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Abstract: Problem statement: Bootstrap approach had introduced new advancement in modeling and 
model evaluation. It was a computer intensive method that can replace theoretical formulation with 
extensive use of computer. The Ordinary Least Squares (OLS) method often used to estimate the 
parameters of the regression models in the bootstrap procedure. Unfortunately, many statistics 
practitioners are not aware of the fact that the OLS method can be adversely affected by the existence of 
outliers. As an alternative, a robust method was put forward to overcome this problem. The existence of 
outliers in the original sample may create problem to the classical bootstrapping estimates. There was 
possibility that the bootstrap samples may contain more outliers than the original dataset, since the 
bootstrap re-sampling is with replacement. Consequently, the outliers will have an unduly effect on the 
classical bootstrap mean and standard deviation. Approach: In this study, we proposed to use a robust 
bootstrapping method which was less sensitive to outliers. In the robust bootstrapping procedure, we 
proposed to replace the classical bootstrap mean and standard deviation with robust location and robust 
scale estimates. A number of numerical examples were carried out to assess the performance of the 
proposed method. Results: The results suggested that the robust bootstrap method was more efficient 
than the classical bootstrap. Conclusion/Recommendations: In the presence of outliers in the dataset, we 
recommend using the robust bootstrap procedure as its estimates are more reliable.  
 
Key words: Bootstrap, outliers, robust location, robust standard deviation 

 
INTRODUCTION 

 
 Model selection is an important subject in the areas 
of scientific research, especially in regression 
predictions. Riadh et al.[1] proposed utilizing the 
bootstrap techniques for model selection. Bootstrap 
method which was introduced by[2] is a very attractive 
method because it can be utilized without relying any 
assumptions on the underlying population. It is a 
computer intensive method that can replaced theoretical 
formulation with extensive use of computer. There are 
considerable papers related to bootstrap method

[3-7]
. 

Despite the good properties of the bootstrap method, it 
suffers numerical instability when outliers are present 
in the data. The bootstrap distribution might be a very 
poor estimator of the distribution of the regression 
estimates because the proportion of outliers in the 
bootstrap samples can be higher than that in the original 
data set[4]. Most of the bootstrap techniques use the 
Ordinary Least Squares (OLS) procedures to estimate 
the parameters of the model. It is well known that the 

OLS is extremely sensitive to outliers and will produce 
inaccurate estimates[8]. In this study, we propose using 
robust method in which the final solutions are not easily 
affected by outliers. 
 

MATERIALS AND METHODS 
 
Classical bootstrap based on the fixed-x re-
sampling: Consider the general multiple linear 
regression model with additive error terms: 
 
y X= β + ε  (1) 
Where: 
y = The n×1 vector of observed values for the 

response variable 
X = The n×p matrix of observed values for the m 

explanatory variables 
 
 The vector β is an unknown p×1 vector of 
regression coefficients and ε is the n×1 vector of error 
terms which is assumed to be independent, identically 
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and normally distributed with mean 0 and constant 
variance, σ2. In regression setting, there are two 
different ways of conducting bootstrapping; namely the 
Random-x Re-Sampling and the fixed-x Re-Sampling 
which is  also refer as bootstrapping the residuals. 
Riadh et al.[1] use the random-x Re-Sampling together 
with the OLS method in their bootstrap algorithm. In 
this study, the fixed-x Re-Sampling technique with 
OLS method is adopted. We call this estimator the 
Classical Bootstrap fixed-x Resampling Method 
(CBRM).  
 The CBRM procedure as enumerated by Efron and 
Tibshirani[3] is summarized as follows: 
 
Step 1: Fit the OLS to the original sample of 
observations to get β̂  and the fitted values i i

ˆŷ f (x , ).= β   
 
Step 2: Obtain the residuals i i iˆy yε = −  and giving 

probability 1/n for each εi value.
 
 

 
Step 3: Draw n bootstrap random sample with 
replacement, that is biε  is drawn from εi and attached 

to iŷ to get a fixed-x bootstrap values biy  where 
b b
i i i

ˆy f (x , )+= β ε . 
 
Step 4: Fit the OLS to the bootstrapped values b

iy  on 

the fixed X to obtain bˆ .β  
 
Step 5: Repeat steps 3 and 4 for B times to get 

b1 bBˆ ˆ, ,β βK where B is the bootstrap replications.  

 According to Imon and Ali
[5]

, there is no general 
agreement among statisticians on the number of the 
replications needed in bootstrap. B can be as small as 
25, but for estimating standard errors, B is usually in 
the range of 25-250. They point out that for bootstrap 
confidence intervals, a much larger values of B is 
required which normally taken to be in the range of 
500-10,000. 
 Riadh et al.[1] pointed out that the bootstrap 
standard deviation can be estimated as follows: 
 

1
B 2

(b) 2
boot boot

b 1

1
ˆ (MSR )

B 1 =

 σ = − µ∑ − 
 (2) 

 
where, MSR is the mean squared residual denoted as: 
 

( )
2n

b
i

i 1
MSR e / n

=
= ∑  (3) 

 
and 

 
b b

i iˆe (y y ), b 1,2,... ...,B
i 1,2, ... ...,n

= − =
=

 

 

 
B

(b)
boot

b 1

1
(MSR b 1,2,... ...,B

B =
µ = =∑  (4) 

 
 The drawback of using the classical standard 
deviation and the classical mean in estimating the 
bootstrap scale and location in Eq. 2 and 4 is that it is 
very sensitive to outliers. As an alternative, a robust 
location and scale estimates which are less affected by 
outliers are proposed. The robust bootstrap location and 
robust scale estimates are given by (5) and (6) as 
follows: 
 

(b)
bootMed Median(MSR )=  (5) 

 
(b)

boot bootMAD Med | MSR Med | /0.6745,b 1,2,...B= − =  (6) 
 
Robust Bootstrap Based on the Fixed-x Resampling 
(RBRM): Unfortunately, many researchers are not 
aware that the performance of the OLS can be very 
poor when the data set for which one often makes a 
normal assumption, has a heavy-tailed distribution 
which may arise as a result of outliers. Even with single 
outlier can have an arbitrarily large effect on the OLS 
estimates[8]. It is now evident that the bootstrap 
estimates can be adversely affected by outliers, because 
the proportion of outliers in the bootstrap samples can 
be higher than that in the original data[4]. These 
situations are not desirable because they might produce 
misleading results. An attempt has been made to make 
the bootstrap estimates more efficient. We propose to 
modify the CBRM procedure by using some logical 
procedure with robust Least Trimmed Squares (LTS) 
estimator, so that outliers have less influence on the 
parameter estimates. We call this estimator as Robust 
Bootstrap fixed-x Re-Sampling Method (RBRM).We 
summarized the RBRM as follows: 
 
Step 1: Fit the LTS to the original sample of 
observations to get β̂  and the fitted values i i

ˆŷ f (x , ).= β  
 
Step 2: Obtain the residuals i i iˆy yε = −  and giving 

probability 1/n for each εi value. Standardized the 
residuals and identify them as outliers if the absolute 
value of the standardized residuals larger than three.

 
 

 
Step 3: Draw n bootstrap random sample with 
replacement, that is biε  is drawn from εi and attached to 

get a fixed-x bootstrap values biy  where b b
i i i

ˆy f (x , )+ .= β ε  
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At this step, we built a dynamic subroutine program for 
the detection of outliers. This program has the ability to 
identify a certain percentage of outliers in each 
bootstrap sample.  
 
Step 4: Fit the LTS to the bootstrapped values b

iy  on 

the fixed X to obtain bˆ .β  The percentage of outlier that 
should be trimmed depend step 2.  
 
Step 5: Repeat steps 3 and 4 for B times to get 

b1 bBˆ ˆ, ,β βK  where B is the bootstrap replications.  

 The bootstrap scale and location estimates in Eq. 2 
and 4 are based on Mean Squared Residuals which is 
sensitive to outliers. We propose to replace the Mean 
Squared Residual (MSR) with a more robust measure 
that is the Median Squared Residual (RMSR). The 
propose robust bootstrap location and robust bootstrap 
scale estimates are as follows: 
 

(b)
bootRMed Median(RMSR )=  (7) 

 
(b)

boot bootRMAD Med | RMSR RMed | /0.6745= −  (8) 
 
where, RMSR is the Median Squared Residual and for 
each observation i, i = 1,2,…….., n and for each b = 1, 
2,…, B; compute: 
 

(b) *(b) 2
iRMSR Median(e )=  (9) 

 
*(b) (b)
i i iˆe (y y )= −  (10) 

 
 We also would like to compare the performance of 
(7) and (8) with the classical formulation of bootstrap 
standard deviation and location but based on Median 
Squared Residuals instead of Mean Squared Residuals. 
These measures are given by: 
 

1
B 2

* (b) 2
boot boot

b 1

1ˆˆ ( ) (RMSR )
B 1 =

 σ θ = − µ∑ − 
 (11) 

 
B

(b)
boot

b 1

1
(RMSR )

B =
µ = ∑  (12) 

 
 The RBRM procedures commences with 
estimating the robust regression parameters using LTS 
method which trim some of the values from both size. 
This means that, some values from the data which are 
labeled as outliers are deleted. In this situation LTS

∧
β , 

will be either larger or smaller than β̂ . In step 2, 
outliers might be present and it can be the candidate to 
be selected in Step 3. Since we consider sampling with 
replacement, each outlier might be chosen more than 

once. Consequently, there is a possibility that a 
bootstrap samples may contain more outliers than the 
original sample. We try to overcome this problem by 
determining the alpha value based on the percentage of 
outliers in the bootstrap resamples which are detected in 
Step 3. In this respect, we develop a dynamic detection 
subroutine program that can detect the proportion of 
outliers in each bootstrap resample. Step 4 of RBRM 
includes the computation of y bootstap by using the 
LTS based on the first three logical steps. The LTS is 
expected to be more reliable than the OLS when 
outliers are present in the data, because it is based on 
robust method which is not sensitive to outliers. As 
mentioned earlier, the number of outliers that should be 
trimmed in the LTS procedure depends on the alpha 
value that correspond to the percentage of outliers 
detected. In this way, the effect of outliers is reduced. 
According to Riadh et al.[1], the best model to be 
selected among several models, is the one which has the 
smallest value of location and scale estimates or the 
minimum scale estimate.  
 

RESULTS  
 
 Several well known data sets in robust regression 
are presented to compare the performance of the CBRM 
and the RBRM procedures. Comparisons between the 
estimators are based on their bootstrap locations and 
scales estimates. We have performed many examples 
and due to space constraints, we include only three real 
examples and one simulated data. The conclusions of 
other results are consistent and are not presented due to 
space limitations. All computations are done by using 
S-Plus®6.2 for windows with Professional Edition. 
 
Hawkins, Bradu and Kass Data: Hawkin et al.[8] 
constructed an artificial three-predictor data set 
containing 75 observations with 10 outliers in both of 
the spaces (cases 1-10), 4 outliers in the X-space (cases 
11-14) and 61 low leverage inliers (cases 15-75). Most 
of the single case deletion identification methods fail to 
identify the outliers in Y-space though some of them 
point out cases 11-14 as outliers in the Y-space. 
  
We consider four models: 
 

i 0 1 1i 2 2i 3 3i i

i 0 1 1i 2 2i i

i 0 1 1i 3 3i i

i 0 2 2i 3 3i i

M1: P 3 : Y X X X True

M2 : P 2 : Y X X

M3: P 2 : Y X X

M4 : P 2 : Y X X

= = β + β + β + β + ε

= = β + β + β + ε

= = β + β + β + ε

→ = = β + β + β + ε
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Table 1: CBRM results of Hawkins data    
 Mean  Median 
 ------------------------------ ------------------------------ 

Models µboot 
^
bootσ  medboot MADboot 

M1 0.3154 0.0346 0.3133 0.0303 
M2 0.2975 0.0399 0.2937 0.0372 
M3 0.3472 0.0438 0.3474 0.0360 
M4 0.3224 0.0395 0.3179 0.0368 

 
Table 2: RBRM results of Hawkins data 
 Mean  Median 
 ----------------------------- ------------------------------ 

Models µboot 
^
bootσ  medboot MADboot 

M1 5.1866 0.3155 5.1053 0.2280 
M2 7.0047 0.7206 6.8892 0.6631 
M3 5.7588 0.4730 5.6654 0.4079 
M4 5.0593 0.2247 5.0036 0.1371 

 
Table 3: CBRM results of Stackloos data  
 Mean  Median 
 -------------------------- ------------------------------- 

Models µboot 
^
bootσ  medboot MADboot 

M1 10.26 1.25 10.009 1.0425 
M2 10.33 1.12 10.075 0.9359 
M3 16.83 1.91 16.351 1.4574 
M4 25.85 15.7 25.164 2.0667 

 
 Table 1 and 2 show the estimated bootstrap 
location and scale estimates based on CBRM and 
RBRM procedures.  
 
Stackloss data[8]: The Stackloss data is a well known 
data set which is presented by Brownlee[9]: The data 
describe the operation of plant for the Oxidation of 
ammonia to nitric acid and consist of 21 four-
dimensional observations. The Stackloss (y) is related 
to the rate of operation (x1), the cooling water inlet 
temperature (x2) and the acid concentration (x3). Most 
robust statistics researchers concluded that observations 
1, 2, 3 and 21 were outliers. 
 We consider four models: 
 

i 0 1 1i 1 2i 3 3i i

i 0 1 1i 2 2i i

i 0 1 1i 3 3i i

i 0 2 2i 3 3i i

M1:P 3:Y X X X True

M2:P 2:Y X X

M3:P 2:Y X X

M4 :P 2:Y X X

= = β +β + β + β + ε

= = β + β + β + ε

= = β +β + β + ε

→ = = β + β + β + ε

 

 
 Table 3 and 4 show the bootstrap location and scale 
estimates of the Stackloss data based on CBRM and 
RBRM procedures. 

Table 4: RBRM results of Stackloos data 

 Mean  Median 
 ---------------------------- ------------------------------ 

Models µboot 
^
bootσ  medboot MADboot 

M1 0.9293 1.6751 1.1717 0.4196 
M2 0.6609 0.5061 1.0605 0.4684 
M3 1.3661 1.1465 2.0388 0.5655 
M4 4.6048 6.0732 6.8214 1.7793 

 
Coleman data[8]: This data which was studied by 
Coleman et al.[10] contains information on 20 schools 
from the Mid-Atlantic and new England states. 
Mosteller and Tukey[11] analyzed this data with 
measurements of five independent variables. The 
previous study refer observations 3, 17 and 18 as 
outliers[8]. 
 We consider fifteen models as follow: 
 

i 0 1 1i 2 2i 3 3i 4 4i 5 5i i

i 0 1 1i 2 2i 3i 4 4i i

i 0 1 1i 2 2i 3 3i 5 5i i

i 0 1 1i 2 2i 4 4i 5 5i i

i 0 1 1i 3 3i 4 4i

M1: P 5 : Y X X X X X True

M2 : P 4 : Y X X X X3

M3: P 4 : Y X X X X

M4 : p 4 : Y X X X X

M5: P 4 : Y X X X

= = β + β + β + β + β + β + ε

= = β + β + β + β + β + ε

= = β + β + β + +β + β + ε

= = β + β + β + +β + β + ε

= = β + β + β + +β + 5 5i i

i 0 2 2i 3 3i 4 4i 5 5i i

i 0 2 2i 4 4i 5 5i i

i 0 2 2i 3 3i 4 4i i

i 0 3i 4 4i 5 5i i

i 0 1 1i 3 3i 4 4i i

i 0

X

M6 : P 4 : Y X X X X

M7 : P 3: Y X X X

M8: P 3 : Y X X X

M9 : p 3 : Y X X X3

M10 : P 3: Y X X X

M11: P 3: Y

β + ε

= = β + β + β + +β + β + ε

= = β + β + +β + β + ε

= = β + β + +β + β + ε

= = β + β + +β + β + ε

= = β + β + +β + β + ε

= = β + β1 1i 4 4i 5 5i i

i 0 1 1i 2 2i 5 5i i

i 0 1 1i 2 2i 4 4i i

i 0 1 1i 2 2i 3 3i i

i 0 2 2i 3 3i 4 4i i

X X X

M12 : P 3: Y X X X

M13: P 3: Y X X X

M14 : P 3: Y X X X

M15 : P 3: Y X X X

+ +β + β + ε

= = β + β + +β + β + ε

= = β + β + +β + β + ε

= = β + β + +β + β + ε

= = β + β + +β + β + ε

 

 
 Table 5 and 6 show the results of CBRM and 
RBRM of the Coleman data.  
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Table 5: CBRM results of Coleman data 
 Mean  Median 
 ---------------------------- ---------------------------- 

Models µboot 
^
bootσ  medboot MADboot 

M1 264.79 407.86 114.31 155.05 
M2 1083.70 614.98 1004.40 585.65 
M3 910.05 938.52 662.40 741.07 
M4 6314.00 4238.10 5568.10 4299.70 
M5 696.64 651.45 537.50 527.02 
M6 605.49 684.37 402.30 490.25 
M7 8010.50 4690.30 7303.80 4549.20 
M8 291.17 277.38 225.70 249.09 
M9 1161.50 873.58 995.40 712.73 
M10 1093.60 634.07 1019.40 588.30 
M11 21783.40 6146.60 21262.40 6069.00 
M12 1797.40 2013.60 1042.90 1292.80 
M13 4843.40 2489.50 4502.70 2305.60 
M14 178.50 196.57 105.05 126.48 
M15 1801.50 904.77 1668.20 821.28 

 
Table 6: RBRM results of Coleman data 
 Mean  Median 
 -------------------- --------- ------------------------------ 

Models µboot 
^
bootσ  medboot MADboot 

M1 0.4296 0.2362 0.4036 0.1607 
M2 0.9157 0.8943 0.7362 0.3878 
M3 1.5126 1.2118 1.2296 0.6643 
M4 5.1409 3.1416 4.5042 1.8494 
M5 0.9022 0.5792 0.8250 0.3828 
M6 0.5587 0.4421 0.4472 0.1964 
M7 5.9627 2.8438 5.7292 2.7066 
M8 266.06 269.86 228.71 155.20 
M9 1.0832 0.5817 1.0361 0.4596 
M10 0.9274 0.5748 0.8587 0.3959 
M11 6.4584 3.5923 6.3301 2.0415 
M12 7.4923 3.5314 7.4160 2.4681 
M13 4.9836 3.7238 4.2552 2.0028 
M14 2.0063 0.9448 1.9293 0.8440 
M15 1.2564 1.3637 1.0154 0.5616 

 
Simulation study: A simulation study similar to that of 
Riadh et al.

[1]
 is presented to assess the performance of 

the RBRM procedure. Consider the problem of fitting a 
linear model: 
 

0 1 1 2 2 p p iY X X ... X= θ + θ + θ + + θ + ε  

 
(i) (i)

0 1 1 iB (x ,x , y ) i 1,2,...,500= =  

 
 In this study, we simulate a data set by putting: 
 

(i)
1

(i)
2

(i) (i)
1 2 i

x ~ N(0.6,25)

x ~ N( 0.1,0.81)

y 2 0.7x 0.5x

−

= + + + ε

 

 
where, εi is a random variable which possesses the 
distribution N(0, 0.04). 

Table 7: CBRM results of simulated data 
  Mean B = 500 Median B = 500 
  ------------------------ -------------------------- 

Out.  M µboot 
^
bootσ  medboot MADboot 

5% M1 0.024 0.001 0.024 0.001 
 M2 0.112 0.004 0.111 0.004 
 M3 5.908 0.221 5.923 0.227 
10% M1 0.029 0.002 0.029 0.002 
 M2 0.132 0.003 0.132 0.003 
 M3 7.200 0.253 7.145 0.233 
15% M1 0.097 0.011 0.097 0.012 
 M2 0.203 0.014 0.202 0.015 
 M3 8.845 0.412 8.767 0.420 
20% M1 0.147 0.112 0.124 0.040 
 M2 0.241 0.090 0.206 0.056 
 M3 10.108 0.494 10.110 0.508 

 
Table 8: RBRM results of simulated data 

  Mean B = 500 Median B = 500 
  ------------------------ ------------------------- 

Out. M µboot 
^
bootσ  medboot MADboot 

5% M1 5.512 0.026 5.505 0.020 
 M2 5.870 0.021 5.863 0.015 
 M3 19.369 0.079 19.343 0.058 
10% M1 10.829 0.053 10.816 0.044 
 M2 11.092 0.043 11.080 0.030 
 M3 25.266 0.102 25.230 0.071 
15% M1 14.891 0.072 14.871 0.056 
 M2 15.087 0.058 15.068 0.039 
 M3 28.933 0.116 28.896 0.089 
20% M1 18.596 0.089 18.573 0.075 
 M2 18.746 0.078 18.720 0.053 
 M3 30.283 0.111 30.251 0.088 

 
 Then we started to contaminate the residuals. At 
each step, one ‘good’ residual was deleted and 
replaced with contaminated residual. The 
contaminated residual were generated as N (10, 9). 
We consider 5, 10, 15 and 20% contaminated 
residuals and three models: 
 

1 i 0 1 1i 2 2i i

2 i 0 1 1i i

3 i 0 2 2i i

Model1 M : P 2 : Y X X True

Model2 M : P 1: Y X

Model3 M : P 1: Y X

• = = β + β + β + ε
• = = β + β + ε
• = = β + β + ε

 

 
 Table 7 and 8 show the results of CBRM and 
RBRM procedures. Graphical displays are used to 
explain why a particular model is selected. We only 
present the results for Model 1-3 of the simulated data 
at 5% outliers due to space limitations. The residuals 
plot before the bootstrap procedure is shown in Fig. 1. 
Figure 2-4 shown the box-plot of the MSR boot for 
Model 1-3 while Fig. 5-7 exemplified the box-plot of 
the RMSR for Model 1-3.  
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Fig. 1: Residuals before bootstrap 
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Fig. 2: The Box-plot for the MSR boot M1 
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Fig. 3: The Box-plot for the MSR boot M2 
 

DISCUSION 
 
 Let us first focus our attention to the results of the 
Hawkin’s data for the CBRM procedure, presented in 
Table 1. Among the 4 models considered, the bootstrap 
location  and  scale  estimate of Model 4 is the smallest. 
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Fig. 4: The Box-plot for the MSR boot M3 
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Fig. 5: The Box-plot for the RMSR for M1 
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Fig. 6: The Box-plot for the RMSR for M2 
 
It is important to note that the scale estimate-median 
based is smaller than the scale estimates-mean based. 
This indicates that the formulation of scale estimates 
based on median is more efficient than when based on 
mean. In this respect, the CBRM suggests that Model 4 
is the best model. However, the results of Table 2 of the 
RBRM procedure signify that Model 1 is the best 
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model. It can be seen that the scale estimate for Model 
1 which is based on median is the smallest among the 
four models. It is interesting to note here that the 
overall results indicate that the scale estimate-median 
based of the RBRM procedure is the smallest. Thus, the 
RBRM based on median has increased the efficiency of 
the estimates. 
 It can be observed from Table 3 and 4 of the 
Stackloss data that the scale estimates based on median 
is more efficient than when based on mean for both 
CBRM and RBRM procedures. Similarly, the RBRM-
median based has the least value of the scale estimates. 
The CBRM indicates that Model 2 is the best model 
while the RBRM suggest that Model 1 is the best 
model. Nonetheless, the model selection based on 
RBRM-median based is more efficient and more 
reliable. These are indicated by its location and scale 
estimates which are the smallest among the models 
considered. 
 By looking at Table 5 of the Coleman data reveals 
that Model 14 of the CBRM is the best model, evident 
by the smallest value of the location and scale 
estimates. In fact, the location and scale estimate of 
Model 14 which is based on median is smaller than 
when based on mean. The results of RBRM in Table 6 
signify that Model 1’s location and scale estimates is 
the smallest among the 15 models considered. For this 
model, the RBRM median-based is more efficient than 
the RBRM mean-based. These are indicated by its 
location and scale estimates which are smaller than the 
RBRM mean based. 
 The results of the simulated data in Table 7 shows 
that Model 2 is the best model for all outlier percentage 
levels because the scale estimate of Model 2 is the 
smallest compared to other models. Nonetheless, the 
RBRM results of Table 8 suggest that Model 1 is the 
best model. 
 Similar to that of the Hawkin, Stackloss and 
Coleman data, the RBRM median-based is more 
efficient than the RBRM mean-based. In fact the scale 
estimates of the RBRM median-based are remarkably 
smaller than the RBRM mean-based for all outlier 
percentage levels. From the results of the simulation 
study indicates that the RBRM median-based is more 
efficient and reliable procedure.  
 Here, we would like to explain further why Model 
2 is selected by considering only at 5% outliers due to 
space constraint. By looking at Fig. 1, it is obvious that 
there are 5% outliers in the residuals before the 
bootstrap is employed. It can be seen from Fig. 2-4 that 
the number of outliers of the MSR in Fig. 2 equal to 18 
while only 14 in Fig. 3. 
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Fig. 7: The Box-plot for the RMSR for M3 
 
 The median of the MSR in Fig. 4 is very large 
compared to Fig. 2 and 3. Among the three models in 
Fig. 2-4, the CBRM chooses Model 2 as the best model 
because the proportion of outliers of the MSR is less 
than the other two models.  
 On the other hand, the RBRM select M1 as the best 
model. By comparing Fig. 5-7 with Fig. 2-4, it can be 
seen that there is no outlier in the distribution of the 
Median Squared Residuals when we employed RBRM 
method, while apparent outliers are seen in the 
distribution of the Mean Squared Residuals, when the 
CBRM are employed. In this situation, the RBRM has 
an attractive feature. Among the three models being 
considered, the RMSR bootstrap resample of Model 1 
is more efficient as it is more compact in the central 
region compared to the other two models. In this 
situation, Model 1 is recommended as the RMSR is 
more consistent and more efficient. 
 

CONCLUSION 
 
 In this study, we propose a new robust bootstrap 
method for model selection criteria. The proposed 
bootstrap method attempts to overcome the problem of 
having more outliers in the bootstrap samples than the 
original data set. The RBRM procedure develops a 
dynamic subroutine program that is capable of 
detecting certain percentage of outliers in the data. The 
results indicate that the RBRM consistently 
outperformed the CBRM procedure. It emerges that the 
best model selected always corresponds to the RBRM-
median based that has the least bootstrap scale estimate. 
Hence, utilizing the RBRM median-based in the model 
selection, can improve substantially the accuracy and 
the efficiency of the estimates. Thus the RBRM 
median-based is more reliable for linear regression 
model selection. 
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