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Abstract: Problem statement: Large scale plantation of oil palm trees requires on-time detection of 
diseases as the ganoderma basal stem rot disease was present in more than 50% of the oil palm 
plantations in Peninsular Malaysia. Approach: To deal with this problem, airborne hyperspectral 
imagery offers a better solution in order to detect and map the oil palm trees that were affected by the 
disease on time. Airborne hyperspectral can provide data on user requirement and has the capability of 
acquiring data in narrow and contiguous spectral bands which makes it possible to discriminate 
between healthy and diseased plants better compared to multispectral imagery. By using vegetation 
indices and red edge techniques, the condition of oil palm trees could be determined accurately. 
Results: Generally, all of these techniques showed better results as they could give accuracy between 
73 and 84%. The highest accuracy was achieved by using Lagrangian interpolation technique with 
84% of overall accuracy. Conclusion/Recommendations: The red edge based techniques were more 
effective than vegetation indices in detecting Ganoderma-infected oil palm trees plantation since there 
were three out of four techniques that could yield high accuracy results. 
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INTRODUCTION 

 
 Dealing with disease problem in oil palm 
plantation involves a variety of curative measures in 
which disease detection and mapping play a central 
role. Hyperspectral remote sensing data offer a better 
chance of disease detection compared to multispectral 
imagery[1]. This study implemented the advantage of 
using hyperspectral airborne imagery data in order to 
find the best technique in discriminating the healthy and 
stressed oil palm trees.  
 This study can be considered as an important 
research for oil palm industry especially in Malaysia 
since there is no existing published research on the use 
of airborne hyperspectral imagery to detect Ganoderma-
infected oil palm trees. Six vegetation indices and four 
red edge techniques were tested on hyperspectral image 
which were the Normalized Difference Vegetation 
Indices (NDVI), Renormalized Vegetation Index 
(RDVI) [2], Simple Ratio Index (SRI)[3], Modified 
Simple Ratio (MSR)[4], Soil Adjusted Vegetation Index 
(SAVI) [5], Optimized Soil-Adjusted Vegetation Index 

(OSAVI)[6], Lagrangian interpolation technique[7], 
Vogelmann red edge (VOG1)[8], linear four point 
interpolation[9] and maximum first derivative[7]. 

 Vegetation indices are widely used for the 
estimation of crop and vegetation variables by using 
visible and Near Infrared Regions (NIR) of the 
electromagnetic spectrum. Healthy plant typically 
displays very low reflectance and transmittance in 
visible region and very high reflectance and 
transmittance in NIR. It was due to strong absorptance 
by photosynthetic and accessory plant pigment in 
visible region and little absorptance by sub cellular 
particles or pigments and also because there is 
considerable scattering at mesophyll cell wall interfaces 
in NIR region[10-13]. This sharp dissimilarity in 
reflectance properties between visible and NIR 
wavelengths underpins a majority of remote approaches 
for monitoring and managing crop and natural 
vegetation communities[14,15]. Thus the presence of 
stresses in oil palm trees will be associated with the 
chlorophyll absorption in reflectance and the 
normalized pigment chlorophyll vegetation indexes 
which will be showing a loss of chlorophyll pigment 
compared to healthy oil palm trees. 
 The other methods explored in this study were the 
red edge techniques. The red edge region which is 
located at the red-near infrared (680 and 780 nm) 
transition in leaf reflectance has been shown to have 
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high information content for vegetation spectra[16]. The 
abrupt change between 680 and 780 nm caused by the 
combined effects of strong absorption in the red 
wavelengths and high reflectance in the NIR 
wavelengths is due to leaf internal scattering[17]. A 
shifting in the red edge slope and wavelength of 
maximum slope towards a longer wavelength could be 
due to the increasing amount of chlorophyll, otherwise 
the red edge position will shift towards a shorter 
wavelengths[18,19].This condition has been used as a 
means to estimate changes in foliar chlorophyll content 
and also as an indicator of vegetation stress[17,19-21]. 
 

MATERIALS AND METHODS 
 
 The study area is located in Serdang, Selangor 
Malaysia and the image was acquired by using 
Advanced Imaging Spectrometer for Applications 
(AISA) sensor in the year 2007. Figure 1 shows the 
location of the study area. AISA airborne hyperspectral 
imaging spectrometer is capable of collecting data 
within a spectral range of 430-900 nm. Although AISA 
is capable of collecting up to 286 spectral channels 
within this range, the data rate associated with the 
short integration times (sampling rates) required of the 
sensor in most operational/flight modes, limits the 
number of channels. The full spectral mode, however, is 
useful for acquiring 286 band spectral signatures of 
specific targets that can be used to generate pure end 
members   as   well   as   for   band  selection  purposes. 
 

 
 
Fig. 1: Location of the study area in Selangor, Malaysia 

Current operational  collection configurations ranged 
from 10-70 spectral bands depending on the aircraft 
speed, altitude and the application. The spatial 
resolution of the data is 1 m with 1000 m flying 
altitude. 
 Generally, this study is comprised of two important 
parts. The first involved pre-processing and the second 
was processing. All these processes were implemented 
using ENVI 4.4 software. Figure 2 shows the overall 
flow of the steps that had been implemented in this 
study. 
 
Pre-processing: Pre-processing involved several steps; 
geometric and radiometric correction, cross track 
illumination correction and Minimum Noise Fraction 
(MNF). Geometric and radiometric corrections were 
done in a separate software package under ENVI 
software environment called CaliGeo. After that, cross 
track illumination correction was implemented for 
removing variation in the image. Lastly, MNF 
transformation was performed on the hyperspectral 
image in order to determine the inherent dimensionality 
of the image data, to segregate noise in data and to 
reduce the computational requirement for subsequent 
processing. After the forward transformation, the MNF 
bands were inverse-transformed to obtain image data 
back into original (reflectance vs. wavelength) format 
but with reduced noise level. 
 
Processing: Processing part involved calculation of 
vegetation indices and red edge position. For vegetation 
indices, it can be divided into two sub categories which 
are normalized difference and soil line vegetation indices. 
 

 
 
Fig. 2: Flowchart of methodology 
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While for the red edge indices, the input data come 
from two types of data, in which the VOG1 and linear 
four points interpolation used reflectance data and 
maximum first derivative and Lagrangian interpolation 
techniques used first derivative data. Transformation 
from reflectance into first derivative reflectance image 
was performed using a derivative function. This 
function performs a numerical differentiation using 
three-point Lagrangian interpolation where the 
wavelengths of the respective AISA spectral bands are 
used as input for defining the spacing between the 
bands. All the calculations of the vegetation and red 
edge indices was done using ‘Band Math’ tool in 
ENVI 4.4 software. They were further used to classify 
healthy and stressed oil palm trees in the image. After 
that, accuracy assessment was performed on each of 
the classification result in order to identify the most 
suitable technique based on the highest overall 
accuracy. Confusion matrix was developed in order to 
calculate the overall accuracy for each classification 
result obtained from the vegetation indices and red 
edge techniques. 51 Differential Global Positioning 
System (DGPS) points measured using Trimble 
GeoXT for healthy and stressed oil palm trees 
collected from field work were overlaid to the 
classification results in order to measure the accuracy 
based on confusion matrix. 
 

RESULTS 
 
 Table 1 shows the ranking from the highest to the 
lowest accuracy for both vegetation indices and red 
edge techniques. From Table 1, it can be seen that for 
vegetation indices, the highest accuracy was obtained 
by using MSR and SRI with 80% of overall accuracy 
for both of the techniques. RDVI, NDVI, SAVI and 
OSAVI get the same 78% of overall accuracy. While 
for red edge techniques, the highest accuracy was 
obtained by using Lagrangian interpolation followed 
by VOG1, maximum 1st derivative and linear four 
point interpolation with the accuracies of 84, 82, 80 
and 73% respectively. Generally, three out of four 
techniques using red edge can give better 
discrimination of healthy and stressed oil palm trees 
since the accuracy was around 80 and 84%. Figure 3 
shows the example of healthy and stressed oil palm 
trees area using the Lagrangian interpolation 
technique. The healthy oil palm area was presented 
with green color class and the diseased oil palm area 
was presented by maroon color class. Other features 
such as roads and bare soils had been masked out from 
the image and they were presented as black color 
class. 

Table 1: Accuracies for vegetation indices and red edge techniques 
ranked from the highest to the lowest accuracy 

 Overall accuracy 
Techniques (correctly classified) 
Lagrangian interpolation technique 84% 
Vogelmann Red Edge Index (VOG1) 82% 
Maximum 1st derivative spectrum 80% 
Modified Simple Ratio (MSR) 80% 
Simple Ratio Index (SRI) 80% 
Renormalized Difference Vegetation Index (RDVI) 78% 
Normalized Difference Vegetation Index (NDVI) 78% 
Soil Adjusted Vegetation Index (SAVI) 78% 
Optimized Soil-Adjusted Vegetation Index (OSAVI) 78% 
Linear four point interpolation technique 73% 

 

 
 
Fig. 3: The classification map of Lagrangian 

interpolation technique showing the locations of 
healthy and diseased oil palm trees detected 
from the airborne hyperspectral sensor 

 
DISCUSSION 

 
 The classification for red edge based techniques 
was based on the wavelength value of the red edge peak 
between around 680-730 nm. Using this technique, the 
pixels of healthy oil palm trees which contain more 
chlorophyll will have longer wavelength values 
compared to the diseased ones which will have shorter 
wavelength values. The obtained accuracy result from 
this technique was the highest compared to the other 
techniques. For the Lagrangian interpolation technique 
with the highest accuracy among other techniques, only 
eight points were misclassified for both healthy and 
stressed classes. Lagrangian interpolation used first 
derivative spectra as input for the calculation of the 
algorithm. In this algorithm, band 15, 16 and 17 that 
correspond to wavelength values of 715, 734 and 791 
nm respectively of the sensor’s data had been used in 
the calculation. The advantage of derivative 
spectroscopy is that it is relatively insensitive to 
variations in illumination intensity, which might be 
caused by changes in sun angle, cloud cover, 
topography and atmospheric attenuation. This could be 
the main reason for the success of this technique. 
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 This study further demonstrated the effectiveness 
of the Lagrangian interpolation technique for vegetation 
mapping as discussed for a case of a forest area in the 
United Kingdom[22]. However, as the use of 
hyperspectral remote sensing for detecting disease in oil 
palm plantation has never been implemented before, 
this study provides an important benchmark in 
evaluating the use of the technology and image 
processing algorithms. 
 For future studies, it is recommended to develop a 
more optimized index or technique specifically for 
detecting oil palm disease in order to further improve 
detection accuracy.  
 

CONCLUSION 
 
 51 points for both healthy and diseased classes had 
been used to assess the classification results by using 
confusion matrix. The accuracies achievable by the 
techniques used can be ranked from the highest to 
lowest as Lagrangian interpolation (84%), VOG1 
(82%), maximum 1st derivative (80%), MSR (80%), 
SRI (80%), RDVI (78%), NDVI (78%), SAVI (78%), 
OSAVI (78%) and linear four point interpolation (73%). 
It shows that the Lagrangian interpolation technique 
would be able to discriminate between healthy and 
stressed oil palm trees accurately.  
 Other results that obtained higher accuracy were 
VOG1, Maximum first derivative, SRI and MSR. All 
these techniques achieved overall accuracy of 80% or 
more. It can be concluded that red edge based 
techniques are more effective than vegetation indices in 
detecting Ganoderma-infected oil palm trees. The 
finding from this study can be adopted by the oil palm 
plantation agencies for oil palm plantation management 
approach utilizing airborne hyperspectral imageries.  
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