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Abstract: Problem statement: The bandwidth efficiency of many communication systems could be 
improved if the transmission channel was estimated blindly without resort to training sequences. 
GMSK was a spectrum-efficient modulation scheme and it was adopted as the modulation standard of 
GSM systems. Approach: However, because of its phase modulation, Gaussian filtering and partial 
response signalling properties, Results: The simulation results showed great potential of semi-blind 
identification algorithms, since we used no extra antenna or over-sampling the received signal. 
Conclusion: GMSK was not a linear modulation. Linear approximation of the GMSK signal made the 
blind equalization system model applicable for GSM. In the sequel, a linear approximation of GMSK 
signals was presented and a blind GSM and semi-blind channel identification algorithm based on the 
cross relation method was suggested. 
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INTRODUCTION 
 
 The Pan-European cellular standard of GSM uses a 
Time Division Multiple Access (TDMA) scheme, 
where each frequency band is shared by 8 users 
allocated with 8 time slots. During each time slot 
(approximately 0.577 ms), a 142 bit burst is 
transmitted, in which two 58 bit streams of information 
data are separated by a training midamble. The 26 bit 
training sequence can be used by receivers to identify 
the unknown linear channel impulse response that 
includes transmitter filter, physical channel and receiver 
filter. This training sequence represents a sizable 
overhead that reduces the overall system efficiency. If 
blind/semi-blind equalization can eliminate part of the 
entire training overhead while maintaining the system 
performance at an acceptable level, it can significantly 
improve the system efficiency. 
 In this study, we first present a new blind channel 
identification algorithm based on the cross relation 
method[1]. We note that blind channel identification 
algorithms based on SOS are sensitive to channel order 
mismatch[2], which is very common in wireless 
environment.  
 
GMSK approximation: The impulse response of the 
Gaussian LPF h(t) is: 
 

   
2

2h(t) exp t
2B 2

 σ −σ=  
π  

  (1) 

where, 2 B

ln 2

πσ = , with BT = 0.3 for GSM. B is the 3 

dB bandwidth of the filter. The square pulse response 
g(t) of the Gaussian LPF is: 
 

t
g(t) h(t) * rect

T
 =  
 

 

 
where, the rectangular function rect(x) is defined by: 
 

T1 , for tt Trect 2
T

0, Otherwise

 <  =  
  

 

 
 The pulse response g(t) can be written as: 
 

1 t T 2 t T 2
g(t) Q 2 BT Q 2 BT

2T T ln(2) T ln(2)

    − += π − π            
  (2) 

 
where, Q (t) is the Q-function: 
 

   
2

t

1
Q(t) exp d22

∞  τ= − τ  π  
∫   (3) 

 
 Consequently, the continuous phase modulation 
(CPM) pulse is the integral: 
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t

(t) g( 2T)d `
−∞

ψ = τ − τ∫   (4) 

 
 In GSM system, the GMSK parameter BT = 0.3 is 
chosen so that: 
 

   
0, t 0;

(t)
1, t 4T.

≤
ψ ≈  ≥

  (5) 

 
 The baseband signal of GMSK modulation is: 
 

  
n

n

s(t) exp j (t nT)
2

∞

=−∞

π = ψ −α 
 

∑   (6) 

 
 In witch 

n
1= ±α  is the binary data for 

transmission. Because, existing blind equalization 
algorithm rely on linear system models, linear 
approximation of the GMSK signal becomes the 
necessary first step. Following the approach used in[1] 
for linear QAM approximation of the GMSK signal 
used in GSM, we take the first approximation step: 
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−
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∑

∑ ∏
  (7) 

 
Tε[nT,(n+1)T). 
 Equation 7 becomes the basis of linear 
approximation. It can be seen that there are 16 different 
terms in the product expansion of (7). Among the 16 
different linear pulses, however, only two pulses are 
significant while the others are nearly all zero. 
Retaining these two most significant pulses, the linear 
approximate model for GMSK with BT = 0.3 is: 
 

 
0 10,n 1,n
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Where: 
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 In other words, the GMSK signal can be 
approximated with almost no error by the sum of two 

QAM signals with pulse shapes h0(t) and h1(t). These 
two pulses in the linear approximation are shown in 
Fig. 1. 
 For the case L = 4, BT = 0.3:  
 

0h (t) (t 4T) (t 3T) (t 2T) (t T)0 t 5T= β − β − β − β − ≤ ≤   (9) 
 

1h (t) (t T) (t 2T) (t 4T) (t T)0 t 3T= β − β − β − β + ≤ ≤  (10) 
 
With:  
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 With h = 0.5, β(t) becomes: 
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 (12) 

 
where, Tp is Sampling period. 
 

h0(t) 

h1(t) 
 

 
 
Fig. 1: Represents two pulse shapes in the GMSK linear 

approximation. The power in h1(t) is 0.48% of 
the power in h0(t) 
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Fig. 2: The composite channel response h(t) for 

equalizers 
 
 Because the majority (99.5%) of signal energy in 
GMSK signal s(t) is contained in the first pulse 
approximation h0(t) Fig. 2, we can further simplify s(t) 
into a single QAM transmission: 
 

  n n n 10n
n

s(t) (t nT), a j aa h
∞

−
=−∞

= − = α∑  (13) 

 
 It can be noted that the approximation error may be 
viewed as an additive interference. Therefore, even in 
noiseless channels, the maximum Signal-to-Noise Ratio 
(SNR) of this approximation is at 23dB[2].with this 
linear QAM Quaternary Phase Shift Keying (QPSK) 
approximation, existing blind equalization methods can 
be applied. 
 For a physical channel impulse response hc(t) the 
combined linear approximation pulse is simply: 
 
    h(t) = hc(t) * h0(t) (14) 
 
 The received GMSK signal is approximately: 
 

  
k

x(t) h(t kT)s(k) n(t)
+∞

=−∞

= − +∑  (15) 

 
where, n(t) is channel noise. The baud rate sampled 
discrete signals and responses are defined as: 
 

i i ix x(iT), h h(iT), n n(iT)= = =  

 
 The channel output sequence is thus a stationary 
sequence: 
 

    
L

n k n k n
k 0

x h a n−
=

= +∑  (16) 

 
Channel diversity: For the single QPSK 
approximation of the GMSK signal, only sampling at 
higher than the baud rate will not generate the 

necessary channel diversity needed in all SOS methods 
for blind equalization due to the lack of excess 
bandwidth in the approximate pulse shape h0(t). 
Naturally, one can create channel diversity by adding 
antennas. Unfortunately, additional antenna unit 
requires extra RF receiver and significantly increases 
the hardware cost. Here we show how to reduce 
hardware cost by processing the received data so that 
two channel outputs can be extracted from a single 
received GMSK signal. 
 We observe that an = jαnan-1 in the linear QPSK 
approximation of GMSK. However, the relationship 
actually indicates that at any given time, an can only 
select two values instead of four. Hence, an is a pseudo-
QPSK and is realized by rotating a BPSK signal: 
 

  ( )
M L 1

n k M L n
n k n l n M L

l k 3

a j j
+ −

− + −
− − − −

= −

 = α α 
 

∏  (17) 

 

 Without loss of generality, let ( )M L n
n M L j + −

− −α  be 

purely real (or imaginary). Then: 
 

   
n k

n k n k, n ka j a a 1,

k 0,...,M L 1

−
− − −= = ±

= + −

% %
 (18)  

 
 To extract channel diversity from the single-
channel system (16), signal pre-processing based on 
special characteristics of the pseudo-QPSK input is 
necessary. Equation 16 can be transformed as: 
 

    
[ ]
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n k

k n k n
k 0

x h j a

h j a

−
−
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−
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∑

%
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 (19) 

 
 As a result, we can obtain a new (derotated) 
sequence: 
 

   
[ ]

n
n n

L
k n

k n k n
k 0

x x j

h j a j

−

− −
−

=

=

= + ω∑

%

%
 (20) 

 
 Derotation not only changes the GMSK detection 
into a simpler BPSK detection problem, it can also 
create channel diversity useful in blind equalization[1]. 
 Since { }na%  is real-valued sequence, we can induce 

two sub-channel outputs from (20): 
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 (21) 

 
where, the common input is a BPSK signal, i.e.: 
 

n
n na j a 1−= = ±%  

 
 From the BPSK input data sequence, two sub-
channels can be generated without over-sampling and 
extra antenna: 
 

{ } { } { } { }1 k 2 k
k k k kh Re(h j ) and h Im(h j− −= =  

 
 We hence arrive at the familiar equation in SIMO 
(Single Input/Multiple Output) models: 
 

X[k] = Hã[k] + n[k] 
 
Where: 
 

[ ]
{ }

[ ]{ }
{ }
{ } [ ]

{ }
[ ]{ }

Re x[k] Re n[k]Re H
x k ,H ,n k

Im x k Im H Im n k

    
= = =    
        

 (22) 

 
 H will have full column rank if { }k

kRe(h j )−  and 

{ }k
kIm(h j−  share no common zeros[2]. 

 
Cross-relation method: Consider a SIMO system of q 
outputs given by: 
 

   
M

k 0

y(l) h(k)s(l k) n(l)
=

= − +∑  (23) 

 
 The noise free outputs yi(k), 1≤ i≤ q are given by: 
 
  yi(k) = hi(k) * s(k), 1≤ i≤ q (24) 
 
where, * denotes convolution. Using commutativity of 
convolution, it follows: 
 
 hj(k) * yi(k) = hi(k) * yj(k), 1≤ i<j≤ q (25) 
 
 This is a linear equation satisfied by every pairs of 
channels. It was shown[3] that based on q(q-1)/2 
possible cross-correlation, the channel parameters can 
be uniquely identified. By collecting all possible pairs 
of q channels, one can easily establish a set of linear 

equations. In matrix form, this set of equations can be 
expressed as: 
 
     Yqh = 0 (26) 
 
where, Yq is defined by: 
 

Y2 =[Y(2), -Y(1)] 
 

 

(l 1)

(l) (1)

l

( l) (l 1)

Y 0

Y 0 Y

Y

0 Y Y

−

−

 
 − 
 • •=
 

• • 
 − 

 (27) 

 
 With l = 3,…,q and: 
 

 

l l

(l)

l l

y (M) y (0)

Y

y (N 1) y (N M 1)

• • • 
 • • 
 = • •
 

• • 
 − • • • − − 

 (28) 

 
 In the presence of noise, Eq. 26 can be naturally 
solved in the Least-Square (LS)[3] sense according to: 
 
   H H

CR q qh 1
ĥ arg min h Y Y h

=
=  (29) 

 
 We now present simulation results of GSM blind 
identification. A GMSK pulse of four symbols was 
generated  and  bandwidth  BT = 0.3. The  bit  rate  is 
270 kb sec−1.  
 Figure 3 shows the estimation of the propagation 
channel by the cross-relation method. 
 

h(t) 

s(t) 

n(t) 

Estimation  
of h(t) by CR 

method 

h0
−1 

x(t) 

+ 

h(t) 

x(t) 
hc(t) 

 
 
Fig. 3: Estimation of propagation channel 
 s(t): Transmitted signal BPSK 
 n(t): Additive noise 
 h(t): Combined filter [h(t) = h0(t)*hc(t)] 
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RESULTS AND DISCUSSION 
 
 Figure 4 shows the estimated impulse response of 
the propagation channel for COST-207[4]. Figure 5 
shows the relative error estimation for training method 
and blind method. 
 Now, we will explore a semi-blind system based on 
the exploitation of the advantages of blind and non-
blind systems in purpose to increase system efficiency. 
The system was first introduced by[5], where they have 
exploited the notion of energy in the band. Our 
approach lies in the weighting of non-blind and blind 
parts in the system. 
 Let S1 be the training sequence, the SIMO semi-
blind system is defined as: 
 

   
1

1 1
1

2 2
2 1

S 0
h Y

0 S
h Y

X X

 
     =    
    − 

 (30) 

 

 
 
Fig. 4: Impulse response of channels COST-207 Mobil 

canal model for typical urban and rural area  
 

 
 
Fig. 5: Relative error for canal estimation 

 From Eq. 30, we can have: 
 

   

1

1

1 1
1

2 2
2 1

S 0
h Y

0 S
h Y

X X

−
 

    =    
    − 

 (31) 

 
 The simulation results of Eq. 31 give the relative 
error estimation of channels, shown in Fig. 6.  
 For the weighted semi-blind system we have: 
 

   

1

1 1
1

2 2
2 1

S 0
h Y

0 S
h Y

X X

α 
    α =    
    β − β 

 (32) 

 
where, α and β = 1-α, are weights. The solution for the 
identification of channels (Eq. 32) is given by: 
 

   

1

1

1 1
1

2 2
2 1

S 0
h Y

0 S
h Y

X X

−α 
    = α    
    β − β 

 (33) 

 
 The simulation results of Eq. 33 for semi-blind 
system with training signal size Nt = 26 bits, is shown 
in Fig. 7. 
 The Fig. 8 shows the estimation error of channels 
for different pilot length. Nt = 16 bits for semi-blind 
method and Nt = 26 bits for Non-blind method. 
 

 
 
Fig. 6: Relative error for canal estimation equation 

error    semi-blind     system     estimation    for 
Nt = 26 bits 
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Fig. 7: Error weighted semi-blind system estimation 

for Nt = 26 bits 
 

 
 
Fig. 8: Error  system  identification  for: Semi-blind 

Nts = 16 bits, Non-Blind Nt = 26 bits 
 

CONCLUSION 
 
 In this study, we have addressed the problem of 
blind channel and semi-blind system identification, 
based on the Cross-Relation method with the 
exploitation of the linearization of the GMSK signal 
used in GSM systems. The simulation results show 
great potential of semi-blind identification algorithms, 
since we have used no extra antenna or over-sampling 
the received signal. This method is of great importance 
since we can use 16 bits in the midamble of the GSM 
burst signal to transmit information; the gain is about 
10% in system efficiency. 
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