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Abstract: The use of Augmented Reality (AR) for visualising blood 
vessels in surgery is still at the experimental stage and has not been 
implemented due to limitations in terms of accuracy and processing 
time. The AR also hasn't applied in breast surgeries yet. As there is a 
need for a plastic surgeon to see the blood vessels before he cuts the 
breast and before putting the implant, this paper aims to improve the 
accuracy of augmented videos in visualising blood vessels during 
Breast Implant Surgery. The proposed system consists of a Weighted 
Integral Energy Functional (WIFE) algorithm to increase the accuracy 
of the augmented view in visualising the occluded blood vessels that 
covered by fat in the operating room. The results on breast area shows 
that the proposed algorithm improves video accuracy in terms of 
registration error to 0.32 mm and processing time to 23 sec compared to 
the state-of-the-art method. The proposed system focuses on increasing 
the accuracy in augmented view in visualising blood vessels during 
Breast Implant Surgery as it reduces the registration error. Thus, this 
study concentrates on looking at the feasibility of the use of Augmented 
Reality technology in Breast Augmentation surgeries.  

 

Keywords: Augmented Reality, Breast Augmentation, Surgical Planning, 
Wavelet Decomposition, Vascular Pulsation, Random Decision Forests 

 

Introduction 

Augmented Reality (AR) is defined as overlaying and 

integrating virtual information over the real-time 

perceptive environment which enables the user to 

manipulate and use the information in an intuitive 

manner (Inácio et al., 2017; Raja and Calvo, 2017). The 

AR technology has been successfully used in a range of 

medical procedures, providing additional information 

during surgery that is generally not accessible during the 

operating process (Pelargos et al., 2017). Many 

successful cases in different fields of medicine have been 

linked to and associated with better surgical planning, 

triggering an urgent search for tools to improve accuracy 

and performance during surgery (Alan et al., 2017). At 

present, pre-operative planning is an important part in all 

surgical procedures based on patient specific 

information, often using data obtained through medical 

imaging to ensure successful outcomes from the surgery 

(Ribeiro et al., 2015). 
 There is a significant range of procedure-specific 

AR technologies available in the medical field broadly 
categorized as video-based display, see-through 
display and projection-based display. In video-based 
displays, virtual images are superimposed onto a real-
time video stream to create an augmented view for the 
surgeon. See-through display is used to overlay the 
virtual images on a translucent mirror for the direct 
view of the surgeon while the projection-based 
display is used to directly overlay virtual images onto 
the patient’s body part which is undergoing surgery 
(Suenaga et al., 2013),  Fig. 1. 
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Fig. 1: (a) Traditional Surgery, (b) Video-Guided and (c) AR guided; [These images are downloaded using Google search engine, 

the image is free to use, share or modify, even commercially] 

 
The visualization of patient specific anatomical 

structures using AR during surgery helps the surgeon to 
perform the surgery at high levels of accuracy thus 
simplifying complex procedures (Suenaga et al., 2015; 
Teber et al., 2009). Surgical anatomy visualization is 
enhanced by visual cues obtained from the virtual data of 
the medical image (Kang et al., 2014), increasing the 
surgeon’s visual awareness of high-risk surgical targets 
(Puerto-Souza et al., 2014). Therefore, it is important for 
surgeons to visualize the anatomical structures of the 
patient in the operating room to increase the accuracy in 
the surgery and to obtain the secure outcomes from the 
surgery. The AR hasn't applied in breast surgeries yet. 
As there is a need for a plastic surgeon to see the blood 
vessels before he cuts the breast and before putting the 
implant, the assistance of AR guided surgery would be 
beneficial in aiding the surgeons to visualize the blood 
vessels of the patient’s mandibular region, where the 
surgeon would perform the cut. 

This study is aiming towards helping the plastic 
surgeons to perform breast augmentation in a safe and 
accurate manner by making a pocket in the breasts for the 
implant without damaging major blood vessels. The AR 
hasn't applied in breast surgeries. As the AR hasn't applied 
yet in breast surgeries, the basic aim of this paper is to 
research available AR techniques for visualizing patients’ 
anatomical structures, specifically blood vessels, during a 
range of surgical procedures. The work aims to identify 
the best technique which can be utilized for visualizing 
blood vessels in Breast Augmentation Surgery. Breast 
Augmentation surgery, also known as Augmentation 
Mammoplasty, was the most commonly performed 
cosmetic surgery procedure in 2011, inserting implants 
beneath the breasts to increase their size. For operative 
planning of such procedures, surgeons still rely on visual 
assessments and other subjective approaches due to a lack 
of objective evaluation tools (Georgii et al., 2014). 

 The existing state-of-the-art method used a 
mechanism to determine the tumour affected areas by 
identifying textural and color patterns of tissue types 
during the surgery using AR. The limitation of this 

mechanism is that it cannot handle the contour leakage 
i.e., when there is weak or missing boundary data in 
images. This leakage is occurred due to the presence of 
noise from motion artifacts of the patient due to the body 
movement during the patient’s respiration at surgery 
time. Thus, the presence of weak boundaries reduces the 
accuracy of the segmentation process which in turn 
affects the overall accuracy of the existing system. We 
propose a new mechanism to overcome the contour 
leakage problem. The experimental results reveal that the 
proposed scheme outperforms the state-of-the-art method 
in terms of registration accuracy and processing time. 

Related Work 

To generate an augmented view for visualising blood 

vessels in an operating room, a series of algorithms and 

techniques have been introduced that mainly focusing 

on accuracy and processing time. The AR systems, in 

which patient-specific information generated from pre-

operative data is displayed intra-operatively, have been 

clinically applied in a range of surgical fields to 

enhance accuracy, safety and efficiency during surgery 

(Okamoto et al., 2015). Kersten-Oertel et al. (2015) 

developed an AR system for neurovascular surgery to 

visualize internal anatomical structures such as blood 

vessels during surgery. It merges volume-rendered 

vessels with the live view of the patient in the operating 

room. The system uses filters to reduce the noise from 

the live video frames and a landmark registration 

protocol for increasing the accuracy of the generated 

augmented view. As visualization of the tumour in 

relation to its adjacent venous anatomy is crucial in 

neurosurgery, Low et al. (2010) developed an AR 

system for neurosurgical planning using Dextroscope 

and DEX-Ray platforms to present an augmented view 

that reveals the relationship of a patient tumor to its 

surrounding vessel structures during neurosurgery.  
Cabrilo et al. (2014) proposed an AR system to 

visualize the anatomical structures during neurosurgery 
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surgeries. He utilized a neuro navigated workstation and 
microscope to operate on 28 patients with 39 unruptured 
aneurysms. Segmented vessel structures are introduced 
into the neuro navigated microscope and are 
superimposed on to the real patient. This hardware was 
used to provide an augmented view which makes the 
setup expensive. Kersten-Oertel et al. (2014) proposed 
an AR image-guided surgery system for neurosurgeons 
to visualize internal anatomical structures such as blood 
vessels during neurovascular surgery using OpenGL 
fragment shader. Virtual vessel volumes are merged with 
the live patient images using alpha blending.  

 In a different area of medicine, Hayashi et al. (2016) 
aimed to reduce the registration error for gastric cancer 
for surgical navigation during laparoscopic gastrectomy 
by using a weighted point-based registration technique 
by performing progressive internal landmark registration 
using internal anatomical fiducial to improve registration 
accuracy. However, the system uses internal anatomical 
landmarks and a 3D positional tracker for better 
registration. Similarly, Satoshi (Ieiri et al., 2012) solved 
the problem of hidden vascular variations in endoscopic 
surgery. He developed an AR navigation system to 
increase accuracy for laparoscopic surgery by placing 
five multimodal markers on the patient’s body to 
establish coordinates using optical tracking to increase 
accuracy. The optical tracking device is used to obtain 
the coordinates of each marker in the patient space. 
Then, a patient coordinate system is established.  

 Nicolau et al. (2011) analyzed available interactive 

and automatic AR systems in digestive surgical 

oncology in terms of current issues and future evolution 

of AR technology with the aim of integrating such 

technology in the operating room. He found the issues 

that still have to be tackled so that this technology can be 

seamlessly integrated in the operating room. As the lack 

of visibility of anatomical structures is a problem in 

gastrointestinal, hepatobiliary and pancreatic surgery, 

Sugimoto et al. (2010) provides a framework using non-

invasive markerless registration with the help of 

physiological markers on the body surface. It used 

volume rendered preoperative data to project the 

information on to the body of the patient during 

Laparoscopy surgery in the operating room. The DICOM 

workstation used physiological markers on the patient’s 

body for better registration. The Registration is between 

the patient’s virtual body surface comprising the virtual 

umbilicus and the actual body surface by OsiriX.  
 Haouchine et al. (2013) proposed a method for real-

time augmentation of the tumor and the vascular network 
with a laparoscopic view during liver surgery by 
considering the liver deformations and the tissue 
heterogeneity. A biomechanical model and a ray casting 
method is used to create the augmented view. However, 
surgical events such as smoke and bleeding can hamper 

the tracking process in the system. Zhu et al. (2017) 
developed a navigation system to display inferior 
alveolar nerve bundles for maxillofacial surgery based 
on AR using a novel tracking and registration 
technique. The relationship between the virtual image 
and the real object is established by means of an 
occlusal splint attached to the fiducial marker. This is 
used to develop a relationship between marker and 
mandible during the real surgery, but unexpected errors 
can occur due to incorrect placement of the occlusal 
splint. Wang et al. (2017) presented a video-see 
through AR system by using Tracking Learning 
Detection (TLD) and Iterative Closet Point (ICP) 
algorithms. This work analyzed integral imaging with 
AR surgical navigation further using a 3D calibration 
algorithm which helps to reduce the initial registration 
error. Ulrich et al.’s (2012) method is a registration 
technique that resolves the initial alignment problem 
caused by manual adjustment and helps the automatic 
recovery. However, the system fails to provide depth 
perception in the augmented view. Ai et al. (2016) have 
proposed an augmented reality system for 
superimposing veins directly on the skin surface to 
visualize the exact location for accurate intravenous 
injections. A multiple-feature clustering method is used 
for the process of segmentation. However, the 
technique is unable to provide high-quality output. 

Nosrati et al. (2016) introduced a system to augment 

an endoscopic view in the operating room with pre-

operative 3D models. The major goal in developing the 

system was to develop a variational method to augment 

the endoscopic view of the surgeon by segmenting both 

visible and occluded structures encountered during the 

intraoperative endoscopic view. A wavelet 

decomposition technique is used to identify vascular 

pulsatile motion in the video frames, which helps with 
identifying occluded blood vessels hidden under fat 

tissue. The system used Random decision Forests 

(RF) to detect textual and color patterns of different 

tissue types present in the endoscopic scene such as 

that of a kidney and a tumor. However, the use of RF 

increased the overall complexity of the system and 

ultimately affected the processing time for creating 

the augmented view. The usability of the technique 

has been tested in fifteen challenging clinical cases, 

with a result of 45% improvement in system accuracy 

compared to other available AR systems. However, 

Nosrati et al. did not consider the problem of contour 
leakage which arises due to motion artifacts of the 

patient. The noise, which come from the breathing of 

the patient, deteriorates the object boundaries which 

makes it difficult to segment the desired objects, thus 

reducing the system accuracy. This problem, therefore, 

needs to be considered for further improvement to 

develop a more accurate AR system. 
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 This paper takes the best features from the work 
of Nosrati et al. (2016) and focuses on increasing the 
system accuracy by removing the noise caused by 
patient respiration from the video frames The 
remainder of the paper is organized as follows: The 
section called “System Overview” describes the state-
of-the-art method and details of the proposed 
technique including a system flowchart and 
pseudocode. The next section discusses result from 
the proposed technique and compares these with 
outcomes from the state-of-the-art method. The last 
section, discussion concludes the paper. 

The current approach to AR in a range of surgical 
procedures is to use several techniques and algorithms 
to improve the accuracy and processing time of videos 
in visualising important anatomical structures. The 
highest current accuracy equates to a 0.87 mm overlay 
error (the difference between the projected scene and 
the actual scene) and processing time is 77 sec for 
generating the augmented view. Such overlay error 
(reduced accuracy) can lead to surgical failure. 

Similarly, high processing time can delay the surgery 
(Nosrati et al., 2016). 

State of Art Solution 

 The system was proposed by Nosrati et al. (2016) 
and delivers high accuracy in terms of visualizing 
blood vessels hidden by fat. It is also a cost-effective 
solution as there is no need for medical equipment such 
as markers that have been used in other current 
solutions. This solution has applied to Endoscopy 
Scenes for Kidney Surgery with the purpose of 
visualising the blood vessels, the tumour and the 
kidney (tissue patterns) in three different colours to 
diagnose the areas that are affected by the tumour. This 
solution used a variational technique, Wavelet 
Decomposition, which augments the endoscopic view 
(Live Video Frame) of the intraoperative environment. 
This technique identifies visible and occluded 
anatomical structures - blood vessels hidden by fat. 
This model consists of two key system stages 
Preoperative and intraoperative Fig. 2.   

 

 
 
Fig. 2: Block Diagram of the State of Art System, Nosrati et al. (2016); [The blue borders show the good features of this state of art 

solution and the red border refers to the limitation of it] 
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Pre-operative Environment 

The state of art (Nosrati et al., 2016) process starts 
with segmenting the structures of interest from the 3D 
pre-operative data to create a 3D segmented model that 
can be aligned to the segmented 2D intraoperative data 
to provide an augmented view for the surgeon in the 
operating room during the endoscopic surgery. To 
deform the 3D pre-operative models of interest, 
intraoperative video frames are generalized using Eigen 
decomposition. Then, using these deformation models, 
the 3D pre-operative models are transformed. 

Intra-operative Environment using Energy 

Functional Algorithm 

In the intraoperative environment (Nosrati et al., 
2016), a real time video of the surface of the part of 
interest is recorded by the camera. Image frames are 
taken from the video. Then, Wavelet Decomposition 
technique divides each live video frame into four 
frequency sub-bands during the surgery. Blood vessel 
information is hidden in live video frames due to fat and 
noise that comes from surgical navigational tool – here, 
inserting the breast implant.  

The main goal of the state of art (Nosrati et al., 
2016) is using the AR to diagnose the areas that 
affected by tumour. Along with this, Random decision 
Forests (RF) are trained and used to identify textural 
and color patterns of tissue types during the surgery. 
The RF help in classifying and distinguishing between 
different structures of interest, such as a tumor and a 
kidney. Subsequently, the energy functional is used to 
align and segment the preoperative data with the 
intraoperative data to create an augmented view in the 
operating room.  

 The state-of-the-art method (Nosrati et al., 2016) 
provides accuracy with a registration error of 0.87 mm in 
visualizing patient anatomical structures. This can be 
improved to 0.32 mm using the proposed technique. The 
limitation of the state-of-the-art method is that 
segmentation of the live video frames is affected by 
contour leakage. Contour leakage occurs when there is 
weak or missing boundary data in images. The boundary 
definition deteriorates due to the presence of noise from 
motion artifacts of the patient due to respiration during 
surgery, where the patient’s breathing causes movement 
in the physical body parts thereby creating noise in 
images taken during surgery. The presence of weak 
boundaries reduces the accuracy of the segmentation 
process which in turn affects the overall accuracy of the 
system. Moreover, the use of RF increases the 
complexity of the system because these are binary 
decision trees which are considered complex and 
increase processing time of the system. Also, the use of 
RF does not support depth perception because RF is 
trained from 2D endoscopic views to describe the 

probability of any pixel belonging to a certain structure 
of interest. Therefore, depth perception is not present in 
the use of RF in the process.  

 The state of art solution (Nosrati et al., 2016) has 

considered the vessels, kidney and tumour as their 

purpose is to identify them in three different colours to 

diagnose the areas that are affected by the tumour. The 

accuracy of the state-of-the-art method depends on the 

type of segmentation in the intraoperative data. For 

segmentation, the Energy Functional technique is used. 

The Energy Functional (E) is calculated by the following 

Equation (1) (Nosrati et al., 2016):  

 

( ) ( )( ) ( )( )
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Ω
1 1

Φ 2 1
m
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N M

n n

m m

n m

E x H x dxρ φ
= =

= −∑∑∫  (1) 

 

where, H(.) is the Heaviside function, ( )n

m
xρ  is the 

regional term for vessel, tumour and kidney structures; N 

represents the number of structures of interest; M 

represents the number of endoscopic images 

{ }1 1

1 1
, , , , , ,

N N

M M
φ φ φ φΦ = … … …  represents the nth structure in 

the mth image, x is image pixels. 
The patient is fully asleep throughout the surgery 

but generates breathing noises which are registered on 
the real time video that is taken throughout the surgery, 
reducing the accuracy of the segmentation process 
during surgery, which in turn affects the overall 
accuracy of the system. 

Proposed Solution 

There are a range of techniques available from 
different surgical fields which can be used to visualise 
patient-specific anatomical structures. Although no 
specific research has been done in relation to breast 
implant surgery, the existing techniques from other 
surgical fields have been reviewed to consider the 
feasibility of AR in visualising blood vessels during 
breast implant surgery. An analysis of advantages and 
disadvantages of each available method was carried out 
in this article. The major issues in relation to this 
technology are accuracy, processing time, depth 
perception and occlusion handling. From the techniques 
that were examined, one method was selected as the best 
model (Nosrati et al., 2016) and has been used as a basis 
for the proposed solution. The useful features of the base 
model were enhanced with WIFE algorithm to overcome 
the limitation of contour leakage. Also, the use of RF is 
unable to support the depth perception. Therefore, RF 
will not be used in the proposed solution. The proposed 
system is presented in Fig. 3 and the pseudo code of it in 
Table 1. This paper proposes a new Weighted Integral 
Energy Functional (WIEF) algorithm to increase 
accuracy and to decrease processing time. The proposed 
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method increases accuracy by reducing the registration 
error from 0.87 to 0.32 mm in the augmented video in 
the operating room. Furthermore, processing time is 
improved from 77 to 23 sec using the proposed method. 

Pre-operative Environment 

From the techniques that were examined, one 

method was selected as the best model (Nosrati et al., 

2016) and has been used as a basis for the proposed 

solution. The useful features of the base model were 

enhanced with WIFE algorithm to overcome the 

limitation of contour leakage. Also, the use of RF is 

unable to support the depth perception. Therefore, RF 

will not be used in the proposed solution. The 

proposed system is presented in Fig. 3 and the pseudo 

code of it in Table 1. This paper proposes a new 

Weighted Integral Energy Functional (WIEF) 

algorithm to increase accuracy and to decrease 

processing time. The proposed method increases 

accuracy by reducing the registration error from 0.87 

to 0.32 mm in the augmented video in the operating 

room. Furthermore, processing time is improved from 

77 to 23 sec using the proposed method. 

Intra-Operative Environment 

The proposed WIEF algorithm focuses on the 
contour leakage problem by adding a filter and a 
weighted integral function into the current method. The 
noise present in the video frames is removed by 
applying a Gaussian Filter. Regularization controls the 
weak object boundaries. A Weighted Integral is also 
used in the proposed algorithm which acts as 
regularization for the object boundaries in the image 
where constant intensity is present to avoid the 
disappearance of the weak boundaries by stopping the 
contour from passing through the weak object 
boundaries. The proposed technique helps in 
segmenting object boundaries more accurately by 
considering their evolution over time, regulating the 
curve and reducing the effect of the noise from the 
image. In addition, the complexity of the system is 
reduced by removing the RF. RF in the state-of-the-art 
solution was used to learn textural and colour patterns 
of tissue types during surgery such as a tumour and a 
kidney, which is not required in the proposed solution 
as it focuses on visualizing the blood vassals in breast 
augmentation surgery, in which those tissue patterns 
are not required. Therefore, the complexity of the 
system due to the use of RF is reduced.  

Proposed Equation  

Let, 
2

:Ω
i m

m D
φ → R  be the level set function to represent 

the boundary of the i
th structure in Im endoscopic image. 

Using M camera views 2 3

2
:Ω

m

m D
I ⊂ →R R  represent the 

3-channel RGB image of the m
th camera view. The 

proposed Weighted Integral Energy Functional E to 
align and segment the preoperative data with the 
intraoperative data is defined as Equation 2: 
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= =
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where, Rp(Φ) is weighted regularization term that 

modified by us and given in Equation (3) and the Eext(Φ) 
is external energy and enhanced by us and given in 
Equation (4) which are further defined as Equation 4: 

 

( ) ( )
2

Ω

Φ | |
m

D

p

p
R p dx dyφ= ∇∫   (3) 

 

where, p is potential function [ ): 1,p ∞ → R  helps in 

keeping level set function close by the signed distance 
function. The local property of image is not reflected 
by the exponent p because it is constant. Therefore, it 
acts as regularization for the object boundaries in the 
image where constant intensity is present to avoid the 
disappearance of the weak boundaries by stopping the 
contour to pass through the weak object boundaries. 

 
Table 1: Proposed System with WIEF algorithm 

Algorithm: Proposed method  

Input: 2D Intraoperative data 

Output: 3D Augmented View 

BEGIN 

Step-1: Wavelet decomposition of the video frames is 

performed to obtain the vascular pulsatile motion in the patient.  

Step-2: Remove noise using Laplacian of Gaussian filter from 

the video frame. 

Step-3: Calculate the energy functional of the intraoperative 

data. 

( ) ( )( )( ) ( )( )
2

Ω

* 2 1
m

D

v n

ext m m m
E G I x H x dxdy

σ
ρ φΦ = ∇ −∫  

where, ∇G
σ
 Laplacian of Gaussian filter with standard 

deviation σ 
v

m
ρ  represents the regional appearance of blood vessels 

H(.) is the Heaviside function 

Step-4: Apply Weighted regularization function. 

( ) ( )
2

Ω

Φ | |
m

D

p

p
R p dxdyφ= ∇∫  

where, p is potential function [ ): 1,p ∞ → R  helps in keeping 

level set function close by the signed distance function 

Step-5: Calculate the Weighted Integral Energy Functional E to 

align and segment the preoperative data with the intraoperative 

data 

( ) ( ) ( )
1 1

N M
n n

p m ext m

n m

E R Eφ φ
= =

Φ = +∑∑  

where, Rp(Φ) is the weighted regularization term and Eext(Φ) is 

external energy calculated in Step-3 and Step-4, respectively. 

END 
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Fig. 3: Block diagram of the proposed AR system for Breast Implant Surgery Using Weighted Integral Energy Functional (WIEF) 

algorithm; [The green borders refer to the new parts in our proposed system] 

 

The Eext(Φ) is the enhanced external energy which is 
defined in order to transfer the zero-level curve near the 
object boundaries as Equation 4: 
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m

D
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σ
ρ φΦ = ∇ −∫   (4) 

 

where, ∇G
σ
 Laplacian of Gaussian filter with standard 

deviation σ. The Gaussian kernel with standard deviation 

σ is used to remove noise from the image and the 
Laplace operator detects the edges from the image. The 
object boundaries are defined in the image where 
opposite flow encounters using the Laplacian of 

Gaussian filter. Term v

m
ρ  represents the regional 

appearance of blood vessels which are hidden under fat 
and are detected by using the vascular pulsatile motion; 
other regional terms used in the state-of-the-art method 
for kidney and tumour are not used in the proposed 
technique as those terms are irrelevant in the context and 

H(.) is the Heaviside function. Therefore, the motion of 
the curve towards the desired object boundaries is 
derived by the external energy term. 

The technique of Energy Functional present in the 

state-of-the-art solution is unable to provide high 

accuracy due to a contour leakage problem. In contrast, 

the proposed technique, given in Equation (1), helps in 

segmenting object boundaries more accurately by 

considering their evolution over time by regulating the 

curve using the weighted integral Rp(Φ) and reducing the 

effect of the noise from the image using the ∇G
σ 

Laplacian of Gaussian filter. Moreover, the complexity 

of the system is reduced by removing the RF. 

Experimental Validation 

Matlab R2017a has been used for the implementation 
of the proposed system. To generate the results, sets of 
10 sample videos and 10 sample CT scan images from 
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patients from different age groups and body mass were 
used with results represented in Table 2. A range of 
online resources have been used to gather the sample 
images and videos. We have used a range of measures to 
compare the performance, for example, the registration 
overlay error, processing time and visualized blood 
vessel in the samples. The registration error is 
determined using Matlab tools by considering pixel 
differences and then converting it into the distance in 
terms of mm. The processing time is determined by 
recoding the time of the execution of the algorithms. We 
also provide visualizations of the blood vessels to show 
the effectiveness of the proposed scheme. The measures 
clearly demonstrate the performance comparisons with 
physical meaning of improvement. Since Matlab was 
used for the simulation, the image overlayed in the AR 
video differs somewhat from real experimental results. 
In Table 2, the original volume refers to the preoperative 
information from patients utilised to segment the 
structures of interest. The proposed system was applied 
to the video frames and the result is shown in Table 2 
with the red lines representing the visualised blood 
vessels shown in the processed samples. 

 The original volume utilised in the preoperative 
environment is shown in the Fig. 4a. In the intraoperative 
environment, a camera captures continuous 2D video 
images (real time video) of the patient’s breasts and 
converts these into video frames. Figure 4b shows a 
sample of the vascular pulsation which identifies the 
occluded blood vessels using wavelet decomposition. 
Then, the Gaussian filter is applied to these video frames 
to remove the noise which is generated from patient’s 
breathing during the surgery. The Gaussian filter helps in 
reducing the edge blurring and it is also computationally 
faster. The required degree of accuracy is provided by this 
filter; therefore, no other filter has been used. This filter 
highlights regions of rapid intensity change in an image 
and is capable of preserving the edge and removing the 
noise. Other techniques were not considered as this filter 
provides the expected accuracy for our purpose.  

 The proposed enhanced energy functional is used to 

derive the motion of the curve towards the desired object 

boundaries. It aligns the pre-operative 3D data with the 

2D intra-operative data for this purpose. The modified 

weighted regularization is used to remove the contour 

leakage by regulating the curve and reducing the effect 

of the noise from the image. Thus, the proposed 

weighted integral energy functional, which includes 

modified weighted regularization and enhanced energy 

functional, helps in segmenting the object boundaries 

more accurately by considering their evolution over time. 

It regulates the boundary curve and reduces the effect of 

the noise coming from the image using the Laplacian of 

the Gaussian filter. Random decision forests were not used 

in our proposed solution as there is no need to classify and 

distinguish the tissue patterns as the plastic surgeon does 

require visualisation of the blood vessels. This has 

reduced the processing time of the proposed system. The 

intraoperative data is aligned to the preoperative data to 

generate the augmented view for the surgeon. The 

processed sample is shown in Fig. 4c. 

Computing the term ρv depending upon appearance 

alone is difficult as blood vessels are typically hidden under 

fat. However, these can be identified by their characteristic 

pulsation motion, which is invisible to the naked eye but is 

detectable. Therefore, the vascular pulsation motion 

analysis is important to produce the ρv term.  

The difference in accuracy and processing time 

between the proposed solution and the state of art is 

shown below. The results for accuracy from the breast 

samples are discussed in Fig. 5 and in Fig. 6 in terms of 

processing time. Image registration is the process of 

matching two different objects based on reference points. 

It is used in intra-surgery to align a preoperative 3D 

model with 2D images from the surgery, requiring 

reference points for image alignment. The images need 

to be registered in order to achieve the alignment. The 

reference points of the 2D images were defined manually 

using Matlab, so that registration could be carried out 

using vascular pulsation cues. This aids the preoperative 

to intraoperative alignment process allowing for both 

rigid and heterogeneous physically based, patient-

specific non-rigid deformations.   

 
 

(a) (b) (c) 
 

Fig. 4: (a) Original Volume (b) Vascular Pulsation (c) Processed Sample 
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Fig. 5: Results of accuracy comparisons between the sate of art and proposed solutions (smaller value of registration error indicates 

better accuracy) 

 

 
 
Fig. 6: Results of processing time comparisons between the sate of art and proposed solutions (smaller value of processing time 

indicates better performance) 

 
The subjects in the collected data set range in age 

from 21 to 53 and in weight from 100lb to 190lb. 
Different breast sizes were considered to produce the 
results for both, the state-of-the-art and the proposed 
method. Accuracy in terms of registration error and the 
processing time in terms of seconds were the 
parameters used to measure the system performance. 
The registration error is measured as the root mean 
square distance between corresponding points. The 
graphs comparing the performance parameters for the 
state-of-the-art and the proposed method are represented. 
The accuracy comparison is shown in Fig. 5, with the blue 
bar indicating the registration error in the current method 
and the green bar in the proposed method: lower value of 
the registration error equates to higher accuracy. The 
system configuration is described here as follows: The 
system used for running the simulation was Pentium(R) 
Dual-Core CPU T4300 @ 2.10GHz with 4 GB installed 

memory. The system was Windows 7 Ultimate, 64-bit 
operating system. The processing time is shown in Fig. 
6, where again the blue bar indicates the absolute 
processing time in the current method and the green bar 
in the proposed method and the lower value of the 
processing time equates to better performance of the 
system. However, this above-mentioned processing time 
may vary with the changes in the system configuration. 
If processor (CPU) and other system internal features are 
changed, then this time can vary. So, if RAM is 
increased processing time will be reduced and vice-
versa. Note that the registration/alignment is manual, 
by matching point by point using a third-party 
software. The number of reference point choices have 
influenced in the time calculation. However, we have 
used the same procedure for both algorithms, thus, the 
comparative picture in terms of computational time 
should remain the same. 
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Table 2: Results for accuracy and processing time of visualising the breast blood vessels of proposed and state of art solutions  

    State of Art (Nosrati et al., 2016)  Proposed solution 
    ---------------------------------------------------- ------------------------------------------------------- 
   Pulsation  Accuracy by   Accuracy by 
 Sample Original using Processed Registration Processing Processed Registration Processing 
S. no details volume Wavelet sample Error Time sample Error Time 

1 Breasts Image overlaying 

 (31, 5'6", 140)    0.9 mm 80 sec  0.35 mm 23 sec 
  If patient moves 

     1 mm 82 sec  0.37 mm 25 sec 
  If surgical instrument moves 

     1 mm 81 sec  0.35 mm 25 sec 
2 Breasts Image overlaying 

 (34, 5'2", 190)    1.3 mm 79 sec  0.30 mm 21 sec 

  If patient moves 

     1.7 mm 77 sec  0.32 mm 22 sec 

  If surgical instrument moves 

     1.75 mm 79 sec  0.30 mm 21 sec 

3 Breasts Image overlaying 

 (40, 5'7", 155)    1.89 mm 80 sec  0.45 mm 23 sec 
  If patient moves 

     1.92 mm 78 sec  0.39 mm 20 sec 
  If surgical instrument moves 

     1.90 mm 79 sec  0.37 mm 22 sec 
4 Breasts Image overlaying 

 (25, 5'2", 120)    1.86 mm 88 sec  0.29 mm 30 sec 

  If patient moves 

     1.88 mm 87 sec  0.28 mm 27 sec 
  If surgical instrument moves 

     1.99 mm 88 sec  0.22 mm 28 sec 
5 Breasts Image overlaying 

 (46, 5'8", 142)    1 mm 78 sec  0.31 mm 20 sec 
  If patient moves 

     1.2 mm 79 sec  0.32 mm 22 sec 
  If surgical instrument moves 

     1.2 mm 79 sec  0.32 mm 23 sec 
6 Breasts Image overlaying 

 (25, 5'3", 160)    0.98 mm 75 sec  0.24 mm 25 sec 
  If patient moves 

     1 mm 77 sec  0.30 mm 22 sec 
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Table 2: Continu 

  If surgical instrument moves 

     1 mm 72 sec  0.31 mm 27 sec 
7 Breasts Image overlaying 

 (45, 5'3'', 116)    0.89 mm 70 sec  0.32 mm 23 sec 

  If patient moves 

     0.90 mm 72 sec  0.30 mm 25 sec 

  If surgical instrument moves 

     0.88 mm 70 sec  0.30 mm 22 sec 

8 Breasts Image overlaying 

 (48, 5'1", 115)    0.75 mm 80 sec  0.28 mm 25 sec 

  If patient moves 

     0.80 mm 79 sec  0.29 mm 23 sec 

  If surgical instrument moves 

     0.81 mm 81 sec  0.27 mm 26 sec 

9 Breasts Image overlaying 

 (53, 5'6", 120)    0.73 mm 69 sec  0.32 mm 20 sec 

  If patient moves 

     0.88 mm 72 sec  0.35 mm 22 sec 

  If surgical instrument moves 

     0.89 mm 73 sec  0.40 mm 22 sec 
10 Breasts Image overlaying 

 (21, 5'4", 100)    0.75 mm 74 sec  0.29 mm 21 sec 
  If patient moves 

     0.89 mm 79 sec  0.30 mm 25 sec 
  If surgical instrument moves 

     0.88 mm 79 sec  0.29 mm 23 sec 

 

Gold Standard: AR is at present used in a variety of 
surgical procedures involving a range of techniques and 
algorithms to improve the accuracy and processing time 
of videos in visualising anatomical structures. The 
highest accuracy so far generated is 0.87 mm of overlay 
error (the difference between the projected scene and 
the actual scene) and processing time is 77 sec for 
generating the augmented view. Such overlay error 
(reduced accuracy) can lead to surgical failure. 
Similarly, high processing time can delay the surgery 
(Nosrati et al., 2016). 

Results show major differences in accuracy and 
processing time between the State-of-the-Art system and 
the proposed system in terms of image overlay, when the 
patient moves and when surgical instruments move. In 

Table 2, the original volume refers to the preoperative 
information of the patient that is utilised to segment the 
structures of interest. The result of the proposed algorithm 
shows the video accuracy in terms of registration error as 
0.32 mm and processing time as 23 sec compared to the 
state-of-the-art method which had a registration error of 
0.87 mm and a processing time of 77 sec. 

Conclusion 

The AR system for visualising blood vessels in Breast 
Implant surgery can be created with a combination of 
different techniques. The energy functional has been 
enhanced by adding Gaussian filter to the Wavelet 
Decomposition technique to remove noise and detect the 
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desired boundaries. The weighted regularization was 
modified and used to overcome the contour leakage 
problems. This leads to greater accuracy in object 
boundaries segmentation as a consequence of considering 
their evolution over time. Thus, the proposed Weighted 
Integral Energy Functional, which includes modified 
weighted regularization and Enhanced Energy functional, 
helps in segmenting object boundaries more accurately by 
considering their evolution over time. 

Although a range of techniques are available to create 
an AR visualization, they have so far failed to provide 
the required accuracy and processing time. These are the 
major factors that affect the use of AR during surgery. This 
research has explored opportunities for overcoming the 
limitations of the state of art solution. The proposed 
technique improves outcomes by segmenting object 
boundaries more accurately through considering their 
evolution over time by regulating the curve and reducing 
the effect of the noise from the image. Therefore, the 
accuracy of the proposed system in terms of registration 
error is reduced to 0.32mm. 
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