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Abstract: The emergence of the Web has increased significant interests in querying XML data. 
Current methods for XML query processing still suffers from producing large intermediate results and 
are not efficient in supporting query with mixed types of relationships.  We propose the TwigINLAB 
algorithm to process and optimize the query evaluation.  Our TwigINLAB adopts the decomposition-
matching-merging approach and focuses on optimizing all three sub-processes; introducing a novel 
compact labeling scheme, optimizing the matching phase and reducing the number of inspection 
required in the merging phase. Experimental results indicate that TwigINLAB can process both path 
queries and twig queries better than the TwigStack algorithm on an average of 21.7% and 18.7% 
respectively in terms of execution time using the SwissProt dataset.  
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INTRODUCTION 

 
 eXtensible Mark-up Language (XML) is emerging 
as the de facto standard for data exchange over the 
Web. Since XML is a semi-structured data, two types 
of user queries namely full-text queries (keyword based 
search) and structural queries (complex queries 
specified in tree-like structure) are usually used [1]. This 
paper is concerned with structural queries. 

Structural queries can be viewed as sequences of 
location steps, where each node in the sequence is an 
element tag or string value. Query nodes are related by 
either parent-child (P-C) steps or ancestor-descendant 
(A-D) steps. These relationships are depicted with a 
single line and double lines respectively. Besides, query 
nodes can be related adjacently with one another by 
sibling or ordered query relationship. Sibling (ordered 
query) relationship is usually denoted by “[]”. 

To process such queries, it may undergo a 
decomposition-matching-merging process. TWIG-
XSKETCH [2], tree signature [3], MPMGJN [4], Stack-
Tree [5] and PathStack and TwigStack [6] are examples 
of query processing using the decomposition-matching-
merging approaches.  Nevertheless, most of these 
approaches focus on the second sub-process: the 
matching phase only. 

In this paper, we propose  
1. a novel hybrid query optimization architecture, 

INLAB (combination of INdexing and 
LABeling techniques), which comprises an 
XML Parser, XML Encoder, XML Indexer 
and Query Engine and 

2. query optimization algorithms (TwigINLAB) 
to process twig queries efficiently without 
traversing the whole XML tree. 

 
INLAB labeling scheme size is only 12 bytes; 

much shorter compared to previous labeling schemes. 
This enables quick determination of P-C relationship 
between elements in the XML database.  However, to 
check for    A-D relationship, the index table need to be 
accessed for confirmation. Besides, INLAB labeling is 
integer based. Integer processing is very efficient 
compared to that of string or bit-vector. The index 
structures of INLAB allow us to efficiently find all 
elements that belong to the same parent or ancestor. 

Our TwigINLAB approach decomposes 
relationships into a set of path queries.  In addition, we 
focus on optimizing all three decomposition-matching-
merging sub-processes.  First, we introduce a novel 
robust and compact labeling scheme consisting of 
<self–level: parent> to allow quick determination and 
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decomposition of the types of relationships among each 
path edge.  Subsequently, we optimize the matching 
phase based on each relationship and finally reduce the 
number of inspection required in the merging phase. 
 
Twig Query Processing: With the increasing 
popularity of XML data representation, XML query 
processing and optimization has attracted a lot of 
research interest [7, 8, 9, 10, 11, 12]. In this section, we 
summarize the related work. There are typically two 
types of decomposition-matching-merging process. 
First, a complex query pattern can be decomposed into 
a set of basic binary relationships between each pair of 
nodes or second, it can be decomposed into a set of path 
queries, followed by subsequent matching and merging 
processes. Our INLAB adopts the latter approach and 
focuses on optimizing all three sub-processes; 
introducing novel compact labeling scheme, optimizing 
the matching phase and reducing the number of 
inspection required in the merging phase. In the first 
sub-process, most researchers use the labeling of 
(docno, begin : end, level) for an element and (docno, 
wordno, level) for a text word as the positional 
representation of XML elements and texts.  However, 
we use <self – level : parent> as the positional 
representation instead.  The details on this will be 
explained in the next section. MPMGJN [4], Stack-Tree 
[5] and TwigStack [6] algorithms are based on (docno, 
begin : end, level) labeling of XML elements. These 
algorithms accept two lists of sorted individual 
matching nodes and structurally join pairs of nodes 
from both lists to produce the matching of the binary 
relationships.  Another similar approach is to 
decompose the twig query into a set of path queries 
instead. Polyzotis et al. propose methods to reduce the 
number of intermediate results by introducing a 
filtration step based on some notion of synopses to 
facilitate query-approximate answers [2]. They propose 
both TREESKETCH and TWIG-XSKETCH.  Another 
work, done by Amer-Yahia et al is to preprocess the 
query patterns before the matching phase is executed 
[13]. Since the efficiency of tree pattern matching 
depends on the size of the pattern, it is essential to 
identify and eliminate redundant nodes in the pattern 
before the matching phase takes place.   On the other 
hand, Zezula et al. propose a novel technique, tree 
signature, to represent tree structures as ordered 
sequences of pre-order and post-order ranks of the 
nodes [3]. They use tree signatures as index structure 
and find qualifying patterns through integration of 
structurally consistent path query. Merging together the 
structural matches in the final process poses the 

problem of selecting a good join ordering.  Wu et al. 
propose a cost-based join order selection of structural 
join [7].  Kim et al. suggest partitioning all nodes in an 
extent into several clusters [14]. Given two extents to be 
joined, they propose filtering out unnecessary clusters 
in both extents prior to the joining process. 

Our TwigINLAB algorithm is a generalization of 
the stack-based algorithm first mentioned by Bruno et 
al. [6] to match twig query. However, we enhance the 
query processing by utilizing indexes (built only once) 
to speed up the matching and merging phases. Further 
elaboration can be found in next section. 
 
 

MATERIALS AND METHODS 
 

Fig. 1 shows the INLAB architecture, which 
consists of the XML Parser to check the well-
formedness of the XML document, the XML Encoder 
to generate the labeling based on a <self-level:parent> 
scheme, the XML Indexer to create index storing each 
node parent and child information and the XML Query 
Engine for pattern query matching. This paper 
concentrates only on the XML Query Engine (the 
optimizer). Other components such as XML Parser, 
XML Encoder and XML Indexer have been reported in 
[15, 16]. The criterion for assessing TwigINLAB is 
execution time. 

Fig. 2 depicts an example of XML document 
labeled based on <self-level: parent>. Structural 
relationships between element nodes can be efficiently 
determined from the label as follows: 

1. P-C relationship 
node1 is the parent of node2 if and only if 
node1.self  = node2.parent.  

2. Sibling relationship 
node1 is the sibling of node2 if and only if  
node1.parent = node2.parent.  

3. Ordered query relationship (predecessor and 
successor) 
a. node1 is the predecessor node of node2 if  
and only if node1.self < node2.self.  
b. node1 is the successor node of node2 if and 
only if node1.self > node2.self. 

4. A-D relationship 
node1 is possible as an ancestor of node2 if and 
only if leveldiff = node2.level - node1.level >= 
1. A multiple look-up via PCTable is 
necessary as long as the leveldiff  > 1 is true to 
confirm the A-D relationship. 
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Fig. 1: Query processing component architecture 
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Fig. 2:  A sample XML document with <self-level: 
parent> label. 

 
 
 For example, let publications (0-0:-1) be node1 and 
author (14-2:12) be node2. The leveldiff between the 
two nodes is two. This means that we need to trace up 
the PCTable twice starting from the self attribute of 
author to check whether publications is ancestor of 
author as illustrated in Fig. 3. The parent attribute of 
the retrieved node is equal to the self attribute of 
publications. Thus, publications and author is of   A-D 
relationship. 
 
 
 

self parent 
0 -1 

1 0 

… … 

12 0 

13 12 

14 12 

15 12 

Fig. 3: Fragment of PCTable index table. 
 
 

Fig. 4 illustrates the overall processes involved in 
TwigINLAB processing. Initially, the query pattern is 
analyzed using the analysisQueryPattern() function. 
For each query edge, if the twig is of P-C relationship, 
the parent and child details will be updated in the 
twigPC (a hashtable to store parent and child) 
repository. During this process, each node in the twig 
query is associated with a stream.  Each stream contains 
the positional representations of the node appearance in 
the XML tree (as shown in Fig. 5).  The nodes in the 
stream are sorted by their self attribute, and thus, this 
will determine the order of the node to be processed.  
Associated with each stream is a stack. Stack is used to 
store the possible intermediate results. 
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Fig. 4: Overall flow of TwigINLAB 
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Fig. 5: Stack and stream assigned to each query node 

during the analysisQueryPattern() function. 
 
 

Next, the partitionTwig() function takes place. If 
the query is path query (only one leaf node), this 
function is skipped and it will proceed to the twigJoin() 
function. However, if it is twig query, during this 
function, the twig pattern is decomposed into two or 
more path queries. Starting from the root of twig query 
pattern, for each start tag event, it pushes the tag into 
twigStack (a stack to keep track of twig query 
sequence).  When it reaches an end tag event, it checks 
whether the current entry at the top of twigStack is a 

leaf node. If it is a leaf, the query node will be added 
one by one to the vpathList (a vector to store query 
nodes in leaf-to-root order) until it reaches the root. 
Finally, it will be output in reverse order by the 
function reverse(). The final output of this function is a 
set of path queries in root-to-leaf order in pq (a 
hashtable to keep each distinct path query).   

For each path query, it recursively calls the 
twigJoin() function to find the possible path matches. 
Each possible match is pushed into the stack in the 
twigJoin() function. For instance, using the twig query 
in Fig. 5 as an example, after the partitionTwig() 
function, there are two path queries: book-author and 
book=publisher. Initially, the path query book-author is 
to be processed first.  Based on the self attribute in each 
first occurrence in Tbook, and  Tauthor, query node book is 
being processed first. Element <1-1:0> is then pushed 
into Sbook. The next returned query node is the 
immediate child of book, which is author.  Element <3-
2:1> is pushed into Sauthor because parent attribute of 
book is equal to self attribute of author. Since author is 
the leaf query node, a partial solution is formed 
between book-author. Based on the next occurrences, 
the next returned node is element <4-2:1> as it has the 
next smallest self attribute. This element is then pushed 
into Sauthor because the parent attribute of book is equal 
to the self attribute of author. Since author is the leaf 
query node, another partial solution is formed between 
book-author. This process repeats until it reaches the 
leaf node of the all paths as illustrated in Fig. 6.  

Next, these matches are merged back through the 
mergeTwig() function. In the mergeTwig() function, all 
partial solutions from the twigJoin() function are 
merged together to generate the final solutions. This 
function begins by comparing each entry in the partial 
solutions of two path queries at a time. All the 
occurrences in the partial solutions are in sorted order 
of their self-attributes. If each entry first node is equal, 
or if the query edge is of P-C relationship and the 
second query node is of sibling and predecessor 
relationship, the partial solution will be added to the 
final solutions. For query edge with A-D relationship, if 
the second query node is a predecessor, it will be added 
as a final solution. In both cases, the inner loop begins 
the iteration from the current j position. Hence, this 
function skips the unnecessary iteration of non-feasible 
partial solutions. However, if the first node in the 
second path query is greater than node1, the next inner 
loop will begin from position j-1 (for cases where j > 
0). Fig. 7 illustrates the merging process. 
 Finally, the final solutions are output through the 
outputSolution() function. 
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Fig. 6: Matching process in twigJoin() function. 

 
 

 
Fig. 7: The merging process scenario. 

 
 
 

RESULTS AND DISCUSSION 
 

We have implemented TwigINLAB using Java API 
for XML Processing (JAXP). Experiments have been 
carried out on the SwissProt dataset (112MB) obtained 

from the University of Washington XML repository [17].  
We modified the SwissProt dataset into various file 
sizes ranging from 10MB until 110MB for the purpose 
of measuring the scalability of both approaches in 
supporting large-scale dataset.  

We evaluated the performance of TwigINLAB as 
compared to TwigStack on two main types of queries 
namely, path query and twig query. For each type of 
query, we measure the performance of both algorithms 
on (a) Q1:-Query with P-C relationship (b) Q2:-Query 
with A-D relationship and (c) Q3:-Mixed query.  

All our experiments are performed on 1.7GHz 
Pentium IV processor with 512 MB SDRAM running 
on Windows XP systems. All numbers presented here 
are produced by running the experiments multiple times 
and averaging the execution times of several 
consecutive runs.  

Figures 8, 9 and 10 show the execution time of 
TwigINLAB and TwigStack for both path and twig 
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query.  Fig. 8 shows the execution time of: Q1PQ= 
Entry/Organelle for path query and Q1TQ= 
Entry[/Organelle]/Prints for twig query over Standard 
dataset by varying the file sizes. From the result, 
TwigINLAB outperforms TwigStack in all the test 
cases by about 26.8% for path query and 24.5% for 
twig query.  
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Fig. 8:Test results for Q1. 

 
Fig. 9 shows the execution time of: Q2PQ = 

Entry//MedlineID for path query and Q2TQ= 
Entry[//MedlineID]//Comment for twig query 
respectively. TwigINLAB performs by about 21.2% 
better than TwigStack for path query and 17.8% for 
twig query. 
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Fig. 9: Test results for Q2. 

Fig. 10 shows the execution time of: Q3PQ = 
Features//MUTAGEN//Descr for path query and Q3TQ 
= Features[//MUTAGEN//Descr]/Site for twig query 
respectively. TwigINLAB performs about 17.1% better 
than TwigStack for path query and 13.7% for twig 
query.  
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 Fig. 10: Test results for Q3. 

 
 

From these figures, we draw several observations 
and conclusions:- 

• When the twig query contains only P-C edges, 
TwigINLAB performs around 24.5% better as 
compared to TwigStack (shown in Fig. 9). 
This may be due to the INLAB labeling 
scheme, which is optimal to support P-C 
relationships. 

• Although TwigINLAB still outperforms 
TwigStack for query with edges of A-D 
relationship by around 17.8%, the difference is 
less significant as compared to query with 
edges of P-C relationships. This may be due to 
the extra time needed to determine whether the 
two nodes is in A-D relationship by multiple 
lookups on the index table until the ancestor 
level is reached. 

• For each test case, TwigINLAB increases less 
drastically as compared to TwigStack. This 
shows that TwigINLAB is more scalable in 
processing large-scale datasets efficiently. 
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CONCLUSION 

 
 In this paper, we have presented the TwigINLAB 
algorithm to optimize all the sub-processes involved in 
the decomposition-matching-merging approaches. 
Experimental results show that, in terms of execution 
time, on average, TwigINLAB performs about 21.7% 
better for path query and about 18.7% better for twig 
query compared to the TwigStack. Also, TwigINLAB 
is more scalable compared to TwigStack. As such, 
TwigINLAB supports large-scale query of datasets 
efficiently. 
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