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Abstract: The importance of studying polyphenols as natural antioxidants 

has encouraged the search for new methods of rapid, simple analysis. The 

synthesis of silver Nanoparticles (Ag NPs) using plant extracts has been 

presented as an alternative to determine the presence of polyphenolic 

compounds. In this study, aqueous extract of chilca (Baccharis latifolia), an 

endemic plant species from South America known for its medicinal 

properties, was used. This extract, because of its composition, can convert 

Ag+ ions to Ag0 in a chemical reduction process. To determine the optimal 

conditions for microwave-assisted nanoparticle synthesis, factorial 

experimental designs were used and analyzed with Statgraphics software. Ag 

NPs characterization was carried out with transmission electron microscopy; 

synthesized nanoparticles measured 4.86±2.44 nm on average. For the extract 

and Ag NPs, total polyphenolic content and antioxidant capacity were 

determined using oxygen radical absorbance capacity and cyclic voltammetry 

analysis. The method used to prepare both plant extracts and Ag NPs was 

determined to be fast and reliable. In addition to being a green and economical, 

this method allows the direct measurement of the plant extract’s total 

polyphenolic content and antioxidant capacity using analytical techniques that 

may be potentially applicable in the pharmaceutical industry. 

 

Keywords: Silver Nanoparticles, Chilca, Baccharis latifolia, Polyphenols, 

Antioxidant Activity 

 

Introduction  

Nanomaterials are presently studied with great interest 

because of their novel properties (Roco and Bainbridge, 

2005; Whitesides, 2005; Zaman et al., 2014). Nanoparticles 

of noble metals such as gold, silver and platinum have 

generated greater attention for their electrical, optical, 

thermal and catalytic properties, among others     

(Jemilugba et al., 2019). Silver nanoparticles (Ag NPs) also 

have antibacterial properties and can be used as raw 

material for the preparation of drugs, surgical material and 

food containers (Morones et al., 2005; Kim et al., 2007; 

Michna et al., 2019). Ag NPs are also used for other 

applications, such as in textiles, cosmetics, instrument 

analysis and water treatment (Jini and Sharmila, 2020). 

This versatility is the result of its high surface ratio with 

respect to the volume presented by the material (Zheng and 

Wang, 2001; Sotiriou et al., 2011; Zaman et al., 2014). 

Ag NPs can be prepared using chemical, 

electrochemical, physical and biological methods 

(Abou El-Nour et al., 2010; Iravani et al., 2014; Wei et al., 

2015). The current chemical method has some 

disadvantages, including the use of expensive, toxic and 

dangerous reducing reagents, which negatively affect 

both the profitability of the process and the environment 

(Tripathi et al., 2019). An alternative to this method is 

green synthesis, a technique that consists in taking 

advantage of a plant’s phytochemical composition, given 

that several of its compounds have reducing and 

stabilizing properties that can be used to produce Ag NPs 
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(Iravani, 2011). In general, plants’ are composed of 

polyphenols, polysaccharides and polyoxometalates, among 

other molecules, which facilitate the reduction of the metal 

precursor (Cowan, 1999; Mittal et al., 2013; Rauwel et al., 

2015). The advantage of this technique is the use of a non-

polluting reducing agent, which is also economical, 

readily available and easy to handle as compared to 

others (Devaraj et al., 2013; Tripathi et al., 2019).  

Polyphenols are among the most common secondary 

metabolites and have antioxidant characteristics 

(Ribeiro et al., 2010). Antioxidants are defined as 

compounds that prevent oxidation reactions, which 

means they can prevent free radical formation, thus 

avoiding aging and degradation processes in plants and 

humans, respectively (Prior et al., 1998; Kähkönen et al., 

1999). The importance in determining antioxidant 

capacity using Ag NPs relies in the fact that it is the same 

reaction mechanism in which polyphenols inactivate 

free radicals (Avello and Suwalsky, 2006). 

The plant Baccharis latifolia (Fig. 1), commonly known 

as chilca, has antioxidant properties (Loayza et al., 1995). 

This endemic plant of Ecuador belongs to the Asteraceae 

family and is distributed throughout the Ecuadorian 

Andean region between 1000 to 4000 masl (Shafi et al., 

2004; Jadhav et al., 2009; Palá-Paúl et al., 2019). It can 

reach 2 m high and 3 m wide and its leaves have a 

maximum length of 20 cm (Abad et al., 2006). B. latifolia is 

considered a medicinal plant thanks to its anti-inflammatory 

effect (Abad and Bermejo, 2007). It is used frequently in 

traditional medicine for treating stomach pains, fractures and 

kidney problems, among other ailments (Loayza et al., 1995; 

Abad et al., 2006). Several studies have shown that its 

aqueous extract has a bactericidal effect on different 

microorganisms such as Staphylococcus aureus, Bacillus 

subtilis, Escherichia coli and Proteus subtilis 

(Fogliano et al., 1999; Mantena et al., 2003;      

Vijayakumar et al., 2013; Zambrano-Moreno et al., 2015). 

Studies have shown that B. latifolia consists of sterane 

derivatives (Hoyos Vargas and Yep Chu, 2008). The most 

relevant compounds are α-phellandrene (Robledo et al., 

2019), caryophyllene oxide (Meeran et al., 2019), camphene 

(Ceborska, 2017), terpinen-4-ol (Luo et al., 2019) and γ-

gurjunene (Harman-Ware et al., 2017). It also contains 

terpenes such as α- pinene and limonene, as well as 

various flavonoids (da Fonseca and de Carvalho, 2006; 

Barrón-Yánez et al., 2011). These compounds are 

responsible for the plant having a high resistance to UV 

radiation and allow it to generate a photo protective layer 

that prevents the formation of free radicals that may 

degrade its physical structure (Bennett and Walls grove, 

1994; Bourgaud et al., 2001). Dichloromethane extract of 

B. latifolia leaves promotes anti-inflammatory activity at 

doses of 300 mg.kg−1, while acetone extract inhibits 

89% of cancer cells in epithelial tissue (Prada et al., 

2016; Calle et al., 2017). Derivatives of thymol 

(Kłeczek et al., 2019) and sesquiterpenes (Wang et al., 

2019) have been found in its roots, while diterpenes from 

the labdane and germacrene nucleus (Zdero and 

Bohlmann, 1989) have been reported in the plant’s upper 

part. Regarding its biological activity, its cytotoxic, 

antiproliferative, antifungal and anti-inflammatory effects 

have been studied (Abad et al., 2006;                   

Sequeda-Castañeda et al., 2015; Prada et al., 2016).  

 

 
 

Fig. 1: Baccharis latifolia
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A number of investigations related to the synthesis of 

Ag NPs using plant extracts have been conducted           

(Jha et al., 2009; Song and Kim, 2009; Tippayawat et al., 

2016); however, the use of B. latifolia in the preparation of 

Ag NPs has not been reported. Similar plants from the 

Asteraceae family (Calendula Officinalis L, Some Launaea 

and Tagetes erecta) have been studied and even larvicidal 

application has been found (Scampicchio et al., 2006; 

Özyürek et al., 2012; Akkoc et al., 2019). This study 

determined total polyphenolic content and antioxidant 

activity of the B. latifolia extract and the Ag NPs prepared 

with it to relate the reducing potential of the phenolic 

compounds contained in the extract with the nanoparticle 

formation as a method of chemical analysis. 

Materials and Methods 

Collection of B. latifolia Leaves 

B. latifolia leaves were obtained from San Miguel 

de Arcángel in the city of Ibarra, Ecuador 

(geographical coordinates 0.353060, -78.101828). The 

collection was carried out with a Wildlife Management 

Patent N°06-2019-ICFAU-FLO DPAI/MAE from the 

Herbarium ECAA-PUCESI and authorization for 

Scientific Research N°006-2019-IC-FAU-FLO-

DPAI/MAE from the Ministry of the Environment of 

Ecuador. A botanical voucher was previously deposited 

for reference at Herbaria of the PUCESI. The plant 

material was dried for 4 h at 30°C. Dehydration was 

performed in a Termokool oven for 20 min. Finally, a 

Retsch Grindomix GM 200 knife mill was used for four 

min at 4500 rpm.  

The optimal conditions for extract preparation were 

selected with Statgraphics Centurion XVI software 

through a completely randomized 2^3 factorial type 

screening design (degrees of freedom: 35) and by 

following the extract preparation protocol reported by 

(Jaiswal et al., 2010). A total of 36 replicates were 

performed, varying parameters of plant mass, stirring time 

and reaction temperature. For each parameter, the 

following levels were used: Vegetable mass of 0.5 and 1.0 g; 

temperature of 20, 45 and 70°C; and heating time of 20, 40 

and 60 min. The optimal plant extract was prepared with 

0.63 g of plant sample with a stirring time of 60 min using 

a Boeco plate at room temperature (20°C). Finally, the 

extract was filtered through vacuum filtration and stored 

at 4°C. 

Synthesis of Ag NPs 

Synthesis was performed with a microwave-assisted 

procedure (Indurama MWI 28 BL) as suggested by 

Oukarroum et al. (2012). For the selection of optimal 

conditions, a fractional factorial type 2^4 screening 

design with two blocks and two central points per block 

(24 degrees of freedom) was applied. A total of 36 

experimental tests were performed, varying the 

parameters of the concentration of AgNO3 as the metallic 

precursor, volume of the extract, pH and heating time. The 

levels for each factor were: AgNO3 concentration of 0.5 

and 2.0 mm; extract volume of 0.5 and 2.0 mL; pH of 7 

and 10; heating time 30 and 120 s. The response variables 

were absorbance and maximum wavelength, both 

obtained by visible spectrophotometry; target values were 

1.000 UA and 410 nm, respectively. For optimal Ag NPs 

synthesis, a 1.54 mm silver solution was prepared using a 

high purity reagent (Merck 99.9%); 1.29 mL of aqueous 

extract at a pH of 8 was used for 49 s at a power of 800 W. 

The colloidal solution was cooled in an ice bath and stored 

in an amber bottle at 4°C. 

Characterization of Ag NPs 

Ag NPs were characterized using an FEI Tecnai G2 

Twin Transmission Electron Microscope (TEM) 

operating at 80 kV, which allowed us to determine the size 

of the nanoparticles. To calculate average size, 412 

nanoparticles were measured using Fiji software 

(Borase et al., 2014). Additionally, an X-Ray Diffraction 

(XRD) analysis was performed. Diffractograms were 

obtained using an Empyrean PANanalytical 

diffractometer in a Bragg-Brentano configuration of θ-2θ 

(generator-detector) equipped with a nickel filter, Cu K-

alpha (λ = 1.541Å) and an X’Celerator detector. Prior 

to the analysis, the liquid sample was dried at 30°C on 

a microscope slide, which generates a thin layer while 

avoiding organic degradation. The average of 6 XRD 

patterns from 5° a 90° (configuration 2θ) was taken to 

obtain the final diffractogram. 

Total Polyphenol Content 

Total polyphenols were determined by the Folin-

Ciocalteu spectrophotometric method (Folin and 

Ciocalteu, 1927).  

Oxygen Radical Absorbance Capacity Fluorescence 

Antioxidant Capacity 

Oxygen Radical Absorbance Capacity Fluorescence 

(ORAC-FL) analysis was carried out on a PerkinElmer 

EnSpire multimode plate reader using 96-well plates 

made of Nunc white polystyrene (Copenhagen, Denmark) 

by means of a Trolox calibration curve (3.0 to 20 μm). All 

reaction mixtures were prepared in triplicate and at least 

three independent assays were performed for each sample. 

The area under the fluorescence decay curve (ABC) was 

calculated by integrating the decrease in fluorescence. 

Data processing was performed with Origin Pro 8.5 SR2 

software (Origin Lab Corporation, Washington, USA). 
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Results 

Synthesis and Characterization of Ag NPs 

The experimental design was applied to determine the 

optimal conditions for the preparation of the aqueous 

extract of B. latifolia leaves. With this methodology, it 

is possible to assess the effect of each one of the 

variables in the experimental result, as well as their 

interactions, while considering statistical significance 

(p≤0.05). Pareto diagrams (Fig. 2) show significant 

effects from the following factors: Plant mass, 

temperature and, to a lesser extent, the interaction 

between these two. 

Experimental design results for Ag NPs synthesis (Fig. 3) 

show that silver nitrate concentration is the only common 

factor with a significant effect (p≤0.05) on the targeted 

wavelength and absorbance. 

In Fig. 4, UV-Vis spectrum of the Ag NPs obtained 

with all parameters is shown. 

Figure 5 shows the micrograph of the Ag NPs 

analyzed using TEM and the frequency histogram.  

The XRD patterns of the silver nanoparticles 

synthesized according to the protocol described in section 

3.2 are shown in Fig. 6. 

Total Polyphenol Content 

The results of total polyphenol content for B. latifolia 

and Ag NPs are shown in Table 1. 

Table 1. Total polyphenols present in B. latifolia and 

Ag NPs.  

Antioxidant Activity 

The results of antioxidant activity for B. latifolia and 

Ag NPs are shown in Table 2. 

Electrochemical Behavior 

Results concerning the electrochemical behavior of the B. 

latifolia extract and Ag NPs are shown in Figs. 7 to 9. 

 

 

 

Fig. 2: Pareto diagram for optimization of maximum wavelength (above) and absorbance (below) in the selection of conditions for 

preparing B. latifolia leaf extract 
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Fig. 3: Pareto diagram for optimization of the maximum wavelength (above) and absorbance (below) in the selection of Ag NPs 

synthesis conditions with B. latifolia aqueous extract 

 

 
 

Fig. 4: UV-Vis spectrum of Ag NPs synthesized with B. latifolia extract 
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Fig. 5: TEM micrograph of Ag NPs (a) and size frequency histogram (b) 
 

 
 

Fig. 6: XRD diffractometer for Ag NPs 
 

 
 
Fig. 7: Cyclic voltammograms of: (a) B. latifolia extract in 0.10 mol L−1 sodium acetate solution and (b) blank acetate solution, using 

a GC electrode. Scanning rate 50 mVs−1 Vs Ag/AgCl at 25°C 
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Fig. 8: Differential pulse voltammetry analysis of: (a) B. latifolia extract electrode in 0.10 mol L−1 sodium acetate solution and (b) 

blank acetate solution, using a GC. Scanning rate 50 mV. s−1 Vs Ag/AgCl at 25°C 

 

 
 
Fig. 9: Cyclic voltammograms of: (a) 5 mmol L−1 AgNO3 + 0.10 mol L−1 sodium acetate solution and (b) Ag NPs- B. latifolia 

in 0.10 mol L−1 sodium acetate solution, using a GC electrode. Scanning rate 50 mV. s−1 Vs Ag/AgCl at 25°C 

 

Table 1: Total polyphenols present in B. latifolia and Ag NPs 

 Total polyphenols 

Sample (mg EAG/100 g dry mass) 

B. latifolia 598.5±16.7 
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Table 2: Antioxidant capacity of B. latifolia and Ag NPs 

 ORAC-FL (µm Trolox  

Sample equivalent/l g extract) 

B. latifolia 27183±3183 

Ag NPs 3497±742 

Discussion 
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related to the size of the nanoparticles, the experimental 
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indicates that temperature and vegetable mass, as well as 

their interaction, are the factors that significantly affect 

obtaining the desired wavelength, therefore the NPs size. 

On the other hand, we considered that absorbance should 

have a high value as it is related to Ag NPs concentration, 

based on which the response optimization was performed 

to obtain a value close to 1000 UA. In this case, it was 

observed that vegetal mass and the interaction of vegetal 

mass with time are the two factors with significant effects, 

the former having greater magnitude. The temperature 

had a positive effect on lambda, meaning that at a higher 

temperature, the synthesized Ag NPs’ wavelength was 

greater, which is not desirable. Conversely, the plant mass 

had a negative effect on both wavelength and absorbance, 

indicating that a low proportion of the aqueous extract of 

B. latifolia leaves should be maintained to maximize 

absorbance; however, this would affect the size of the Ag 

NPs synthesized with the extract. To balance these 

factors, an optimization of multiple responses was 

performed through the desirability function created 

with the aforementioned wavelength and absorbance 

values. With this, it was established that the best 

extraction conditions to reach a maximum absorption 

at 410 nm and an absorbance of 1000 UA for 

nanoparticle synthesis were: 0.63 g of B. latifolia 

leaves and a temperature of 20°C. Other factors, 

although being non-significant, were optimized as 

follows: 20 mL of distilled water, 60 min of agitation. 

As in the previously described optimization, the target 

values for colloidal solutions of Ag NPs were a maximum 

wavelength near 410 nm and an absorbance close to 1000 

UA. The performed experimental design shows that the 

concentration of silver nitrate directly influences both 

(maximum lambda and absorbance), so its balance is 

critical to obtain the desired characteristics, since a high 

concentration achieves a higher lambda (undesirable) but 

also a greater absorbance (desirable). It is key to note the 

reaction stoichiometry’s influence, since changes in any 

of the reagents’ concentrations affect the size of the 

obtained NPs, as evidenced by the effect of the AB 

interaction: Extract volume and silver nitrate concentration 

(Fig. 3). The inversely proportional relationship between 

extract volume and the wavelength of maximum 

absorption could be explained by the organic coating that 

remained on the Ag NPs, thus increasing their size. On the 

other hand, regarding absorbance, several factors and 

interactions had positive effects, time and pH being the most 

predominant. The interaction of H+ ions with nitrate 

concentration and with extract volume is an important aspect 

related to the reduction reaction necessary to synthesize 

nanoparticles, since the pH influences the chemical form in 

which molecules from the extract will be in its active form to 

participate as reducing agents. 

When performing the optimization based on the 

desirability parameter created from the absorbance and 

lambda target values, the following conditions were 

obtained: AgNO3 1.54 mM, 1.29 mL of plant extract, a pH 

of 8.2 and a time of 49 s. When applied to the synthesis 

procedure, Ag NPs formation was evidenced by the color 

change in the solution. The color of the aqueous extract of 

B. latifolia leaves is normally brown and it changed to 

yellowish-brown, which implies the presence of Ag NPs 

in the solution. The above is corroborated in Fig. 4, where 

it is also observed that the maximum absorption is 415 nm 

and the band has an absorbance of 1.25 UA, denoting 

compliance with the optimization performed through the 

experimental design. Similar studies using plant extracts 

from the Asteraceae family to prepare Ag NPs indicate 

that the maximum absorption band is between 414 and        

430 nm. Morejón et al. (2018) found a maximum 

absorbance of 414 nm using Ambrosia arborescens 

extract, while (Padalia et al., 2015; Mousavi et al., 2018) 

obtained maximum absorbance at 430 nm with Artemisia 

turcomanica and Calendula officinalis, respectively. 

The average size of the nanoparticles was 4.86±2.44 nm. 

As can be seen in the TEM image (Fig. 5a) and size 

frequency histogram (5b), the organic layer that covers 

the silver nanoparticles measures 1 nm. Previously 

reported TEM analysis for Ag NPs obtained with 

extracts of Ambrosia arborescens, Artemisia 

turcomanica and Caléndula officinalis indicate an 

average size of 14, 21.22 and 46.11 nm, respectively. 

The size of the Ag NPs obtained in this study was 

significantly smaller, thanks to the experimental design 

approach we employed.  

In Figure 6 the peaks observed at the 2θ angle for the 

silver nanoparticles are the following: 38.04, 44.06 and 

64.34°, which correspond to the (110), (200) and (220) 

reflection planes, respectively, of the FCC silver lattice 

(ICSD No. 98-018-0878) (Kumar et al., 2016). The most 

intense peak in the diffractogram, corresponding to the 

predominant orientation of Ag nanocrystals, is along the 

(111) plane and the Debye-Scherrer equation predicts an Ag 

NPs average size of around 15 nm, which is consistent with 

the value obtained by TEM. Other peaks correspond to the 

formation of AgCl and the presence of a bio-organic phase 

on the particles’ surface (Kumar et al., 2017); this indicates 

that the reaction is competitive and not just Ag NPs 

nanocrystals are produced (Gorji et al., 2019). 

Total Polyphenol Content 

Prior to beginning this study, a phytochemical 

screening was performed on the B. latifolia aqueous 

extract to confirm the presence of polyphenolic 

compounds. Recent studies on Asteraceae plants have 

reported that total polyphenol content can be between 265 

and 1334 mg EAG/100 g of dry mass; Helianthus annuus 

L. is the plant with the lowest phenolic content, while 
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Echinacea purpurea L. Moench has the highest content 

(Güneş et al., 2019). As can be seen in the results for B. 

latifolia (Table 1), the concentration of polyphenolic 

compounds is within the range reported by (Güneş et al., 

2019). However, the characteristics of the solvent used to 

extract the phenolic compounds suggest that the 

quantified polyphenols’ chemical nature (mainly 

organic acids of low molecular weight or glycosylated 

polyphenols) differs from that described above. In 

addition, it is important to keep in mind that not only 

can polyphenolic compounds reduce Folin’s reagent 

(the solvent used in the extraction), but other 

compounds with reducing capacity, such as 

carbohydrates with terminal reducing ends, could cause 

a false positive in this type of assay. Therefore, the 

results must be complemented with other techniques to 

accurately assess polyphenolic compounds. 

The decrease in the amount of phenolic compounds in 

Ag NPs when compared to the extract is because part of 

the concentration of polyphenols extracted from B. 

latifolia transforms Ag+ to Ag0. Therefore, the difference 

between the two values could be the result of some 

polyphenols being used to form Ag NPs. This suggests 

that with the solvent used, most of the reducing 

compounds were polyphenols or organic acids that have 

the necessary reducing power to form Ag0. 

Antioxidant Activity 

The antioxidant capacity of the B. latifolia aqueous 

extract was determined by the reaction of the phenolic 

compounds present in the extract with oxygen-centered 

radicals (RO/ROO●) generated by the thermolysis of the 

ABAP azo compound. The extract showed greater 

antioxidant capacity than the Ag NPs because to convert Ag+ 

to Ag0, the antioxidant compounds were oxidized, thus 

decreasing their concentration to quench the free radicals 

formed through this methodology. Therefore, some of the B. 

latifolia extract’s antioxidant capacity was used to create Ag 

NPs, which accounts for the difference in antioxidant 

capacity between the extract and the Ag NPs. 

The antioxidant capacity of the B. latifolia extract was 

found to be greater than that described for several other 

plants from the Asteraceae family (Ledoux et al., 2018). 

This could possibly be because of the solvent used to 

extract phenolic compounds, which could consist of 

mainly glycosylated compounds or low molecular weight 

organic acids such as gallic acid. 

Electrochemical Behavior 

Oxidation potential is a physicochemical parameter that 

determines the energy necessary for a compound to yield 

electrons. The current study’s oxidation potential values are 

linked to antioxidant capacity such that low oxidation 

potential implies a greater antioxidant capacity. By means of 

Cyclic Voltammetry (CV), the electrochemical behavior of 

the B. latifolia aqueous extract was evaluated. Figure 7a 

shows the cyclic voltamperogram of the extract using 

0.1 mol L−1 sodium acetate as a supporting electrolyte; 

here, two oxidation waves at potentials between (-0.1 V; 

0.2 V) and (0.71 V; 1.0 V) suggest the presence of at least 

two types of reducing species or a reducing species that can 

be oxidized by two stable intermediates. The 

voltamperogram shows waves toward a reduction potential 

between (+0.75 and +0.8 V) and (-0.2 and +0.2 V), signals 

apparently coupled with the anodic processes in direct 

scanning, suggesting a certain degree of electrochemical 

reversibility. If this is the case, it could be attributed to 

quinone groups formed in the oxidation scan from -OH 

groups present in the structures of oxidants. This is 

consistent with the presence of species of phenolic 

character in the extract. 

To corroborate the results obtained by CV, 

Differential Pulse Voltammetry (DPV) was used. This 

technique results in current-potential signals with greater 

sensitivity (Bar et al., 2009) because it can eliminate the 

contribution of the background current obtained in cyclic 

voltamperograms, which does not allow the signals per CV 

to be precisely defined and can also deconvolve the current 

signals in order to demonstrate the existence of other 

additional waves in the system. Figure 8b shows the presence 

of two oxidation waves at the same intervals of potentials 

obtained for the CV signals and, in addition, a third wave at 

+1.16 V, which confirms the existence of three types of 

species with antioxidant capacity in the extract. Current 

values for the first two waves have the same order of 

magnitude, indicating that both types of species could be 

present in similar amounts in the extract, while the third wave 

at +1.16 V, which is a greater current value, suggests that this 

species has a higher concentration in the extract than the first 

two. On the other hand, if we consider that each of the signals 

corresponds to a chemical species with individual 

characteristics and behavior, the extracted compounds 

may have different antioxidant capacity, that is one 

with less capacity (+1.16 V) and the other two with 

greater capacity (+0.2 and +0.9 V). 

The electrochemical behavior of the Ag NPs and B. 

latifolia extract was evaluated using CV (Fig. 9b), which 

was compared to that of an aqueous solution of five mmol 

L−1 of silver nitrate (Fig. 9a). The latter showed a 

reduction signal at +0.027 V and an oxidation signal at 

+0.559 V Vs. Ag/AgCl; the reduction peak is associated 

with the electrodeposition of silver ions on the surface of 

the vitreous carbon electrode, while the oxidation peak 

corresponds to the redissolution signal of the silver 

deposited on the electrode in the reduction scan. The 

voltamperogram obtained for the Ag NPs and B. latifolia 

extract does not show reduction waves but an oxidation 

signal at +0.30 V. The absence of cathodic signal suggests 

the non-existence or low presence of Ag+ ions in said 

extract, which shows that it comprises mostly Ag0 
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nanoparticles, products of the extract’s reducing action. 

The oxidation signal at +0.30 V is associated with the 

oxidation of Ag particles present in the extract. These 

results also show the ability of B. latifolia extract to 

stabilize Ag0 nanoparticles. 

Conclusion 

The proposed method of Ag NPs synthesis using 

aqueous extract of B. latifolia leaves was reliable, easy, 

fast, economical and environmentally friendly. 

Antioxidant capacity tests are reliable as similar results 

are obtained by different analytical and 

electrochemical techniques. Regarding total 

polyphenolic content and antioxidant capacity as 

analyzed by ORAC-FL and CV/DPV, the results in all 

cases indicate a significant decrease in Ag NPs 

compared to the extract, suggesting that the 

polyphenolic compounds present in the plant sample 

intervene in the synthesis process as reducing agents. It 

is a simple and fast Ag NPs formation technique, since 

the color change is evident in the formation of the 

surface plasmon, in addition to being a readily 

available and non-toxic plant reducer. The reducing 

effect of the aqueous extract from B. latifolia leaves 

demonstrated in this study could be extrapolated to 

antioxidants’ biological effect on free radicals within 

an organism. Phenolic compounds react in the presence 

of reactive chemical species, such as chemical 

monitors. This effect could potentially be applied in the 

phytochemical, pharmaceutical and food industries, 

among others, for the detection of antioxidant 

substances. In addition, the optimization by 

experimental design allowed the best parameters for 

both the preparation of the aqueous extract of B. 

latifolia leaves and the Ag NPs synthesis to be 

determined, resulting in a reduced nanoparticle size 

(mean diameter <5 nm). 
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