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Abgtract: Problem statement: Bootstrap approach had introduced new advancemembdeling and
model evaluation. It was a computer intensive nttti@mt can replace theoretical formulation with
extensive use of computer. The Ordinary Least $guéOLS) method often used to estimate the
parameters of the regression models in the boptsmacedure. Unfortunately, many statistics
practitioners are not aware of the fact that th&s@hethod can be adversely affected by the existeice
outliers. As an alternative, a robust method wasquward to overcome this problem. The existerce o
outliers in the original sample may create probtenthe classical bootstrapping estimates. There was
possibility that the bootstrap samples may contaore outliers than the original dataset, since the
bootstrap re-sampling is with replacement. Consattyyehe outliers will have an unduly effect oreth
classical bootstrap mean and standard deviafipproach: In this study, we proposed to use a robust
bootstrapping method which was less sensitive theos! In the robust bootstrapping procedure, we
proposed to replace the classical bootstrap medrstandard deviation with robust location and rbbus
scale estimates. A number of numerical example® warried out to assess the performance of the
proposed methodresults: The results suggested that the robust bootstrapochevas more efficient
than the classical bootstraponclusion/Recommendations: In the presence of outlienrs the dataset, we
recommend using the robust bootstrap procedutts astimates are more reliable.

Key words: Bootstrap, outliers, robust location, robust stadddeviation

INTRODUCTION OLS is extremely sensitive to outliers and will guce
inaccurate estimatés In this study, we propose using
Model selection is an important subject in theaare robust methoéh which the final solutions are not easily
of scientific research, especially in regressionaffected by outliers.
predictions. Riadhet al. proposed utilizing the
bootstrap techniques for model selection. Bootstrap MATERIALSAND METHODS
method which was introduced Byis a very attractive
method because it can be utilized without relyimy a Classical bootstrap based on the fixed-x re-
assumptions on the underlying population. It is asampling: Consider the general multiple linear
computer intensive method that can replaced thieatet regression model with additive error terms:
formulation with extensive use of computer. There a

considerable papers related to bootstrap méthod Y =XB+e 1)
Despite the good properties of the bootstrap metliod Where:
suffers numerical instability when outliers areqmet y = The 1 vector of observed values for the
in the data. The bootstrap distribution might beeay response variable
poor estimator of the distribution of the regressio X = The mp matrix of observed values for the m
estimates because the proportion of outliers in the  explanatory variables
bootstrap samples can be higher than that in tigenat
data sét!. Most of the bootstrap techniques use the  The vector is an unknown pl vector of
Ordinary Least Squares (OLS) procedures to estimateegression coefficients arais the x1 vector of error
the parameters of the model. It is well known ttet  terms which is assumed to be independent, idelytical
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and normally distributed with mean 0 and constant e=(y-%¥), b=12.... J
variance, 6. In regression setting, there are two =12, ... n
different ways of conducting bootstrapping; nantély

Random-x Re-Sampling and the fixed-x Re-Sampling 18 "

which is also refer as bootstrapping the residuals Moo =5 Z(MSR™  b=12,......B (4)
Riadhet al. use the random-x Re-Sampling together

with the OLS method in their bootstrap algorithm. | The drawback of using the classical standard

this study, the fixed-x Re-Sampling technique withdeviation and the classical mean in estimating the
OLS method is adopted. We call this estimator th%ootstrap scale and location in Eq. 2 and 4 is ithist
Classical Bootstrap fixed-x Resampling Methodyery sensitive to outliers. As an alternative, &ust
(CBRM). location and scale estimates which are less affeloye
The CBRM procedure as enumerated by Efron an@utliers are proposed. The robust bootstrap locatitd
Tibshirani” is summarized as follows: robust scale estimates are given by (5) and (6) as

. - follows:
Step 1. Fit the OLS to the original sample of oliows

observations to ge and the fitted valueg, =f(x,,B). Med, . = Median(MSR - (5)

boot

Step 2: Obtain the residualg, =y, -y, and giving  MAD
probability 1/n for eacly; value.

boot =Med | MSR™ — Med,, |/0.6745,5 1,2,... (6)
Robust Bootstrap Based on the Fixed-x Resampling
Step 3: Draw n bootstrap random sample with (RBRM): Unfortunately, many researchers are not
replacement, that is? is drawn fromg; and attached aware that the performance of the OLS can be very
toy to get a fixed-x bootstrap values® where poor when the d_ata set for which one often_ m_ake_s a
) - normal assumption, has a heavy-tailed distribution
yr =f(x;, B)+e’. which may arise as a result of outliers. Even witigle
outlier can have an arbitrarily large effect on @S
Step 4: Fit the OLS to the bootstrapped valugs on  estimate. It is now evident that the bootstrap
the fixed X to obtaif®. estimates can be adversely affected by outliersaume
the proportion of outliers in the bootstrap sampulas

Step 5: Repeat Steps 3 and 4 for B times to getbe h|gher than that in the Ol‘iginal dﬁtaThese

Al Abe ; - situations are not desirable because they mightyz®
BY.....p™where B is the bootstrap replications. misleading results. An attempt has been made teemak

According to Imon and Aff, there is no general the bootstrap estimates more efficient. We propose
agreement among statisticians on the number of thgodify the CBRM procedure by using some logical
replications needed in bootstrap. B can be as sasall procedure with robust Least Trimmed Squares (LTS)
25, but for estimating standard errors, B is usuadl  estimator, so that outliers have less influencettan
the range of 25-250. They point out that for baafst parameter estimates. We call this estimator as ®obu
confidence intervals, a much larger values of B isBootstrap fixed-x Re-Sampling Method (RBRM).We
required which normally taken to be in the range ofsummarized the RBRM as follows:

500-10,000.
Riadh et al.™ pointed out that the bootstrap Step 1: Fit the LTS to the original sample of

standard deviation can be estimated as follows: observations to ge and the fitted value§, =f(x;,f).
1
. 1 B B Step 2: Obtain the residualg, =y, -y, and giving
=|— 3 (MSR® - 2 2 i YT
Oboo {B—lbzzl( ub‘“")} @ probability 1/n for eache; value. Standardized the

residuals and identify them as outliers if the &ltgo
where, MSR is the mean squared residual denoted as: value of the standardized residuals larger thagethr

a2 Step 3: Draw n bootstrap random sample with
MSR_E(‘#]) /n (3) replacement, that is] is drawn fronmg; and attached to

and get a fixed-x bootstrap valugg wherey® =f(x,,B)+e".
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At this step, we built a dynamic subroutine progfam once. Consequently, there is a possibility that a
the detection of outliers. This program has thditatio ~ bootstrap samples may contain more outliers than th
identify a certain percentage of outliers in eachoriginal sample. We try to overcome this problem by
bootstrap sample. determining the alpha value based on the percemthge
outliers in the bootstrap resamples which are dedeio

Step 4: Fit the LTS to the bootstrapped valugs on  Step 3. In this respect, we develop a dynamic tetec

, A _ subroutine program that can detect the proportibn o
the fixed X to obtaing®. The percentage of outlier that 4 ijiers in each bootstrap resample. Step 4 of RBRM
should be trimmed depend step 2. includes the computation of y bootstap by using the

. LTS based on the first three logical steps. The IS

Step 5. Repeat steps 3 and 4 for B times t0 gelexpected to be more reliable than the OLS when

B™....,8" where B is the bootstrap replications. outliers are present in the data, because it isthas

The bootstrap scale and location estimates ir2Eq. robust method which is not sensitive to outliers A
and 4 are based on Mean Squared Residuals which faéntioned earlier, the number of outliers that e
sensitive to outliers. We propose to replace thamMe timmed in the LTS procedure depends on the alpha
Squared Residual (MSR) with a more robust measuréalue that cor_respond to the percent_age_of outliers
that is the Median Squared Residual (RMSR). Thé etected. In this way, the effect of outliers idueed.

) According to Riadhet al.', the best model to be
223??2;{;2?; l;;)eo;sstr%rl)k;(\ivigtlon and robust braptst selected among several models, is the one whickhkas

smallest value of location and scale estimatesher t
RMed,__. = Median(RMSF 7 minimum scale estimate.

RESULTS

RMAD, ., =Med | RMSR” - RMeg,, |/0.674 (8)

boot

Several well known data sets in robust regression
Ohre presented to compare the performance of theMCBR
and the RBRM procedures. Comparisons between the
estimators are based on their bootstrap locations a

where, RMSR is the Median Squared Residual and f
each observation i, i = 1,2,........ , hand for each b
2,..., B; compute:

RMSR® = Median(&” 3 (9) scales estimates. We have performed many examples
and due to space constraints, we include only treak
60 = (y - ) (10) examples and one simulated data. The conclusions of

other results are consistent and are not presehtedo

We also would like to compare the performance offPace limitations. All computations are done byngsi
(7) and (8) with the classical formulation of bdrg S-Plus®6.2 for windows with Professional Edition.
standard deviation and location but based on Median

H . H 8
Squared Residuals instead of Mean Squared Residuafdawkins, Bradu and Kass Data: Hawkin et al
These measures are given by: constructed an artificial three-predictor data set

containing 75 observations with 10 outliers in both
1 the spaces (cases 1-10), 4 outliers in the X-sfzases
~ ay—| 1 8 2 11-14) and 61 low leverage inliers (cases 15-75)stM
0)=| — (RMSR" - 11 ; 99T -\
Orea(®) l:B—lbz:l( ub""‘)z} (11) of the single case deletion identification methtaikto
identify the outliers in Y-space though some ofnthe
18 . point out cases 11-14 as outliers in the Y-space.
Hooor :EZ (RMSR®™) (12)
b=1
We consider four models:

The RBRM procedures commences with
estimating the robust regression parameters usigy L M1:P=3:Y =B +B, X, +B,X, +BX 5+, True
method which trim some of the values from both size
This means that, some values from the data whieh arm2:P=2:Y =B, +B,X, +B,X,, +¢,
labeled as outliers are deleted. In this situatin,
will be either larger or smaller thag. In step 2,
outliers might be present and it can be the camelitta
be selected in Step 3. Since we consider samplitilg w
replacement, each outlier might be chosen more tham4 —.:P=2:Y =0, +B,X,, +B.X; +¢,
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Table 1: CBRM results of Hawkins data

Table 4: RBRM results of Stackloos data

Mean Median Mean Median
Models oot U,l;om med)oot MAD o0t Models oot U,l;om medmm MAD poot
M1 0.3154 0.0346 0.3133 0.0303 M1 0.9293 1.6751 1.1717 0.4196
M2 0.2975 0.0399 0.2937 0.0372 2 0.6609 0.5061 1.0605 0.4684
M3 0.3472 0.0438 0.3474 0.0360 3 1.3661 1.1465 2.0388 0.5655
M4 03224 0.0395 0.3179 0.0368 14 4.6048 6.0732 6.8214 1.7793

Table 2: RBRM results of Hawkins data

Mean Median
Models  [hoor G, oot medoot MAD b0t
M1 5.1866 0.3155 5.1053 0.2280
M2 7.0047 0.7206 6.8892 0.6631
M3 5.7588 0.4730 5.6654 0.4079
M4 5.0593 0.2247 5.0036 0.1371
Table 3: CBRM results of Stackloos data

Mean Median

Models Lhoot G, oot medyor MAD po0t
M1 10.26 1.25 10.009 1.0425
M2 10.33 1.12 10.075 0.9359
M3 16.83 1.91 16.351 1.4574
M4 25.85 15.7 25.164 2.0667

Table 1 and 2 show the estimated bootstrap'v|4

location and scale estimates based on CBRM an
RBRM procedures.

Stackloss datal®: The Stackloss data is a well known
data set which is presented by BrowfleeThe data
describe the operation of plant for the Oxidatidn o
ammonia to nitric acid and consist of 21 four-
dimensional observations. The Stackloss (y) istedla
to the rate of operation (x1), the cooling wateletin
temperature (x2) and the acid concentration (x3)stM
robust statistics researchers concluded that ohsens
1, 2, 3 and 21 were outliers.

We consider four models:

ML1:P=3:Y, =B, +B, X, +B. X, +BX,+E,  True
M2:P=2:Y =B, +B, X, +B,X, *E€,

M3:P=2:Y, =0, +B, X, +B. X, +E,

M4 —:P=2:Y, =03, +B,X, +B;X; +¢,

Table 3 and 4 show the bootstrap location andescal

estimates of the Stackloss data based on CBRM and Table 5 and 6 show the results of CBRM

RBRM procedures.

Coleman data®: This data which was studied by
Colemanet al.*” contains information on 20 schools
from the Mid-Atlantic and new England states.
Mosteller and Tukéy" analyzed this data with
measurements of five independent variables. The
previous study refer observations 3, 17 and 18 as

outlierd?.
We consider fifteen models as follow:

ML:P=5:Y =B + B, Xy +B, X, +BX 5 +BX 4 +BX 5+, True

M2:P=4:Y, =B0+leli+B2X2\+B3x3i+[34X 4TE

M3:P

41X, =By + B Xy +B Xy + B Xy +BX 5 +E,
Tp=40Y, =B +B Xy +BX, + HBX  +BX 5t E,

%5”3: 41Y, =By + B Xy +BaX g+ HBX 4+ BX g T E

MB:P=4:Y =0, +B, Xy + B, X5 + +B,X ;i +BX g +E,

M7:P

31Y =By + B, Xy + HBX i +BX g T E;

M8:P

3:Y =B, +B, Xy + +HB Xy +BX 4 +E,
MO:p=3:Y, =B, +BgX5 ++B,X, +B:X g +E;
M10:P=3:Y =, +B, X, + +B, X5 +B, X, tE,
M11:P=3:Y =B, +BX,; ++BX , +BX 5 +€;
M12:P=3:Y =, + B, X; + +B, X, +BsX g +E€;
M13:P=3:Y =B, + B, X, ++B, X, + B, X, +€;
M14:P=3:Y =B, + B, X, + +B, Xy + B X5 +E,

M15:P= 3:Yi:BO +B2X2i ++B3X3i+B4X4\+S\

RBRM of the Coleman data.
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Table 5: CBRM results of Coleman data
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Table 7: CBRM results of simulated data

Mean Median Mean B = 500 Median B = 500
Models Lhoot Ot methoor MADpot O M Fboot Opoot Methoor MAD bot
M1 264.79 407.86 114.31 155.05 5% M1 0.024 0.001 0.024 0.001
M2 1083.70 614.98 1004.40 585.65 M2 0.112 0.004 0.111 0.004
M3 910.05 938.52 662.40 741.07 M3 5.908 0.221 5.923 0.227
M4 6314.00 4238.10 5568.10 429970 1006 M1 0.029 0.002 0.029 0.002
M5 696.64 651.45 537.50 527.02 M2 0.132 0.003 0.132 0.003
M6 605.49 684.37 402.30 490.25
M7 8010.50 4690.30 7303.80 4549.20 M3 7.200 0.253 7.145 0.233
M8 291 17 277 38 295 70 24909 15% M1 0.097 0.011 0.097 0.012
M9 1161.50 873.58 995.40 712.73 M2 0.203 0.014 0.202 0.015
M10 1093.60 634.07 1019.40 588.30 M3 8.845 0.412 8.767 0.420
M11 21783.40 6146.60 21262.40 6069.00 20% M1 0.147 0.112 0.124 0.040
M12 1797.40 2013.60 1042.90 1292.80 M2 0.241 0.090 0.206 0.056
M13 4843.40 2489.50 4502.70 2305.60 M3  10.108 0.494 10.110 0.508
M14 178.50 196.57 105.05 126.48
M15 1801.50 904.77 1668.20 821.28 Table 8: RBRM results of simulated data
Mean B = 500 Median B = 500
Table 6: RBRM results of Coleman data
Mean Median ou. M Hboot . Medos  MAD oot
. 5% M1 5.512 0.026 5.505 0.020
Models oo Oboar MeGhoo MAD boo M2 5.870 0.021 5.863 0.015
M1 0.4296 0.2362 0.4036 0.1607 M3 19369 0.079 19343 0.058
M2 0.9157 0.8943 0.7362 0.3878 1006 M1  10.829 0.053 10.816 0.044
M3 1.5126 1.2118 1.2296 0.6643
M2 11.092 0.043 11.080 0.030
M4 5.1409 3.1416 4.5042 1.8494
M5 0.9022 0.5792 0.8250 0.3828 M3 25.266 0.102 25.230 0.071
M6 0.5587 0.4421 0.4472 01964 15% M1 14.891 0.072 14.871 0.056
M7 5.9627 2.8438 5.7292 2.7066 M2 15.087 0.058 15.068 0.039
M8 266.06 269.86 228.71 155.20 M3 28.933 0.116 28.896 0.089
M9 1.0832 0.5817 1.0361 04596  20% M1 18.596 0.089 18.573 0.075
M10 0.9274 0.5748 0.8587 0.3959 M2 18.746 0.078 18.720 0.053
M11 6.4584 3.5923 6.3301 2.0415 M3 30.283 0.111 30.251 0.088
M12 7.4923 3.5314 7.4160 2.4681
M13 4.9836 3.7238 4.2552 2.0028
M14 2.0063 0.9448 1.9293 0.8440 Then we started to contaminate the residuals. At
M15 1.2564 1.3637 1.0154 0.5616

each step, one ‘good’ residual was deleted and
replaced with  contaminated residual. The

Simulation study: A simulation study similar to that of contaminated residual were generated as N (10, 9).
Riadhet al." is presented to assess the performance diVe consider 5, 10, 15 and 20% contaminated
the RBRM procedure. Consider the problem of fitttng residuals and three models:

linear model:

Y=6,+6X,+0X ,+...+0 X +g,

B = (. x?,y)

i=12,...,50C

In this study, we simulate a data set by putting:

x{ ~ N(0.6,25)

x® ~ N(-0.1,0.81)

y=2+0.7%" + 0.5% +¢,

eModell M, :P=2:Y=B,+B, X, +B,X, +E€; True
*Model2 M, :P=1:Y=0,+B,X;+¢,
*Model3 M, :P=1:Y=0;+B,X, +¢,

Table 7 and 8 show the results of CBRM and
RBRM procedures. Graphical displays are used to
explain why a particular model is selected. We only
present the results for Model 1-3 of the simuladath
at 5% outliers due to space limitations. The realisiu
plot before the bootstrap procedure is shown in Eig
Figure 2-4 shown the box-plot of the MSR boot for

where, & is a random variable which possesses thé/lodel 1-3 while Fig. 5-7 exemplified the box-plot o
distribution N(0, 0.04).

the RMSR for Model 1-3.
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Fig. 4: The Box-plot for the MSR boot M3
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Fig. 2: The Box-plot for the MSR boot M1

Fig. 5: The Box-plot for the RMSR for M1
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Fig. 3: The Box-plot for the MSR boot M2

Fig. 6: The Box-plot for the RMSR for M2

It is important to note that the scale estimate-ared
DISCUSION based is smaller than the scale estimates-meaml.base
This indicates that the formulation of scale estema
Let us first focus our attention to the resultslif  based on median is more efficient than when based o
Hawkin's data for the CBRM procedure, presented inmean. In this respect, the CBRM suggests that Médel
Table 1. Among the 4 models considered, the bagistr is the best model. However, the results of Tabié the
location and scale estimate of Model 4 is thallrat. RBRM procedure signify that Model 1 is the best
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model. It can be seen that the scale estimate fodei/ ——
1 which is based on median is the smallest amoeag th - ‘
four models. It is interesting to note here tha¢ th
overall results indicate that the scale estimatdiare °
based of the RBRM procedure is the smallest. Timas,
RBRM based on median has increased the efficiehcy o
the estimates.

It can be observed from Table 3 and 4 of the _
Stackloss data that the scale estimates based diame =
is more efficient than when based on mean for both
CBRM and RBRM procedures. Similarly, the RBRM- 3
median based has the least value of the scaleaesSm
The CBRM indicates that Model 2 is the best model
while the RBRM suggest that Model 1 is the best Fig. 7: The Box-plot for the RMSR for M3
model. Nonetheless, the model selection based on
RBRM-median based is more efficient and more The median of the MSR in Fig. 4 is very large

reliable. These are indicated by its location acdles compared to Fig. 2 and 3. Among the three models in
estimates which are the smallest among the model,sig_ 2_4 the CBRM chooses Model 2 as the best inode

considered. because the proportion of outliers of the MSR Bsle
By looking at Table 5 of the Coleman data revealshan the other two models.

that Model 14 of the CBRM is the best model, evtden On the other hand, the RBRM select M1 as the best

by the smallest value of the location and scalgnodel. By comparing Fig. 5-7 with Fig. 2-4, it che
estimates. In fact, the location and scale estinwdte geen that there is no outlier in the distributidntiee

Model 14 which is based on median is smgller thanviedian Squared Residuals when we employed RBRM
when based on mean. The results of RBRM in Table @yethod, while apparent outliers are seen in the
signify that Model 1's location and scale estimais gijstribution of the Mean Squared Residuals, when th
the smallest among the 15 models considered. k®r thcBRM are employed. In this situation, the RBRM has
model, the RBRM median-based is more efficient thamn attractive feature. Among the three models being

the RBRM mean-based. These are indicated by itgonsidered, the RMSR bootstrap resample of Model 1

location and scale estimates which are smaller than s more efficient as it is more compact in the cant

RBRM mean based. region compared to the other two models. In this
The results of the simulated data in Table 7 ShOW%ituation’ Model 1 is recommended as the RMSR is

that Model 2 is the best model for all outlier mT&age  more consistent and more efficient.
levels because the scale estimate of Model 2 is the

@ |
1]

smallest compared to other models. Nonetheless, the CONCLUSION
RBRM results of Table 8 suggest that Model 1 is the
best model. In this study, we propose a new robust bootstrap

Similar to that of the Hawkin, Stackloss and method for model selection criteria. The proposed
Coleman data, the RBRM median-based is mordoootstrap method attempts to overcome the problem o
efficient than the RBRM mean-based. In fact thdesca having more outliers in the bootstrap samples than
estimates of the RBRM median-based are remarkablgriginal data set. The RBRM procedure develops a
smaller than the RBRM mean-based for all outlierdynamic subroutine program that is capable of
percentage levels. From the results of the simarati detecting certain percentage of outliers in thedahe
study indicates that the RBRM median-based is moreesults indicate that the RBRM consistently
efficient and reliable procedure. outperformed the CBRM procedure. It emerges that th

Here, we would like to explain further why Model best model selected always corresponds to the RBRM-
2 is selected by considering only at 5% outliers ttm  median based that has the least bootstrap scateaést
space constraint. By looking at Fig. 1, it is olugahat Hence, utilizing the RBRM median-based in the model
there are 5% outliers in the residuals before theselection, can improve substantially the accuracy a
bootstrap is employed. It can be seen from FigtBad the efficiency of the estimates. Thus the RBRM
the number of outliers of the MSR in Fig. 2 equall8 median-based is more reliable for linear regression
while only 14 in Fig. 3. model selection.
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