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Abstract: Problem statement: Similarity based Virtual Screening (VS) deals with a large amount of 
data containing irrelevant and/or redundant fragments or features. Recent use of Bayesian network as 
an alternative for existing tools for similarity based VS has received noticeable attention of the 
researchers in the field of chemoinformatics. Approach: To this end, different models of Bayesian 
network have been developed. In this study, we enhance the Bayesian Inference Network (BIN) using 
a subset of selected molecule’s features. Results: In this approach, a few features were filtered from 
the molecular fingerprint features based on a features selection approach. Conclusion: Simulated 
virtual screening experiments with MDL Drug Data Report (MDDR) data sets showed that the 
proposed method provides simple ways of enhancing the cost effectiveness of ligand-based virtual 
screening searches, especially for higher diversity data set. 
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INTRODUCTION 

 
 Over the past few decades, drug discovery 
companies use combinatorial chemistry approaches to 
create large and diverse libraries of structures, therefore 
large array of compounds are formed by combining sets 
of different types of reagents, called building blocks, in 
a systematic and repetitive way (Willett et al., 1998; 
Walters et al., 1998). These libraries can be used as a 
source of new potential drugs, since compounds in the 
libraries can be randomly tested or screened to find a 
good drug compound. 
 By increasing the capabilities of testing compounds 
using chemoinformatics technologies such, as High-
Throughput Screening (HTS), it is possible to test 
hundreds of thousands of these compounds in a short 
time (Waszkowycz et al., 2001; Miller, 2002). 
Computers can be used to aid this process in a number 
of ways, for example, in the creation of virtual 
combinatorial libraries, which can be much larger than 
their real counterparts. These virtual libraries can be 
virtually screened either by docking into the active site 
of interest or by virtue of their similarity to a known 
active. Recently, searching chemical databases using 

computer instead of experiment has been called virtual 
screening technique (Eckert and Bajorath, 2007; 
Sheridan, 2007; Geppert et al., 2010). 
 Many virtual screening approaches have been 
implemented for searching chemical databases, such as, 
substructure search, similarity, docking and 
Quantitative Structure-Activity Relationships (QSAR). 
Similarity searching is the simplest and one of the most 
widely used techniques for ligand-based virtual 
screening in drug discovery programme.  
 There are many studies in the literature associated 
with the measurement of molecular similarity (Sheridan 
and Kearsley, 2002; Maldonado et al., 2006). However, 
the most common approaches are based on the 2D 
fingerprints, with the similarity between a reference 
structure and a database structure computed using 
association coefficients such as the Tanimoto coefficient 
(Walters et al., 1998; Leach and Gillet, 2003). 
 The effectiveness of ligand-based virtual screening 
approaches can be enhanced by using data fusion 
(Willett, 2006; Feher, 2006). Data fusion can be 
implemented using two different approaches (Kearsley 
et al., 1996; Sheridan et al., 1996). The first, similarity 
fusion, involves searching for a single reference 
structure using multiple molecular descriptors. The 
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similarity scores or ranking for each descriptor are 
combined to obtain the final ranking of the compounds 
in the database. The second approach is a group fusion 
in which multiple reference structures with a single 
similarity measure were used to search the database. 
The group fusion has been found to be generally more 
effective than the similarity fusion. 
 In more recent studies, Bayesian inference network 
(BIN) was introduced as a promising similarity search 
approach (Abdo and Salim, 2009; Chen et al., 2009; 
Abdo et al., 2010). The retrieval performance of 
Bayesian inference network was observed to be 
improved significantly when multiple reference 
structures were used or more weights were assigned to 
some fragments in the molecule structure. 
Unfortunately, such information is unlikely to be 
available in the early stages of a drug discovery 
programme, when just a single weak lead is available 
(Abdo and Salim, 2011; 2009). 
 Features Selection (FS) is a process of selecting a 
subset of features available from the data for application 
of a learning algorithm. The best feature subset contains 
the least number of features that most contribute to 
accuracy and efficiency. This is an important stage of 
preprocessing and is one of the two ways of avoiding 
high dimensional space of features (the other is feature 
extraction).The current molecule’s fingerprint consists of 
many features, not all of it have the sme importance and 
remove some features can enhance the recall of similarity 
measure (Vogt et al., 2010). 
 In this study, we enhance the screening 
effectiveness of Bayesian inference network using 
feature selection approach. In this proposed method, a 
few relevant features were filtered from molecular 2D 
fingerprint features. A set of active known references and 
random unknown molecules were used as a test data for 
each class of the data set. Only the subsets of selected 
features were used in calculating similarity score.  
  

MATERIAL AND METHODS 
 
 This study has compared the retrieval results 
obtained using three different similarity based screening 
models. The first screening system was based on the 
tanimoto (TAN) coefficient which has been used for 
ligand-based virtual screening for many years and has 
been considered as a reference standard. The second 
model was based on the basic BIN (Abdo and Salim, 
2011), that uses the Okapi (OKA) weight which found 
to perform the best in their experiments, which we shall 
refer to as conventional BIN model. The third model, 
our proposed model, is BIN based on feature selection 
model which we shall refer to as BINFS model. In what 
follows, we give a brief description of each one of these 
three models. 

Tanimoto-based similarity model: Tanimoto used the 
continuous form of the tanimoto coefficient, which is 
applicable to non-binary data of fingerprint. SK,L is the 
similarity between objects or molecules K and L using 
Tanimoto is given by Eq. 1: 
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 For molecules described by continuous variables, 
the molecular space is defined by an M×N matrix, where 
entry wji is the value of the jth feature (1 ≤ j ≤ M) in the 
ith molecule (1 ≤ i ≤ N). The origins of this coefficient 
can be found in a review paper.  
 
Conventional BIN model: The conventional Bayesian 
inference network model, shown in Fig. 1 is used in 
molecular similarity searching. It consists of three types 
of nodes: compound nodes as roots, fragment nodes and 
a reference structure node as leaf. The roots of the 
network are the nodes without parent nodes and the 
leaves are the nodes without child nodes. Each 
compound node represents an actual compound in the 
collection and has one or more fragment nodes as 
children. Each fragment node has one or more 
compound nodes as parents and one reference structure 
node as child (or more in case of multiple references are 
used). Each network node is a binary value, taking one 
of the two values from the set {true, false}. The 
probability that the reference structure is satisfied given 
a particular compound is obtained by computing the 
probabilities associated with each fragment node 
connected to the reference structure node. This process 
is repeated for the whole compounds in the database.  
 

 
 
Fig. 1: Bayesian inference network model  
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The resulting probability scores are used to rank the 
database in response to a bioactive reference structure 
in the order of decreasing probability of similar 
bioactivity to the reference structure. 
 To estimate the probability associating each 
compound to the reference structure, we need to 
compute the probability in the fragment and reference 
nodes. One particular belief function called OKA has 
the most effective recall (Abdo and Salim, 2011). This 
function was used to compute the probability in the 
fragment nodes and is given by Eq. 2: 
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Where: 
α = Constant and experiments using the Bayesian 

network show that the best value is 0.4 (Abdo 
and Salim, 2009; Chen et al., 2009) 

ffij = Frequency of the ith fragment within jth 
compound reference structure 

cfi = Number of compounds containing ith 
fragment 

|cj| = The size (in terms of number of fragments) of 
the jth compound 

|Cavg| = The average size of all the compounds in the 
database and m is the total number of 
compounds 

 
 To produce a ranking of the compounds in the 
collection with respect to a given reference structure, a 
belief function from In Query, specifically the SUM 
operator, was used. If p1, p2,..., pn represent the belief 
at the fragment nodes (parent nodes of r) then the belief 
at r is given by Eq. 3: 
 

n

i
i 1

sum

p
bel (r)

n
==
∑

 (3)
 

 
Where: 
n = The number of the unique fragments assigned to 

r reference structure 
pi = Value of the belief function bel(fi) in ith fragment 

node  

BIN model based on feature selection: This model of 
BIN is based on using subset of molecule’s features. To 
achieve this objective, two steps were used. First, we 
prepare training data that consists of known active 
molecules queries and unknown molecules. For each 
activity class (for 1, 2 and DS3) 10 different sets of 10 
active compounds were randomly selected as reference 
set (Query) and it was appended by 307548 unknown 
molecules as train data, so the size of training data is 
307548 molecules and test data is 102516 molecules 
which represents either DS1, DS2 or DS3. This step 
was done for all activity classes for each data set 
separately. In each class we used different reference 
sets of 10 active compounds that belong to that class. 
 The second step is responsible for generating 
subset of molecule’s features. To achieve this goal, a 
classifier column (that required by features selection 
algorithms) is added, the value of this column is 1 for 
all first 10 rows (represent the reference queries) and 0 
for the rest of rows (that represent the unknown 
compounds). This column represents the label or 
classifier that is used by feature selection algorithm. 
The train data is used as input to SPSS Celemtine 
software that implements Principle Component 
Analysis (PCA) features selection algorithm. The result 
of this step is a vector or row of selected feature 
numbers that we used as input to the main data set to 
rearrange the entire data based on it. 
 
Experimental design: The searches were carried out 
on the MDL Drug Data Report (MDDR) database. The 
102516 molecules in the MDDR database were 
converted to Pipeline Pilot ECFC_4 fingerprints and 
folded to give 1024-element. 
  For the screening experiments, three datasets 
(DS1-DS3) were chosen (Hert et al., 2006) from the 
MDDR database. The dataset DS1 contains 11 MDDR 
activity classes, with some of the classes involving 
actives that are structurally homogeneous and with 
others involving actives that are structurally 
heterogeneous (i.e., structurally diverse). The DS2 
dataset contains 10 homogeneous MDDR activity classes 
and the DS3 dataset 10 heterogeneous MDDR activity 
classes. Full   details   of  these datasets are given in 
Table 1-3. Each row of a table contains an activity class, 
the number of molecules belonging to the class and the 
class’s diversity, which was computed as the mean pair-
wise Tanimoto similarity calculated across all pairs of 
molecules in the class using ECFP6. The pair-wise 
similarity calculations for all data sets were conducted 
using Pipeline Pilot software. 
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Table 1: MDDR activity classes for ds1 data set 
   Pairwise 
Activity Activity Active similarity 
index class molecules (mean) 
31420   Renin inhibitors   1130 0.290 
71523    HIV protease inhibitors 750 0.198 
37110   Thrombin inhibitors   803 0.180 
31432   Angiotensin II AT1 antagonists 943 0.229 
42731   Substance P antagonists 1246 0.149 
06233   Substance P antagonists 752 0.140 
06245   5HT reuptake inhibitors 359 0.122 
07701   D2 antagonists 395 0.138 
06235   5HT1A agonists 827 0.133 
78374   Protein kinase C inhibitors 453 0.120 
78331   Cyclooxygenase inhibitors 636 0.108 
 
Table 2: MDDR activity classes for ds2 data set 
   Pairwise 
Activity Activity Active similarity 
index class molecules (mean) 
07707    Adenosine (A1) agonists 207 0.229 
07708    Adenosine (A2) agonists          156 0.305 
31420    Renin inhibitors 1                       1300 0.290 
42710    CCK agonists                             111 0.361 
64100    Monocyclic _-lactams                 1346 0.336 
64200    Cephalosporins 113 0.322 
64220    Carbacephems 1051 0.269 
64500    Carbapenems                            126 0.260 
64350    Tribactams                               388 0.305 
75755    Vitamin D analogous                  455 0.386 
 
Table 3: MDDR activity classes for ds3 data set 
   Pairwise 
Activity Activity Active similarity 
index class molecules (mean) 
09249     Muscarinic (M1) agonists     900 0.111 
12455    NMDA receptor antagonists    1400 0.098 
12464      Nitric oxide synthase inhibitors    505 0.102 
31281   Dopamine _-hydroxylase inhibitors   106 0.125 
43210   Aldose reductase inhibitors   957 0.119 
71522   Reverse transcriptase inhibitors   700 0.103 
75721   Aromatase inhibitors   636 0.110 
78331   Cyclooxygenase inhibitors   636 0.108 
78348   Phospholipase A2 inhibitors   617 0.123 
78351   Lipoxygenase inhibitors   2111 0.113 
 
 For each data set (DS1-DS3), the screening 
experiments were performed with 10 references 
structures selected randomly from each activity class 
and the similarity measure obtains activity score for all 
of its compounds. Then we sort these activity scores in 
a descending order and the recall of the active 
compounds provides a measure of the performance of 
our similarity method. By recall of active compound, 
we mean the percentage of the desired activity class 
compounds that are retrieved in the top 1 and 5% of the 
resultant sorted activity scores. 
 

RESULTS  
 
 Our purpose is to identify different retrieval 
effectiveness of using different search approaches. In 
this study, we tested TAN, BIN and BINFS models on  

Table 4: The recall is calculated using the top 1% and top 5% of the 
DS1 data sets when ranked using the TAN, BIN and 
BINFS 

 1%   5% 
Activity ----------------------------  ---------------------------------- 
Index TAN BIN BINFS TAN BIN BINFS 
31420 55.84 74.08 75.83 85.49 87.61 88.38 
71523 22.26 28.26 32.72 42.70 52.72 58.18 
37110 12.54 26.05 29.44 24.11 48.20 54.09 
31432 33.36 39.23 42.97 68.20 77.57 85.56 
42731 16.24 21.68 21.63 32.81 26.63 30.38 
06233 14.23 14.06 13.34 27.01 23.49 22.62 
06245 10.06 6.31 5.73 22.90 14.86 15.50 
07701 8.91 11.45 14.24 23.10 27.79 33.25 
06235 11.87 10.84 12.76 24.54 23.78 27.66 
78374 16.75 14.25 16.22 24.26 20.20 21.31 
78331 8.05 6.03 5.7 16.83 11.80 10.71 
avg 19.10 22.93 24.60 35.63 37.70 40.69 
Shaded 4.00 1.00 6.00 5.00 0.00 6.00 
cells 
 
Table 5: The recall is calculated using the top 1% and top 5% of the 

DS2 data sets when ranked using the TAN, BIN and BINFS 
 1%   5% 
Activity --------------------------- ---------------------------------- 
Index TAN BIN BINFS TAN       BIN        BINFS 
07707    78.300 72.180 70.070 91.080 74.810 73.200 
07708    74.010 96.000 95.680 88.520 99.610 99.740 
31420    46.440 79.820 78.800 77.600 95.460 89.360 
42710    57.220 76.270 66.250 67.590 92.550 93.650 
64100    93.220 88.430 87.650 97.890 99.220 98.580 
64200    63.390 70.180 74.210 89.820 99.200 88.480 
64220    73.560 68.320 71.120 92.050 91.320 79.520 
64500    60.750 81.200 80.020 74.980 94.960 93.840 
64350    76.690 81.890 80.240 90.340 91.470 92.660 
75755    95.990 98.060 97.650 98.780 98.330 95.150 
avg    71.957 81.235 80.169 86.865 93.693 90.418 
Shaded  
cells 3.000 6.000 1.000 3.000 4.000 3.000 
 
Table 6: The recall is calculated using the top 1% and top 5% of the 

DS3 data sets when ranked using the TAN, BIN and BINFS 
 1%   5% 
Activity -------------------------------  --------------------------------- 
Index      TAN      BIN     BINFS      TAN     BIN     BINFS 
07707    25.090 15.330 22.600 40.210 25.720 25.070 
07708    7.700 9.370 7.550 19.080 14.650 18.040 
31420    9.020 8.450 10.420 14.560 16.550 25.730 
42710    27.530 18.290 19.620 44.000 28.290 34.570 
64100    11.100 7.340 11.450 26.370 14.410 13.460 
64200    2.350 4.080 6.150 6.280 8.440 19.360 
64220    24.020 20.410 22.350 28.970 30.020 34.050 
64500    6.270 7.510 6.160 15.790 12.030 13.830 
64350    4.690 9.790 10.600 13.160 20.760 23.280 
75755    4.310 13.680 13.330 10.550 12.940 13.960 
avg    12.208 11.425 13.023 21.897 18.381 22.135 
Shaded cells 3.00 3.000 4.000 5.000 0.000 5.000 
 
the MDDR database using three different data sets 
(DS1-DS3). The results of such searches of (DS1-DS3) 
are presented in Table 4-6, respectively, using both 
cutoff 1% and 5%. Each row in a table lists the recall 
for the top 1% and 5% of sorted ranking when averaged 
over the ten searches for each activity class.  
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Table 7: Ranking of search model based on kendall W test results 
for DS1-DS3 Top 1 and 5% 

Data set Recall type W P Ranking 
DS1 1% 0.058 <0.01 BINFS>BIN>TAN 
 5% 0.132 <0.01 BINFS>TAN>BIN 
DS2 1% 0.210 >0.01 BIN>BINFS>TAN 
 5% 0.130 >0.01 BIN>BINFS>TAN 
DS3 1% 0.040 <0.01 BINFS>TAN>BIN 
 5% 0.090 <0.01 BINFS>TAN>BIN 
 
Table 8: Number of shaded cells for mean recall of actives using 

different search models for 1-DS3 Top 1 and 5% 
Data set TAN BIN BINFS 
Top 1% 
DS1 4 1 6 
DS2 3 6 1 
DS3 3 3 4 
Top 5% 
DS1 5 0 6 
DS2 3 4 3 
DS3 5 0 5 
 
 The similarity method with the best recall rate in 
each row is strongly shaded and the recall value is 
boldfaced   and the shaded cell results are listed in 
Table 7 (e.g., the results shown in the bottom rows of 
Tables 4-6 form the lower part of results in Table 8).  
The results of the Kendall analyses for (DS1-DS3) are 
reported in Table 7 and describe the top1% and top 5% 
ranking for the various search models. 
   

DISCUSSION 
 
 Visual inspection of the recall values in Table 4-6 
enables one to make comparisons between the 
effectiveness of the various search models. However, a 
more quantitative approach is possible using the 
Kendall W test of concordance (Siegel and Castellan, 
1988). This test shows whether a set of judges make 
comparable judgments about the ranking of a set of 
objects; here, the activity classes were considered as 
judges and the recall rates of the various search models 
as objects. The output of such a test is the value of the 
Kendall coefficient and the associated significance 
level, which indicates whether this value of the 
coefficient could have occurred by chance. If the value 
is significant (for which we used cut-off values of 0.01 
or 0.05) then it is possible to give an overall ranking of 
the objects that have been ranked. 
 In Table 7, the columns show the data set type, the 
recall percentage, the value of the coefficient, the 
associated probability and the ranking of the methods. 
Some of the activity classes may contribute 
disproportionally to the overall value of mean recall 
(e.g., low diversity activity classes). Therefore, using 

the mean recall value as evaluation criterion could be 
impartial to some methods but not others. To avoid this 
bias, the effectiveness performance of different 
methods have been further investigated based on the 
total number of shaded cells for each method across the 
full set of activity classes, as shown in the bottom row 
of Table 4-6. 
 Inspection of DS1 search in Table 4 shows that 
BINFS produced the highest mean value compared to 
the TAN and BIN. In addition, according to the total 
number of shaded cells in Table 4, BINFS is the best 
performing search across the 11 activity classes in 
terms of mean recall.  
  Table 7 shows that the values of the Kendall 
coefficient, for DS1 (top1% and 5%) are 0.058  and  
0.132 respectively and for DS3 (top1% and 5%)  are  
0.04 and  0.09  respectively,  are  significant at the 
0.01  level  of  statistical  significance. Given that the 
result is significant, we can hence conclude that the 
overall ranking of the different procedures is 
BINFS>BIN>TAN and BINFS>TAN>BIN for DS1 
and BINFS>TAN>BIN for DS3. The good performance 
for BINFS method is not restricted to DS1 since it also 
gives the best results for the top 1 and 5% for DS3.  
 The DS3 searches are of particular interest since 
they involve the most heterogeneous activity classes in 
the three data sets used and thus provide a tough test of 
the effectiveness of a screening method, Table 6-7 
show that BINFS gives the best performance of all the 
methods for this data set at both cutoffs. 
 

CONCLUSION 
 
 This study has further investigated the 
enhancement of BIN using feature selection for ligand-
based virtual screening. Simulated virtual screening 
experiments with MDDR data sets showed that the 
proposed techniques described here provide simple 
ways of enhancing the cost effectiveness of ligand-
based virtual screening in chemical databases. Our 
experiments also showed that the increases in 
performances are particularly marked when the sought 
active are structurally diverse. 
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