise direction the velocity values decrease 
for both currents and the maximum velocity goes 
upward due to entrainment. Also the velocity 
magnitude in wall jet is higher than density current at 
the same height which leads to higher shear rate and 
more entrainment for wall jet. It may be as a cause of 
buoyancy term which represents an exchange between 
the turbulent kinetic energy k and potential energy. 
 Figure 6 and 7 show the variation of maximum 
velocity and average velocity, respectively, along the 
channel for both wall jet and turbidity current which is 
in consistent with Fig. 4. 
 Average velocity is calculated from bellow 
equation which is the ratio of momentum to flux at each 
stream wise cross section[17]: 
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∫
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Udy

dyU
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Fig. 9: Flux and entrainment value along the channel 

for both wall jet and turbidity current 
 
In order to compare the height of turbidity current and 

wall jet the depth of maximum velocity maxy and 

1

2

y [18], which is the heights above the maximum 

velocity where the velocity equals half of the maximum 
velocity , are calculated (Fig. 8). As it can be observed 
at the inlet of the channel the heights are the same for 
both wall jet and turbidity current but after propagation 
in the stream wise direction the height of the wall jet 
becomes larger due to higher amount of entraining 
water. 
 Due to shear layer at the interface of turbidity 
current or wall jet and ambient fluid, it disturbs and 
entrains the surrounding fluid. Turbulence at this 
boundary entrains the stationary ambient fluid 
immediately above it, into the layer and dilutes it. The 
turbulent region grows with distance downstream as the 
non-turbulent fluid becomes entrained in it. Therefore, 
a small mean velocity perpendicular to the mean flow is 
generated when the ambient fluid is initially at rest. The 
value of Entraining ambient fluid can be obtained from 
differentiating the flux at each cross section: 
dUA

dx
= Water entrainment (24) 

 Figure 9 shows the value of flux and entrainment 
along the channel for both wall jet and turbidity current. 
Entrainment raises the mass flux and increases the 
current’s height. In wall jet due to high amount of 
entrained fluid, the velocity profiles move upward and 
then, its maximum is higher than density current. 
 

CONCLUSION 
 
 The low Reynolds number k-ε model (Herrero)[10] 
has been applied to simulate the structure of turbidity 
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current. Momentums, continuity, mass balance of 
particles and turbulence equations are solved, 
simultaneously, by SIMPLEC method, without any 
limited or simplify assumption. The computed height of 
dense layer and velocity profile fall well whit the 
experimental data. Moreover, results have been 

compared with the 2 fν −  turbulent model. It has been 

shown that the results are similar to 2 −v f model due 

to the effects of damping function obtained from 

algebraic equation by simplifying 2v  and uv  transport 
equations[1]. Also a compression is made between the 
characteristics of wall jet and density currents. It seems 
that density difference can relax the flow entirely and 
dissipate some of the flow momentum in both 
directions. The maximum velocity and height of the 
wall jet is higher than turbidity current as a result of 
more amount of entraining ambient fluid.  
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