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Abstract: This study develops a hybrid model, EEMD-FANN, coupling 

feed Forward Artificial Neural Network (FANN) and Ensemble Empirical 

Mode Decomposition (EEMD) for improving the accuracy of daily river 

stage forecasting. An original river stage data is broken down into a residue 

and Intrinsic Mode Functions (IMFs) using the EEMD and different 

FANNs are developed as forecasting models for the decomposed IMFs and 

residue, respectively. The final forecasted time series is produced by the 

ensemble aggregation of the forecasted IMFs and residue. The efficiency of 

EEMD-FANN model is assessed based on the comparison with that of single 

Adaptive Neuro-Fuzzy Inference System (ANFIS) and FANN to demonstrate 

the applicability of the hybrid approach in daily river stage forecasting. As a 

result, it is found that the EEMD-FANN model utilizing time series 

decomposition by the EEMD and ensemble aggregation produces better 

performance than the single ANFIS and FANN models using original river 

stage time series as inputs. The results of this study also signify that the 

approach coupling the EEMD and FANN can significantly enhance the 

forecasting ability of the single FANN model and can be utilized as an 

effective modeling methodology to forecast river stage precisely. 

 

Keywords: River Stage Forecasting, Adaptive Neuro-Fuzzy Inference 

System, Feed Forward Artificial Neural Network, Ensemble Empirical 

Mode Decomposition 

 

Introduction 

Forecasting river stage precisely plays an important 

role for enhancing hydrologic practices such as dam 

operation, water supply, river management and flood and 

drought prevention. For decades, the attention on data-

driven approaches has been gained for estimating 

hydrological variables including rainfall-runoff, river 

discharge, soil moisture, evaporation, reservoir water 

level, etc. Especially, Support Vector Machine (SVM), 

ANFIS and FANN have been received attention as 

effectual approaches to analyze complicated and nonlinear 

hydrologic phenomena (Kisi, 2007; Kim and Kim, 2008; 

Wu et al., 2009; Othman and Naseri, 2011; Kim et al., 

2012; 2013; Kaltech, 2015; Seo et al., 2015b). 

The development of hybrid models combining various 

statistical approaches and data-driven models has been 

increased for improving the efficiency of conventional 

forecasting models. Especially, time series decomposition 

utilizing wavelet and wavelet packet transforms has been 

known to further improve the forecasting ability of 

conventional data-driven models (Amiri and Asadi, 2009; 

Adamowski and Sun, 2010; Gokhale and Khanduja, 2010; 

Kisi et al., 2011; Nourani et al., 2012; Ravikumar and 

Tamilselvan, 2014; Seo, 2015; Seo et al., 2015a). 

Recently, nonlinear data analysis and hybrid model 
development utilizing Empirical Mode Decomposition 
(EMD)-based approaches have been successfully 
performed in various fields. The EMD, which is a self-
adaptive and empirical technique to break down a time 
series, can be utilized to examine nonlinear and 

nonstationary meteorological and hydrologic data 
(Tang et al., 2012). The EEMD is a data processing 
technique based on noise addition (Wu and Huang, 
2009) which is devised to improve the EMD. Huang et al. 
(2009) applied EMD and signal analysis based on 
Hilbert transform (Hilbert spectral analysis) to 

investigate the characteristics of nonlinear river flow 
time series. Karthikeyan and Kumar (2013) assessed the 
forecasting ability of nonstationary time series applying 
forecasting models which are based on wavelet and 
EMD. Kisi et al. (2014) presented a nonparametric 
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method which is to build up a model combining 
Artificial Neural Network (ANN) and EMD to forecast 
monthly river stage. Huang et al. (2014) examined a 
conjunction model which combines modified EMD and 

SVM in monthly stream flow prediction. Shabri and 
Samsudin (2015) proposed a hybrid modeling 
methodology utilizing Least Square Support Vector 
Machine (LSSVM) combined with EMD to predict 
water demand. Wang et al. (2015) suggested a time 
series forecasting model combining autoregressive 

integrated moving average and EEMD to predict runoff 
on annual basis. Zhao and Chen (2015) proposed a novel 
hybrid model based on EEMD and autoregressive 
forecasting model for annual runoff forecasting. Wang et al. 
(2013) presented an approach which includes the 
decomposition of annual rainfall series utilizing EEMD 

and rainfall-runoff modeling utilizing SVM. Guo et al. 
(2016) applied EEMD to examine the intrinsic multi-
scale properties which are inherent in the variability of 
precipitation. Ouyang et al. (2016) proposed a hybrid 
modeling approach using EEMD, Support Vector 
Regression (SVR) and phase-space reconstruction for 

monthly rainfall forecasting. Xu et al. (2016) presented a 
conjunction model integrating EEMD, Back-Propagation 
(BP)-based ANN (BPANN) and nonlinear regression 
equation for annual runoff simulation. 

This study presents a hybrid modeling approach, 

EEMD-FANN, coupling EEMD and FANN to enhance 

the model performance in river stage forecasting. For 

accessing the efficiency of EEMD-FANN, the model 

accuracy was evaluated utilizing some favorite statistical 

performance indexes. The comparative analysis of 

EEMD-FANN and single forecasting models, ANFIS 

and FANN, was also implemented for assessing the 

applicability of EEMD-FANN. 

Materials and Methods 

Used Data 

The Andong Dam watershed, located in the upper 

Nakdong river basin of the southeastern inland region of 

South Korea, was selected as a study area to forecast 

daily river stage utilizing EEMD-FANN model. The 

time series data used for developing the model were 

gathered from two hydrological observatories (Socheon 

and Dosan) in the watershed (Fig. 1) utilizing the Water 

Management Information System (WAMIS) which is an 

internet-based portal system providing the water 

resources information of South Korea. 

Figure 1 depicts the study area andong Dam 

watershed, including the structure of stream network 

and the location of hydrological observatories. The 

time series data of daily river stage were collected 

between 2002 and 2013 (12 years). For model training 

and testing, they were split into two sub-periods, data 

for 2002-2010 (9 years, 75%) and data for 2011-2013 

(3 years, 25%). 

 

 
 

Fig. 1. Andong Dam watershed and hydrological observatories 
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EMD 

EMD, which was originally suggested by Huang et al. 

(1998), is a data analysis technique breaking down a 

nonlinear and nonstationary signal into several 

components. Unlike other approaches such as wavelet 

and Fourier transforms, the technique includes empirical 

and self-adaptive properties (Tang et al., 2012). The key 

concept of the EMD is to break down an input data 

series into two components: A residue and Intrinsic 

Mode Functions (IMFs) (Yu et al., 2008). Based on the 

concept proposed by Huang et al. (1998), the IMFs 

should comply with the following requirements: 

 

• In data set, the number of zero-crossings and local 

extreme values (local maximum and minimum 

values) should be identical each other, or the 

difference of the number should be one at most 

• The mean values of two envelopes, which are created 

by interpolating local maximum and minimum 

values, respectively, should be zero at all data points 

 

The EMD algorithm, which is also called the shifting 

procedure, is summarized as the following key steps 

(Huang et al., 1998; 2003): 

 

• Detect local minimal and maximal values in a time 

series, x(t) 

• Interpolate the local minimal values for creating the 

lower envelope, L(t) and the local maximal values 

for upper envelopes, U(t). In this step, interpolation 

method such as cubic spline can be applied for 

creating the envelope lines 

• Compute the mean, M(t), of the envelope lines 

• Calculate the detail component, D(t), by subtracting 

M(t) from x(t) 

• Check the conditions of D(t): (i) if D(t) satisfies the 

two requirements of IMF, an IMF is determined and 

x(t) is substituted with the residue. The residue, R(t), is 

obtained by subtracting D(t) from x(t); (ii) if D(t) does 

not meet the requirements, x(t) is replaced with D(t) 

• Perform the phases (1)-(5) repeatedly, until the IMF 

cannot be derived any more as R(t) has a local 

extreme point or becomes monotonic.  

 

Once an EMD process is completed, the sum of the 

final residue, Rk(t) and IMFs, Cj(t), can produce the 

original time series as in Equation 1: 

 

1

( ) ( ) ( )
k

j k

j

x t C t R t
=

= +∑  (1) 

 

where, k denotes the number of IMFs. For detailed 

information on EEMD, readers can refer to Huang et al. 

(1998; 2003). 

EEMD 

EEMD, which is a data analysis technique proposed by 

Wu and Huang (2009), is developed to resolve the 

problem of mode mixing which is an obvious 

disadvantage of EMD. The mode mixing indicates that an 

IMF is made up of signal covering the broad bandwidth of 

frequency, or signals in a similar frequency band are 

contained in one or more IMF (Ren et al., 2015). The key 

point of EEMD is signal decomposition utilizing noise 

addition. The EEMD is based on the concept that a signal 

is formed by adding Additive White Gaussian Noise 

(AWGN) to true value and the ensemble mean of 

decomposed time series with different white noise series 

yields better estimates of true time series. According to 

Wu and Huang (2009), the EEMD algorithm is comprised 

of four key phases: 

 

• Generate an AWGN series and add it to original 

time series 

• Break down the time series obtained from step (1) 

into IMFs and a residue using EMD 

• Perform the phases (1)-(2) repeatedly, but use 

different AWGN at each iteration 

• Calculate the ensemble means of residue and IMFs 

for each component to obtain the final decomposed 

time series 
 

For more detailed information on EEMD, readers can 

refer to Wu and Huang (2009). 

FANN 

FANN is a data-driven modeling system which is 

mathematically emulated based on the architecture and 

function of the neural system of human brain. Multilayer 

Perceptron (MLP) type of FANN is generally comprised 

of input, output and hidden layers. For example, FANN 

architecture with five input neurons, 13 hidden neurons 

and an output neuron can be depicted schematically as in 

Fig. 2. According to Günther and Fritsch (2010), the 

MLP composed of a hidden layer with k neurons 

calculates the output based on the following equation: 
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where, w0 and w0j are respectively the intercepts for the 

neuron of output layer and the jth neuron of hidden 

layer, wj is the connection strength between the jth 

neuron of hidden layer and the output neuron of output 

layer, wj = (w1j,⋅ ⋅⋅,wnj) is the set of connection strengths 

between the neurons of input layer and the jth neuron of 

hidden layer and x = (x1,⋅ ⋅⋅,xn) is the input vector. 
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Fig. 2. FANN architecture for IMF2 

 

 
 

Fig. 3. Flowchart for EEMD-FANN 

 
For further details on the FANN, readers can refer to 

Günther and Fritsch (2010). 

EEMD-FANN 

EEMD-FANN is a hybrid model coupling EEMD 
and FANN. As depicted in Fig. 3, the EEMD-FANN 
approach is comprised of three key steps: 
Decomposition, single forecasting and ensemble 
forecasting. The main algorithm of EEMD-FANN 
approach is comprised of three key phases: 

• Decomposition: Original river stage time series is 

broken down into a residue and n IMFs utilizing 

EEMD as described in previous section 

• Single forecasting: The FANN is utilized as a 
forecasting model for the residue and IMFs. The 
FANN models built up for the IMFs and residue 
perform one-day-ahead forecasting, respectively. 
The selection of input variables for each FANN is 
based on the optimal lag time determined by partial 
autocorrelation and cross correlation functions 



Youngmin Seo and Sungwon Kim / American Journal of Applied Sciences 2016, 13 (8): 891.899 

DOI: 10.3844/ajassp.2016.891.899 

 

895 

• Ensemble forecasting: The final forecasted time 

series is determined through the aggregation of the 

single forecasting for the residue and IMFs obtained 

from phase 2 

 

Results and Discussion 

Analysis 

Original time series gathered from two hydrological 

observatories was broken down utilizing EEMD to build 

up EEMD-FANN model. In the decomposition process, 

the ensemble sample size and the standard deviation of 

AWGN are respectively set up to 100 and 0.2, based on 

the previous studies (Tang et al., 2012; Xu et al., 2016). 
In daily river stage forecasting utilizing EEMD-FANN 

approach, one of the significant phases is to choose the 
efficient input variables. The input variables of FANN 
models for IMFs and a residue were selected based on the 
optimal lag time determined by statistical correlation 
analysis utilizing cross-correlation function (also known 
as sliding inner-product) and partial autocorrelation 
function according to the previous studies (Sudheer et al., 
2002; Shabri and Samsudin, 2015). Table 1 summarizes 
the model configuration for the IMFs and residue. 

This study employed MLP type of FANN model for 

IMF and residue forecasting. In the MLP modeling, the 

number of hidden neurons was optimized by an iterative 

approach which examines RMSE values depending on 

different number of hidden neurons. The operation in 

neurons was implemented utilizing the logistic sigmoid 

activation function and the MLP model was trained 

utilizing the most popular Back Propagation (BP) 

learning algorithm. The training and testing data were 

normalized to [0, 1] for enhancing the efficiency of BP 

algorithm (Dawson and Wilby, 2001). 

The performance of EEMD-FANN approach was 
assessed quantitatively utilizing seven model efficiency 
indexes and compared with that of single ANFIS and 
FANN models which were investigated by Seo et al. 
(2015a). The indexes applied in this study are as follows: 
 

• Dimensionless indexes: Coefficient of determination 

(r
2
), index of agreement (IA) and Coefficient of 

Efficiency (CE) 

• Residual error-based indexes: Mean Absolute Error 

(MAE), Mean Higher Order Error (MS4E), Root 

Mean Squared Error (RMSE) and Mean Squared 

Relative Error (MSRE) 
 

For specific information on the indexes, readers can 
refer to Dawson and Wilby (2001). 

Evaluation of Model Performance 

Table 2 summarizes the model efficiency indexes of 
EEMD-FANN, FANN and ANFIS models in daily river 
stage forecasting. From Table 2, it was observed that the 
EEMD-FANN model yielded larger values of 
dimensionless indexes (IA, r

2
 and CE) and smaller 

values of residual error-based indexes (MAE, RMSE, 
MS4E and MSRE), compared with the ANFIS and 
FANN models. Larger values of dimensionless indexes 
and smaller values of residual error-based indexes 
indicate better model efficiency (Seo et al., 2015a; 
Dawson and Wilby, 2001). The result demonstrated that 
the EEMD-FANN was superior to the ANFIS and 
FANN models. From this result, it was found that the 
EEMD-FANN model coupling EEMD and FANN 
produced better forecasting performance than the ANFIS 
and FANN, in terms of the indexes. The result also 
signified that the EEMD can further boost the 
forecasting ability of single FANN model. 

 
Table 1. Input and output variables for FANN modeling of IMFs and a residue 

Data Inputs Outputs 

IMF1 IMF1SC(t) IMF1DS(t) 
IMF2 IMF2DS(t-4), IMF2DS(t-3), IMF2DS(t-2), IMF2DS(t-1), IMF2SC(t) IMF2DS(t) 
IMF3 IMF3DS(t-4), IMF3DS(t-3), IMF3DS(t-2), IMF3DS(t-1), IMF3SC(t) IMF3DS(t) 
IMF4 IMF4DS(t-3), IMF4DS(t-2), IMF4DS(t-1), IMF4SC(t) IMF4DS(t) 
IMF5 IMF5DS(t-2), IMF5DS(t-1), IMF5SC(t) IMF5DS(t) 
IMF6 IMF6DS(t-2), IMF6DS(t-1), IMF6SC(t) IMF6DS(t) 
IMF7 IMF7DS(t-2), IMF7DS(t-1), IMF7SC(t) IMF7DS(t) 
IMF8 IMF8DS(t-2), IMF8DS(t-1), IMF8SC(t) IMF8DS(t) 
IMF9 IMF9DS(t-1), IMF9SC(t) IMF9DS(t) 
IMF10 IMF10DS(t-1), IMF10SC(t) IMF10DS(t) 
IMF11 IMF11DS(t-1), IMF11SC(t) IMF11DS(t) 
Residue RESDS(t-1), RESSC(t) RESDS(t) 

Note. DS, Dosan; SC, Socheon; RES, Residue 
 
Table 2. Performance evaluation during testing period 

Models CE IA r2 MAE (m) RMSE (m) MS4E (10-4m4) MSRE (10-6) 

EEMD-FANN 0.988 0.997 0.989 0.0285 0.0464 1.704 0.0747 
FANN 0.965 0.991 0.967 0.0525 0.0787 11.909 0.2154 
ANFIS 0.980 0.995 0.982 0.0361 0.0595 2.138 0.1233 

Note. Values of model efficiency indexes for FANN and ANFIS from Seo et al. (2015a) 
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Fig. 4. Scatter chart for EEMD-FANN 

 

 
 

Fig. 5. Scatter chart for FANN 
 

Figures 4-6 show scatter charts for the three compared 

models: EEMD-FANN, ANFIS and FANN. It was seen 

from Fig. 4-6 that the degree of dispersion around the 45-

degree slope line (red line) for the EEMD-FANN model is 

smaller than that for the ANFIS and FANN models. When 

straight lines (blue lines), y = ax + b, fitted for the scatter 

points were examined, it was also observed that the values 

of slope (a) and intercept (b) for the EEMD-FANN were 

closer to the values of 1 and 0, respectively. From the 

figures, it was apparent that the values forecasted by the 

EEMD-FANN get closer to the observed river stage values 

and the error values were smaller, in comparison with the 

single ANFIS and FANN. From the graphical comparison, 

the EEMD-FANN was found to provide more excellent 

forecasting ability, in comparison with the single ANFIS 

and FANN. The results also indicated that the EEMD can 

further elevate the forecasting efficiency of the single 

FANN model in daily river stage forecasting. 
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Fig. 6. Scatter chart for ANFIS 

 

Conclusion 

This research investigates the efficiency of a 

hybrid data-driven approach, EEMD-FANN, which 

integrates EEMD and FANN for forecasting daily 

river stage. The detailed purposes are to build up the 

hybrid data-driven model for improving the accuracy 

of daily river stage forecasting in the Andong Dam 

watershed located in the eastern inland region of 

South Korea and assess the model applicability based 

on comparison with the performance of single ANFIS 

and FANN models. The efficiency of EEMD-FANN, 

ANFIS and FANN models is evaluated utilizing 

dimensionless indexes (IA, r
2
 and CE) and residual 

error-based indexes (MAE, RMSE, MS4E and 

MSRE). As a result, the EEMD-FANN model 

produces more excellent efficiency than the single 

ANFIS and FANN models, in terms of the model 

efficiency indexes and graphical comparison. The 

results indicate that the hybrid data-driven approach 

coupling EEMD and FANN model can further boost 

the forecasting ability of single FANN model and can 

be an effective hydrological forecasting approach. 
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