
American Journal of Applied Sciences 8 (10): 1054-1060, 2011
ISSN 1546-9239
© 2011 Science Publications

Corresponding Author: Md. Syedul Amin, Department of Electrical, Electronic and Systems Engineering,
 University Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
 Tel: +603-89216316 Fax: +603-89216146

1054

Design and Implementation of Novel Artificial Neural
Network Based Stock Market Forecasting System

on Field-Programmable Gate Arrays

1Md. Syedul Amin, 2Md. Mamun, 1Fazida Hanim Hashim,
 1Jubayer Jalil and 1Hafizah Husain

1Department of Electrical, Electronic and Systems Engineering,
Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia

2Systems Design Lab, Universiti Kebangsaan Malaysia,
 43600, UKM, Bangi, Selangor, Malaysia

Abstract: Problem statement: Multiagent system is very proficient and has rules well-suited for
financial forecast with its neural network. In financial forecasting, the approach for rules extractions is
less pertinent and involves algorithms which are complex. The unsupervised network method lacks in
comprehensibility and leads to ambiguity. Approach: The application of neural network technology to
real-time processing of financial market analysis demands the development of a new processing
structure which allows efficient hardware realization of the neural network mechanism. This study
describes the realization of neural network on FPGA device for stock market forecasting system. The
stock market forecasting neural network architecture consists of three layers. These are input layer
with three neurons, hidden layer with two neurons and output layer with one neuron. For both output
layer and hidden layer neurons, Sigmoid transfer function is used. Neuron of each layer is modelled
individually using behavioural VHDL. The layers are then connected using structural VHDL. This is
followed by timing analysis and circuit synthesis for the validation, functionality and performance of
the designated circuit. The designated portfolio is then programmed through download cable into the
FPGA chip. Results: Kuala Lumpur Stock Exchange (KLSE) index has been utilized for validating the
usefulness of the completed prototype. Test on the sample of 100 data demonstrated an accuracy of
99.16% in predicting closing price of the KLSE index 10 days in advance. Conclusion: The test
results are anticipated to be a higher rate of prediction for stock market analysis, thereby maintaining
the high quality of supplying information in stock market business.

Key words: Neural network, backpropagation, synthesis, VHDL, stock market

INTRODUCTION

 In recent years, financial markets have become
more interrelated. The fundamental factors are
becoming more critical for the analysis of financial
market. The research in recent past shows that the
nonlinear domain with artificial intelligence technologies
can be modeled more precisely compared to single-
market and linear statistical methods which have been
the mainstay for technical analysis for past decade.
 The synergistic market analysis which merges
technical and fundamental analysis using artificial
intelligence tools and synthesizes fundamental,

technical and intermarket data within an analytical
framework, results in better forecasting capabilities.
Neural networks among various artificial intelligence
tools are increasingly used to the financial forecasting
as neural nets are found to be technologically flexible
and powerful, ideally suited to perform financial
market analysis.
 Multiagent system (Zimmermann et al., 2001;
Garliauskas, 1999; Disorntetiwat and Dagli, 2000;
Mogaki et al., 2007; Seridi-Bouchelaghem et al., 2005;
Obe and Shangodoyin, 2010) is very proficient and has
rules well-suited for financial forecast with its neural

Am. J. Applied Sci., 8 (10): 1054-1060, 2011

1055

network. But a drawback is complexity of the system.
In financial forecasting, the approach for rules
extractions (Kane and Milgram, 1994) is less pertinent
and involves algorithms which are complex. The
unsupervised network method (Corchado et al., 1998)
lacks in comprehensibility and leads to ambiguity. It
can be applied on standard iterated mapping functions
only. Backpropagation is better for prediction of stock
market. As it has got a set of defined rules and
algorithms for training, backpropagation is the most
comprehensive and straightforward method.
 The Field-Programmable Gate Arrays (FPGA)
provides a potential substitute to speed up hardware
implementation (Coussy et al., 2009; Marufuzzaman et
al., 2010; Reaz et al., 2007a). FPGA comes with the
merits of shorter design cycle, lower cost and higher
density from computer-aided design perspective (Choong
et al., 2005; Akter et al., 2008). It contains various
building blocks. Each block comprises of programmable
storage registers and look-up table. The interconnections
are programmed by Hardware Description Language
(HDL) among these blocks (Reaz et al., 2003; 2004a;
2005a). For prototyping digital system, the simplicity
and programmability of FPGA made it appealing. FPGA
allows users to easily and inexpensively realize their own
logic networks in hardware. FPGA also allows
modifying the algorithm easily and the design time frame
for the hardware becomes shorter by using FPGA
(Choong et al., 2006; Mohd-Yasin et al., 2004).
 This study aims to investigate the hardware
feasibility and performance of ANN based stock market
forecasting system using FPGA by standard hardware
description language VHDL. A formal description of
the system and utilization of specific description styles
for covering various abstraction levels (logic,
architectural and register transfer level) made VHDL
attractive (Reaz et al., 2006; 2007b). In the computation
method, first the problem is separated into small pieces.
In VHDL, each of them is a submodule. The synthesis
is then activated following software verification of each
submodule. It performs the translations of HDL code
into a similar digital cells’ netlist. To explore a far wider
range of architectural alternative, the synthesis helps to
integrate the design work and offers higher feasibility
(Reaz et al., 2005b; 2004b). To validate the effectiveness
of the method, Kuala Lumpur Stock Exchange (KLSE)
index has been used in this study. For hardware
implementation, this method offers a systematic approach,
facilitating quick prototyping of neural network for
financial market analysis.

MATERIALS AND METHODS

Design overview: FPGA realization of neural network
in stock market prediction is introduced to ease the
development of financial market analysis. The system is
capable of predicting the closing price of the KLSE
index 10 days in advance from the current day. The
input for the neural network will consist of the daily
high, daily low and closing price of the KLSE index.
 The neural network architecture for stock market
forecasting is a three layer with three neurons in input
layer, one neuron in output layer and two neurons in
hidden layer (Tan et al., 1993). The system is capable
of minimizing the output error of the backpropagation
neural network to forecast the closing price of the
KLSE index 10 days in advance from the current day.
The neural network input consists of the daily high,
daily low and closing price of the KLSE index. For a
stable network with minimum error, we choose a
learning rate of 0.3 that is scaled to 307 since it is
implemented as integer data type in VHDL. The scaling
is done by multiplying the learning rate with 1024,
gives a constant value thus synthesizable. The network
is trained by using the historical data of the KLSE index
from January 2004 to July 2011. This set of epochs is
feed into the network three times.
 For enabling any combination of number of output
neurons, input neurons and hidden neurons, the network
is configurable. The output and hidden layer neurons
utilize sigmoid transfer function. Every neuron in the
output, hidden and input layer is programmed as a
single entity. Using structural approach, these
neurons combinations are coded in a high level
design. To process the input data and initializing the
neural network weights to a suitable range,
normalization circuit and random number generator
are added. The developed neural network is divided
in three modes of operation. These are testing,
random weight generation and training mode.

System level design: The VHDL code is divided in
five entities. Out of these, four are linked together by
one entity. FINANCIAL is the top-level entity that
contains the BEHAVIOUR architecture for linking
the components utilizing VHDL structural approach.
INPUT_N, HIDDEN, OUTPUT and BACKPROP are
the other four entities. Structural view of the system
is illustrated in Fig. 1.

Number format design: Since finite storage
devices, also referred to as sequential elements, are
being used in the neural network chip, the internal
signals must have a numbering format. In this study,
number-scaling method is utilized to minimize the
complexity and to facilitate synthesis process.

Am. J. Applied Sci., 8 (10): 1054-1060, 2011

1056

Fig. 1: Structural view of the system

This method multiplies integer type of VHDL with 1024
or 10242 depending on the number of multiplication and
later divides the number with the same constant to revert
to the original scale.

Neuron design of input layer: The input integer layer
comprises of three neurons for the neural network
design. Acting as a buffer in between hidden layer
neurons and data is the input layer’s purpose. INPUT is
the entity for the input layer neuron and BEHAVIOUR
is its architecture.

Neuron design of hidden layer: The hidden layer is
consisted of 2 neurons. It uses a sigmoid transfer
function. As input, each hidden layer neurons possesses
3 system data of current exemplar. HIDDEN is the
entity for hidden layer neuron and BEHAVIOUR is its
architecture. The code is written in a way that each
neuron is able to perform three modes of operation.
 The random weight generator is the first mode of
operation. For each three inputs, it generates random
weights. If the “mode” input pin is put to “01” of
std_logic_vector type, the operation is triggered.
 Forward mode is the second mode of operation.
The network propagate forward its input to produce
output in this mode. All the 3 input data attributes are
multiplied by a unique internal weight for every hidden
layer neuron produced by random weights generator.
Then these 3 results are added and applied to internal
transfer squashing function which is the sigmoid
function. The transfer function output is the activation
output of neuron. Each hidden layer neurons output is
fed to the output layer neuron. For testing the network
or once the network really acts as stock price predictor,
the second mode is used. If “mode” input pin is put to
“10” value of std_logic_vector type, the second mode
operation is triggered.
 Backward propagate mode is the third mode. The
network error is backpropagated in this mode. To

reduce network error, the threshold and weights are
adjusted if the same input is applied to the network. In
this process, backpropagation learning algorithm is
utilized. For monitoring purposes, hidden layer neuron
error is transferred to port hidden_error1 and
hidden_error2 of the two hidden layer neuron. The
network runs in training mode when neural network chip
runs in the third mode. The “mode” input pin is set to
“11” of std_logic_vector type if third mode is triggered.
 BACKPROP, another entity, is created for the third
mode for an efficient operation. Output error is required
to correct the hidden layer neuron weights. As such,
after the output error is obtained, the weights are
corrected. BACKPROP is after the output layer neuron
for obtaining the output error. Another purpose is to
correct the weights as per the backpropagation-learning
algorithm. Corrected weights are fed back to hidden
layer neuron. Design flowchart of hidden layer neuron
is shown in Fig. 2.

Random weights generator: Random weights
generator generates a random number with uniform
distribution in the interval between -1024 and 1024.
The random weights generator uses a random number
between 0-1024 to generate the desired number derived
from the following mathematical function Eq. 1:

X(n) A (B A) R(n)= + − × (1)

Where:
A and B = The limits of the interval
X = A random number between A and B
R = A random number between 0 and 1

Given interval A = -1024 and B = 1024, therefore,

X = -1024 + (2048× R) (2)

 Since we fed random number of range between 0
and 1024, the following formula is applied to the
network instead of Eq. 2 and 3:

X 1024 (2048 R /1024) 1024 (2 R)= − + × = − + × (3)

 The value of 1024 is chosen because it is a power
factor of 2. This is important since only a power factor
of 2 can be utilized in arithmetic division operation to
synthesize. The value of the weights generated is stored
in signal class of data object because an object of this
class holds not only the current value of a type but also
the past value and the set of scheduled future values
that are to appear on that signal. A signal is assigned to
a value using a signal assignment statement.

Am. J. Applied Sci., 8 (10): 1054-1060, 2011

1057

Fig. 2: Flowchart of hidden layer neurons

Normalization: Normalization is utilized for reducing
the data range set to appropriate value for input to the
activation function. To normalize the input data, the
floating-point value of the input data, which usually
represents the cents value in the data, is first removed.
Then, the input data is normalized by using the
following function Eq. 4:

New value (Old value - Mean) / (Maximum Range)= (4)

 Some modification is applied since the above
function produces a new value in the range between -1
and 1; therefore, the new value is multiplied by 2048 to
increase the range and thus facilitate synthesize.
However, if the maximum range is not a power factor
of two then the division of 2048 from the maximum
range produces a result that is close to 1. Therefore, the
division and multiplication terms are removed and the
following function is used Eq. 5:

New value (Old value - Mean)= (5)

 However, this function produces a suitable range of
values for input to the sigmoid activation function. The
function to re-scale the output back to its original value
is Eq. 6:

New value (Old value Mean)= + (6)

Sigmoid Function and threshold value: Sigmoid
transfer function works for squashing the neuron output
into one and zero. In the network, the sigmoid function
piecewise linear approximation is utilized. The output
range must be in between 0-1024 as the input range is
in between -1024 and 1024, after sigmoid function is
applied to the network. As such, equation illustrated in
Table 1 is utilized to the design of the VHDL Eq. 7.

Table 1: The set of equation
0 P<-400 y = 150p + 600 1000<p<2000
y=31p + 140 -4000<p<-3000 y = 67p + 750 2000<p<
y=67p + 250 -3000<p<-2000 y = 31p + 860 3000<p<4000
y=150p + 400 -2000<p<-1000 y = 1023 p<4000
y=230p + 500 -1000<p<1000

Where:

3

i 1

Activation output,

p weight input 1024 threshold value
=

  = × ÷ +  
  
∑

 (7)

 The network bias or threshold value is set to 697
arbitrarily.

Neuron design of output layer: The neural network’s
output layer comprises of one neuron which utilizes a
sigmoid transfer function. OUTPUT is the entity for
output layer neuron and BEHAVIOUR is the
architecture. As inputs, the output layer neuron has the
activation output of each two hidden layer neurons. It has
the target value as input also. From hidden layer neurons,
each two input data values is multiplied by a unique
internal weight for output layer neuron created by the
random weights generator. These two results are added
collectively. Thereafter, it is applied to internal sigmoid
transfer function. The neuron activation is the output. The
output layer neuron activation is the activation of entire
model. From the data exemplar, the activation is compared
with the expected target input to get the current neural
network exemplar error. As hidden layer neurons, the
same modes of operation are applied to the output layer
neurons. The same random normalization method, weights
generator and piecewise linear approximation of sigmoid
function as hidden layer are utilized in output layer.

RESULTS AND DISCUSSION

 By inserting test bench into VHDL code,
simulation was accomplished to verify its functionality
and performance. Training was done by feeding the
historical data of the KLSE Index into the network
iteratively for three times. With a period of 100 ns,
each integer input signal is fed into the model. The
training process was done in between 0 ns and 30000
ns. The process was accomplished in mode “10”. For
initializing the weights of output layer and hidden
layer neurons, first 100 ns were used. In mode “01”,
this process was accomplished. Testing was
accomplished in between 30100 ns and 39900 ns. In
mode “11”, this process was done. From the KLSE
index historical data, only first 100 data was
used to show the VHDL code functionality.

Am. J. Applied Sci., 8 (10): 1054-1060, 2011

1058

Fig. 3: Sample timing diagram of training simulation

 The successive 100 data was utilized to test. The
normalization function was adjusted accordingly so
that it performs normalization with respect to the
specified data only.

Training simulation: At weight initializing mode, the
neural network chip operated at 0 ns. The random
number was created and transformed to weight by using
the random weights generator. The neural network chip
was in training mode at 100 ns where weights were
tuned for reducing output error.
 Several sets of weights were tested randomly
before getting the simulation result shown in this report.
It has been observed that the value of output error is
reduced as more input is fed into the network. The
weights were adjusted so that the probability of the next
input to get its desired output was higher. The input to
the network was first normalized before the calculation
was performed in the training mode. Figure 3 shows a
timing diagram of training simulation.

Testing the simulation: The neural network chip was
in testing mode at 30100 ns. A neural network passes
by weight initialization process and training before
testing was done. Input data was only required during
testing. At this period, it was considered that the neural
network’s weights reached to its local or global minimum.
No adjustment of weights during training which implies
no output error. As such, the variables stop changing was
observed at 30100 ns. Changes in weights were less
frequent as the network come close to 30100 ns. Because,
after executing the backpropagation learning algorithm, it
almost has arrived its local or global minimum.
 The simulation halted at 39900 ns after the neural
network model was fed with three iterative inputs for
training and subsequent 100 inputs for testing.

Fig. 4: Testing simulation sample timing diagram

Fig. 5: Actual closing price Vs predicted closing price

Table 2: The chip utilization rate
Device EPF10K100EQC208-1
fmax (MHz) 33.76 MHz
Dedicated input pins 6/6
I/O Pins 57/141
Logic cells 2853/4992
Embedded cells 6/192
EABs 1/12

At 39900 ns, desired_output was obtained for the KLSE
Index closing price 10 days in advance of the input
price. The reduction in input number to 100 inputs was
done to reduce the system complexity. Figure 4 shows
the timing diagram of testing simulation. A comparative
study between actual closing price and predicted
closing price is illustrated in Fig. 5. By comparing, it is
concluded that the model prediction is 99.16% precise
Eq. 8:

N

i 1

Percentage of accuracy

X - Y
100 100 N 99.16%

X=

  = − × ÷ =  
  
∑

 (8)

Where:
N = No. of days
X = Actual closing price
Y = Predicted closing price

Am. J. Applied Sci., 8 (10): 1054-1060, 2011

1059

Synthesis: Regarding hardware implementation, the
VHDL code is synthesized keeping Altera FLEX10KE:
EPF10K100EQC208-1 FPGA chip in consideration,
resulting in maximum clock frequency of 33.76 MHz.
The FLEX 10KE family offers speed, density and
features integrating the full systems, which includes
multiple 32-bit buses in a single chip. Table 2 lists
utilization rate of the chip.

CONCLUSION

 By simulating with KLSE index data the proposed
stock market forecasting system based on neural
network is successfully designed, implemented and tested
on FLEX 10KE FPGA chip. This study test results are
anticipated to be a higher rate of prediction for stock
market analysis, thereby maintaining the high quality of
supplying information in stock market business.

REFERENCES

Akter, M., M.B.I. Reaz, F. Mohd-Yasin and F. Choong,

2008. Hardware implementations of an image
compressor for mobile communications. J.
Commun. Technol. Elect., 53: 899-910. DOI:
10.1134/S106422690808007X

Choong, F., M.B.I. Reaz and F. Mohd-Yasin, 2005.
Power quality disturbance detection using artificial
intelligence: A hardware approach. Proceedings of
the 19th IEEE International Parallel and
Distributed Processing Symposium, Apr. 4-8, IEEE
Xplore Press, Denver, USA., pp: 146a-146a. DOI:
10.1109/IPDPS.2005.348

Choong, F., M.B.I. Reaz, T.C. Chin and F. Mohd-
Yasin, 2006. Design and implementation of a data
compression scheme: A partial matching approach.
Proceedings of the International Conference on
Computer Graphics, Imaging and Visualisation,
Jul. 26-28, IEEE Xplore Press, Sydney, Australia,
pp: 150-155. DOI: 10.1109/CGIV.2006.94

Corchado, J., C. Fyfe and B. Lees, 1998. Unsupervised
learning for financial forecasting. Proceedings of
the IEEE/IAFE/INFORMS 1998 Conference on
Computational Intelligence for Financial
Engineering (CIFEr), Mar. 29-31, IEEE Xplore
Press, New York, USA., pp: 259-263. DOI:
10.1109/CIFER.1998.690316

Coussy, P., D.D. Gajski, M. Meredith and A. Takach,
2009. An introduction to high-level synthesis.
IEEE Design Test Comput., 26: 8-17. DOI:
10.1109/MDT.2009.69

Disorntetiwat, P. and C.H. Dagli, 2000. Simple
ensemble-averaging model based on generalized
regression neural network in financial forecasting

problems. Proceedings of the IEEE Adaptive
Systems for Signal Processing, Communications
and Control Symposium, Oct. 01-04, IEEE Xplore
Press, Lake Louise, Canada, pp: 477-480. DOI:
10.1109/ASSPCC.2000.882522

Garliauskas, A., 1999. Neural network chaos and
computational algorithms of forecast in Finance.
Proceedings of IEEE International Conference on
Systems, Man, and Cybernetics, Oct. 12-15, IEEE
Xplore Press, Tokyo, Japan, pp: 638-643. DOI:
10.1109/ICSMC.1999.825335

Kane, R. and M. Milgram, 1994. Financial Forecasting
and Rules Extraction from Trained Networks.
Proceedings of the IEEE International Conference
on Neural Networks IEEE World Congress on
Computational Intelligence, Jun. 27-Jul. 02, IEEE
Xplore Press, Orlando, USA., pp: 3190-3195. DOI:
10.1109/ICNN.1994.374745

Marufuzzaman, M., M.B.I. Reaz, M.S. Rahman and
M.A.M. Ali, 2010. Hardware prototyping of an
intelligent current dq PI controller for FOC PMSM
drive. Proceedings of the IEEE International
Conference on Electrical and Computer
Engineering, Dec. 18-20, IEEE Xplore Press,
Dhaka, Bangladesh, pp: 86-88. DOI:
10.1109/ICELCE.2010.5700559

Mogaki, S., M. Kamada, T. Yonekura, S. Okamoto and
Y. Ohtaki et al., 2007. Time-stamp service makes
real-time gaming cheat-free. Proceedings of the 6th
ACM SIGCOMM Workshop on Network and
System Support for Games, Sep. 19-20, ACM,
New York, USA., pp: 135-138. DOI:
10.1145/1326257.1326281

Mohd-Yasin, F., A.L. Tan and M.I. Reaz, 2004. The
FPGA prototyping of iris recognition for biometric
identification employing neural network.
Proceedings of the 16th International Conference
on Microelectronics, Dec. 6-8, IEEE Xplore Press,
Tunis, Tunesia, pp: 458-461. DOI:
10.1109/ICM.2004.1434697

Obe, O.O. and D.K. Shangodoyin, 2010. Artificial
neural network based model for forecasting sugar
cane production. J. Comput. Sci., 6: 439-445. DOI:
10.3844/jcssp.2010.439.445

Reaz, M.B.I., M.T. Islam, M.S. Sulaiman, M.A.M. Ali
and H. Sarwar, 2003. FPGA realization of
multipurpose FIR filter. Proceedings of the 4th
International Conference on Parallel and
Distributed Computing, Applications and
Technologies, Aug. 27-29, IEEE Xplore Press,
Chengdu, China, pp: 912-915. DOI:
10.1109/PDCAT.2003.1236448

Am. J. Applied Sci., 8 (10): 1054-1060, 2011

1060

Reaz, M.B.I., F. Mohd-Yasin, M.S. Sulaiman, K.T. Tho
and K.H. Yeow, 2004a. Hardware prototyping of
boolean function classification schemes for lossless
data compression. Proceedings of the 2nd IEEE
International Conference on Computational
Cybernetics, Aug. 30- Sep. 01, IEEE Xplore Press,
Vienna, Austria, pp: 47-51. DOI:
10.1109/ICCCYB.2004.1437664

Reaz, M.B.I., M.S. Sulaiman, F.M. Yasin and T.A.
Leng, 2004b. IRIS recognition using neural
network based on VHDL prototyping. Proceedings
of the IEEE International Conference on
Information and Communication Technologies:
From Theory to Applications, Apr. 19-23, IEEE
Xplore Press, Damascus, Syria, pp: 463-464. DOI:
10.1109/ICTTA.2004.1307832

Reaz, M.B.I., F. Mohd-Yasin, S.L. Tan, H.Y. Tan and
M.I. Ibrahimy, 2005a. Partial encryption of
compressed images employing FPGA. Proceedings
of the IEEE International Symposium on Circuits
and Systems, May 23-26, IEEE Xplore Press,
Kobe, Japan, pp: 2385-2388. DOI:
10.1109/ISCAS.2005.1465105

Reaz, M.B.I., P.W. Leong, F. Mohd-Yasin and T.C.
Chin, 2005b. Modeling of data compression using
partial matching: A VHDL approach. Proceedings
of the 6th World Wireless Congress (WWC), May
25-27, Palo Alto, USA, pp: 411-416.

Reaz, M.B.I., F. Choong and F. Mohd-Yasin, 2006.
VHDL modeling for classification of power quality
disturbance employing wavelet transform, artificial
neural network and fuzzy logic. Simulation, 82:
867-881. DOI: 10.1177/0037549707077782

Reaz, M.B.I., F. Choong, M.S. Sulaiman and F. Mohd-
Yasin, 2007a. Prototyping of wavelet transform,
artificial neural network and fuzzy logic for power
quality disturbance classifier. J. Elect. Power
Components Syst., 35: 1-17. DOI:
10.1080/15325000600815431

Reaz, M.B.I., M.I. Ibrahimy, F. Mohd-Yasin, C.S. Wei
and M. Kamada, 2007b. Single core hardware
module to implement encryption in TECB mode.
Inform. Midem Ljubljana, 37: 165-171.

Seridi-Bouchelaghem, H., T. Sari and M. Sellami,
2005. A neural network for generating adaptive
lessons. J. Comput. Sci., 1: 232-243. DOI:
10.3844/jcssp.2005.232.243

Tan, C.N.W. and G.E.A, Wittig, 1993. A study of the
parameters of a backpropagation stock price
prediction model. Proceedings of the 1st New
Zealand International Two Stream Conference on
Artificial Neural Networks and Expert Systems,
Nov. 24-26, IEEE Xplore Press, Dunedin, New
Zealand, pp: 288-291. DOI:
10.1109/ANNES.1993.323023

Zimmermann, H.G., R. Neuneier and R. Grothmann,
2001. Multi-agent Modeling of Multiple FX-
Markets by Neural Networks. IEEE Trans. Neural
Netw., 12: 735-743. DOI: 10.1109/72.935087

