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Abstract: Problem statement: Multiagent system is very proficient and has rules well-suited for 
financial forecast with its neural network. In financial forecasting, the approach for rules extractions is 
less pertinent and involves algorithms which are complex. The unsupervised network method lacks in 
comprehensibility and leads to ambiguity. Approach: The application of neural network technology to 
real-time processing of financial market analysis demands the development of a new processing 
structure which allows efficient hardware realization of the neural network mechanism. This study 
describes the realization of neural network on FPGA device for stock market forecasting system. The 
stock market forecasting neural network architecture consists of three layers. These are input layer 
with three neurons, hidden layer with two neurons and output layer with one neuron. For both output 
layer and hidden layer neurons, Sigmoid transfer function is used. Neuron of each layer is modelled 
individually using behavioural VHDL. The layers are then connected using structural VHDL. This is 
followed by timing analysis and circuit synthesis for the validation, functionality and performance of 
the designated circuit. The designated portfolio is then programmed through download cable into the 
FPGA chip. Results: Kuala Lumpur Stock Exchange (KLSE) index has been utilized for validating the 
usefulness of the completed prototype. Test on the sample of 100 data demonstrated an accuracy of 
99.16% in predicting closing price of the KLSE index 10 days in advance. Conclusion: The test 
results are anticipated to be a higher rate of prediction for stock market analysis, thereby maintaining 
the high quality of supplying information in stock market business.  
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INTRODUCTION 

 
 In recent years, financial markets have become 
more interrelated. The fundamental factors are 
becoming more critical for the analysis of financial 
market. The research in recent past shows that the 
nonlinear domain with artificial intelligence technologies 
can be modeled more precisely compared to single-
market and linear statistical methods which have been 
the mainstay for technical analysis for past decade. 
 The synergistic market analysis which merges 
technical and fundamental analysis using artificial 
intelligence tools and synthesizes fundamental, 

technical and intermarket data within an analytical 
framework, results in better forecasting capabilities. 
Neural networks among various artificial intelligence 
tools are increasingly used to the financial forecasting 
as neural nets are found to be technologically flexible 
and powerful, ideally suited to perform financial 
market analysis. 
 Multiagent system (Zimmermann et al., 2001; 
Garliauskas, 1999; Disorntetiwat and Dagli, 2000; 
Mogaki et al., 2007; Seridi-Bouchelaghem et al., 2005; 
Obe and Shangodoyin, 2010) is very proficient and has 
rules well-suited for financial forecast with its neural 
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network. But a drawback is complexity of the system. 
In financial forecasting, the approach for rules 
extractions (Kane and Milgram, 1994) is less pertinent 
and involves algorithms which are complex. The 
unsupervised network method (Corchado et al., 1998) 
lacks in comprehensibility and leads to ambiguity. It 
can be applied on standard iterated mapping functions 
only. Backpropagation is better for prediction of stock 
market. As it has got a set of defined rules and 
algorithms for training, backpropagation is the most 
comprehensive and straightforward method.  
 The Field-Programmable Gate Arrays (FPGA) 
provides a potential substitute to speed up hardware 
implementation (Coussy et al., 2009; Marufuzzaman et 
al., 2010; Reaz et al., 2007a). FPGA comes with the 
merits of shorter design cycle, lower cost and higher 
density from computer-aided design perspective (Choong 
et al., 2005; Akter et al., 2008). It contains various 
building blocks. Each block comprises of programmable 
storage registers and look-up table. The interconnections 
are programmed by Hardware Description Language 
(HDL) among these blocks (Reaz et al., 2003; 2004a; 
2005a). For prototyping digital system, the simplicity 
and programmability of FPGA made it appealing. FPGA 
allows users to easily and inexpensively realize their own 
logic networks in hardware. FPGA also allows 
modifying the algorithm easily and the design time frame 
for the hardware becomes shorter by using FPGA 
(Choong et al., 2006; Mohd-Yasin et al., 2004). 
 This study aims to investigate the hardware 
feasibility and performance of ANN based stock market 
forecasting system using FPGA by standard hardware 
description language VHDL. A formal description of 
the system and utilization of specific description styles 
for covering various abstraction levels (logic, 
architectural and register transfer level) made VHDL 
attractive (Reaz et al., 2006; 2007b). In the computation 
method, first the problem is separated into small pieces. 
In VHDL, each of them is a submodule. The synthesis 
is then activated following software verification of each 
submodule. It performs the translations of HDL code 
into a similar digital cells’ netlist. To explore a far wider 
range of architectural alternative, the synthesis helps to 
integrate the design work and offers higher feasibility 
(Reaz et al., 2005b; 2004b). To validate the effectiveness 
of the method, Kuala Lumpur Stock Exchange (KLSE) 
index has been used in this study. For hardware 
implementation, this method offers a systematic approach, 
facilitating quick prototyping of neural network for 
financial market analysis. 

MATERIALS AND METHODS 
 
Design overview: FPGA realization of neural network 
in stock market prediction is introduced to ease the 
development of financial market analysis. The system is 
capable of predicting the closing price of the KLSE 
index 10 days in advance from the current day. The 
input for the neural network will consist of the daily 
high, daily low and closing price of the KLSE index. 
 The neural network architecture for stock market 
forecasting is a three layer with three neurons in input 
layer, one neuron in output layer and two neurons in 
hidden layer (Tan et al., 1993). The system is capable 
of minimizing the output error of the backpropagation 
neural network to forecast the closing price of the 
KLSE index 10 days in advance from the current day. 
The neural network input consists of the daily high, 
daily low and closing price of the KLSE index. For a 
stable network with minimum error, we choose a 
learning rate of 0.3 that is scaled to 307 since it is 
implemented as integer data type in VHDL. The scaling 
is done by multiplying the learning rate with 1024, 
gives a constant value thus synthesizable. The network 
is trained by using the historical data of the KLSE index 
from January 2004 to July 2011. This set of epochs is 
feed into the network three times. 
 For enabling any combination of number of output 
neurons, input neurons and hidden neurons, the network 
is configurable. The output and hidden layer neurons 
utilize sigmoid transfer function. Every neuron in the 
output, hidden and input layer is programmed as a 
single entity. Using structural approach, these 
neurons combinations are coded in a high level 
design. To process the input data and initializing the 
neural network weights to a suitable range, 
normalization circuit and random number generator 
are added. The developed neural network is divided 
in three modes of operation. These are testing, 
random weight generation and training mode. 
 
System level design: The VHDL code is divided in 
five entities. Out of these, four are linked together by 
one entity. FINANCIAL is the top-level entity that 
contains the BEHAVIOUR architecture for linking 
the components utilizing VHDL structural approach. 
INPUT_N, HIDDEN, OUTPUT and BACKPROP are 
the other four entities. Structural view of the system 
is illustrated in Fig. 1. 
  
Number format design: Since finite storage 
devices, also referred to as sequential elements, are 
being used in the neural network chip, the internal 
signals must have a numbering format. In this study, 
number-scaling method is utilized to minimize the 
complexity     and   to   facilitate  synthesis   process. 
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Fig. 1: Structural view of the system 
 
This method multiplies integer type of VHDL with 1024 
or 10242 depending on the number of multiplication and 
later divides the number with the same constant to revert 
to the original scale. 
 
Neuron design of input layer: The input integer layer 
comprises of three neurons for the neural network 
design. Acting as a buffer in between hidden layer 
neurons and data is the input layer’s purpose. INPUT is 
the entity for the input layer neuron and BEHAVIOUR 
is its architecture.  
 
Neuron design of hidden layer: The hidden layer is 
consisted of 2 neurons. It uses a sigmoid transfer 
function. As input, each hidden layer neurons possesses 
3 system data of current exemplar. HIDDEN is the 
entity for hidden layer neuron and BEHAVIOUR is its 
architecture. The code is written in a way that each 
neuron is able to perform three modes of operation. 
 The random weight generator is the first mode of 
operation. For each three inputs, it generates random 
weights. If the “mode” input pin is put to “01” of 
std_logic_vector type, the operation is triggered.  
 Forward mode is the second mode of operation. 
The network propagate forward its input to produce 
output in this mode. All the 3 input data attributes are 
multiplied by a unique internal weight for every hidden 
layer neuron produced by random weights generator. 
Then these 3 results are added and applied to internal 
transfer squashing function which is the sigmoid 
function. The transfer function output is the activation 
output of neuron. Each hidden layer neurons output is 
fed to the output layer neuron. For testing the network 
or once the network really acts as stock price predictor, 
the second mode is used. If “mode” input pin is put to 
“10” value of std_logic_vector type, the second mode 
operation is triggered.  
 Backward propagate mode is the third mode. The 
network error is backpropagated in this mode. To 

reduce network error, the threshold and weights are 
adjusted if the same input is applied to the network. In 
this process, backpropagation learning algorithm is 
utilized. For monitoring purposes, hidden layer neuron 
error is transferred to port hidden_error1 and 
hidden_error2 of the two hidden layer neuron. The 
network runs in training mode when neural network chip 
runs in the third mode. The “mode” input pin is set to 
“11” of std_logic_vector type if third mode is triggered.  
 BACKPROP, another entity, is created for the third 
mode for an efficient operation. Output error is required 
to correct the hidden layer neuron weights. As such, 
after the output error is obtained, the weights are 
corrected. BACKPROP is after the output layer neuron 
for obtaining the output error. Another purpose is to 
correct the weights as per the backpropagation-learning 
algorithm. Corrected weights are fed back to hidden 
layer neuron. Design flowchart of hidden layer neuron 
is shown in Fig. 2. 
 
Random weights generator: Random weights 
generator generates a random number with uniform 
distribution in the interval between -1024 and 1024. 
The random weights generator uses a random number 
between 0-1024 to generate the desired number derived 
from the following mathematical function Eq. 1: 
 
X(n) A (B A) R(n)= + − ×  (1) 
 
Where:  
A and B  = The limits of the interval 
X = A random number between A and B 
R = A random number between 0 and 1 
 
Given interval A = -1024 and B = 1024, therefore, 
 
X = -1024 + (2048× R) (2) 
 
 Since we fed random number of range between 0 
and 1024, the following formula is applied to the 
network instead of Eq. 2 and 3: 
 
X 1024 (2048 R /1024) 1024 (2 R)= − + × = − + ×  (3) 
 
 The value of 1024 is chosen because it is a power 
factor of 2. This is important since only a power factor 
of 2 can be utilized in arithmetic division operation to 
synthesize. The value of the weights generated is stored 
in signal class of data object because an object of this 
class holds not only the current value of a type but also 
the past value and the set of scheduled future values 
that are to appear on that signal. A signal is assigned to 
a value using a signal assignment statement.  
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Fig. 2: Flowchart of hidden layer neurons 
 
Normalization: Normalization is utilized for reducing 
the data range set to appropriate value for input to the 
activation function. To normalize the input data, the 
floating-point value of the input data, which usually 
represents the cents value in the data, is first removed. 
Then, the input data is normalized by using the 
following function Eq. 4: 
 
New value  (Old value - Mean) / (Maximum Range)=  (4) 
 
 Some modification is applied since the above 
function produces a new value in the range between -1 
and 1; therefore, the new value is multiplied by 2048 to 
increase the range and thus facilitate synthesize. 
However, if the maximum range is not a power factor 
of two then the division of 2048 from the maximum 
range produces a result that is close to 1. Therefore, the 
division and multiplication terms are removed and the 
following function is used Eq. 5: 
 
New value  (Old value - Mean)=  (5) 
 
 However, this function produces a suitable range of 
values for input to the sigmoid activation function. The 
function to re-scale the output back to its original value 
is Eq. 6: 
 
New value  (Old value  Mean)= +  (6) 
 
Sigmoid Function and threshold value: Sigmoid 
transfer function works for squashing the neuron output 
into one and zero. In the network, the sigmoid function 
piecewise linear approximation is utilized. The output 
range must be in between 0-1024 as the input range is 
in between -1024 and 1024, after sigmoid function is 
applied to the network. As such, equation illustrated in 
Table 1 is utilized to the design of the VHDL Eq. 7. 

Table 1: The set of equation 
0 P<-400 y = 150p + 600 1000<p<2000 
y=31p + 140 -4000<p<-3000 y = 67p + 750 2000<p< 
y=67p + 250 -3000<p<-2000 y = 31p + 860 3000<p<4000 
y=150p + 400 -2000<p<-1000 y = 1023 p<4000 
y=230p + 500 -1000<p<1000  
 
Where:  
 

3

i 1

Activation output,

p weight input 1024 threshold value
=

  = × ÷ +  
  
∑

  (7) 

 
 The network bias or threshold value is set to 697 
arbitrarily. 
 
Neuron design of output layer: The neural network’s 
output layer comprises of one neuron which utilizes a 
sigmoid transfer function. OUTPUT is the entity for 
output layer neuron and BEHAVIOUR is the 
architecture. As inputs, the output layer neuron has the 
activation output of each two hidden layer neurons. It has 
the target value as input also. From hidden layer neurons, 
each two input data values is multiplied by a unique 
internal weight for output layer neuron created by the 
random weights generator. These two results are added 
collectively. Thereafter, it is applied to internal sigmoid 
transfer function. The neuron activation is the output. The 
output layer neuron activation is the activation of entire 
model. From the data exemplar, the activation is compared 
with the expected target input to get the current neural 
network exemplar error. As hidden layer neurons, the 
same modes of operation are applied to the output layer 
neurons. The same random normalization method, weights 
generator and piecewise linear approximation of sigmoid 
function as hidden layer are utilized in output layer. 
 

RESULTS AND DISCUSSION 
 
 By inserting test bench into VHDL code, 
simulation was accomplished to verify its functionality 
and performance. Training was done by feeding the 
historical data of the KLSE Index into the network 
iteratively for three times. With a period of 100 ns, 
each integer input signal is fed into the model. The 
training process was done in between 0 ns and 30000 
ns. The process was accomplished in mode “10”. For 
initializing the weights of output layer and hidden 
layer neurons, first 100 ns were used. In mode “01”, 
this process was accomplished. Testing was 
accomplished in between 30100 ns and 39900 ns. In 
mode “11”, this process was done. From the KLSE 
index    historical   data, only   first  100 data was 
used    to    show    the   VHDL   code   functionality. 
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Fig. 3: Sample timing diagram of training simulation 
 
 The successive 100 data was utilized to test. The 
normalization function was adjusted accordingly so 
that it performs normalization with respect to the 
specified data only. 
 
Training simulation: At weight initializing mode, the 
neural network chip operated at 0 ns. The random 
number was created and transformed to weight by using 
the random weights generator. The neural network chip 
was in training mode at 100 ns where weights were 
tuned for reducing output error.  
 Several sets of weights were tested randomly 
before getting the simulation result shown in this report. 
It has been observed that the value of output error is 
reduced as more input is fed into the network. The 
weights were adjusted so that the probability of the next 
input to get its desired output was higher. The input to 
the network was first normalized before the calculation 
was performed in the training mode. Figure 3 shows a 
timing diagram of training simulation. 
 
Testing the simulation: The neural network chip was 
in testing mode at 30100 ns. A neural network passes 
by weight initialization process and training before 
testing was done. Input data was only required during 
testing. At this period, it was considered that the neural 
network’s weights reached to its local or global minimum. 
No adjustment of weights during training which implies 
no output error. As such, the variables stop changing was 
observed at 30100 ns. Changes in weights were less 
frequent as the network come close to 30100 ns. Because, 
after executing the backpropagation learning algorithm, it 
almost has arrived its local or global minimum. 
 The simulation halted at 39900 ns after the neural 
network model was fed with three iterative inputs for 
training   and     subsequent    100 inputs   for   testing.  

 

 

Fig. 4: Testing simulation sample timing diagram 
 

 
 
Fig. 5: Actual closing price Vs predicted closing price 
 
Table 2: The chip utilization rate 
Device EPF10K100EQC208-1 
fmax (MHz) 33.76 MHz 
Dedicated input pins 6/6 
I/O Pins 57/141 
Logic cells 2853/4992 
Embedded cells 6/192 
EABs 1/12 

 
At 39900 ns, desired_output was obtained for the KLSE 
Index closing price 10 days in advance of the input 
price. The reduction in input number to 100 inputs was 
done to reduce the system complexity. Figure 4 shows 
the timing diagram of testing simulation. A comparative 
study between actual closing price and predicted 
closing price is illustrated in Fig. 5. By comparing, it is 
concluded that the model prediction is 99.16% precise 
Eq. 8: 
 

N

i 1

Percentage of accuracy 

X - Y
100  100 N 99.16%

X=

  = − × ÷ =  
  
∑

 (8) 

 
Where: 
N = No. of days 
X = Actual closing price 
Y = Predicted closing price 
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Synthesis: Regarding hardware implementation, the 
VHDL code is synthesized keeping Altera FLEX10KE: 
EPF10K100EQC208-1 FPGA chip in consideration, 
resulting in maximum clock frequency of 33.76 MHz. 
The FLEX 10KE family offers speed, density and 
features integrating the full systems, which includes 
multiple 32-bit buses in a single chip. Table 2 lists 
utilization rate of the chip.  
 

CONCLUSION 
 
 By simulating with KLSE index data the proposed 
stock market forecasting system based on neural 
network is successfully designed, implemented and tested 
on FLEX 10KE FPGA chip. This study test results are 
anticipated to be a higher rate of prediction for stock 
market analysis, thereby maintaining the high quality of 
supplying information in stock market business.  
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