The Effect of Post-Mating Progesterone Supplement on Pregnancy and Lambing Rates of Ewes Bred Out-of-season

¹Mustafa Q. Husein, ²Mohammed M. Ababneh and ¹Jomana F. Hijazi
¹Department of Animal Production, Faculty of Agriculture
²Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine
Jordan University of Science and Technology, P. O. Box 3030, Irbid 22110, Jordan

Abstract: The objective of this experiment was to determine whether post-mating progesterone (P_4) supplement improves pregnancy and lambing rates in ewes bred during the seasonal anestrous period. In June, 39 synchronized to estrus Awassi ewes were allowed with four harnessed fertile rams immediately following CIDR-G device removal (day 0 and 0 hour). Five days following ram introduction, ewes were randomly assigned to four groups to be treated post-mating with intramuscular injections of 20 mg P_4 supplement once daily from day 5 to day 9 (P_4 -D5-9), days 10 to 14 (P_4 -D10-14), days 5 to 14 (P_4 -D5-14) or did not receive P_4 supplement (control). Blood samples were collected from all ewes for P₄ analysis. Progesterone concentrations prior to CIDR-G insertion were basal and no differences in P_4 concentrations were found on days -12, -10 and between days 0 and 5 among groups. Progesterone concentrations between days 5 and 15 differed (p<0.001) significantly due to treatment effect. Maximum P₄ concentrations were reached on day 9 in group P₄-D5-9 and between days 11 and 15 in groups P₄-D10-14, P₄-D5-14, and control. Pregnancy was diagnosed based on day 19 P₄ levels and day 30 ultrasonic examination in 5/10, 6/10, 5/10, and 5/9 ewes in groups P₄-D5-9, P₄-D10-14, P₄-D5-14 and control, respectively. Pregnancy loss was detected by ultrasonography on day 45 in 3/6 and 3/5 ewes in P₄-D10-14, P₄-D5-14 groups only. Overall pregnancy (53.8%) and lambing (41%) rates were similar among groups and were not influenced by P_4 supplement. In conclusion, P_4 supplement administered intramuscularly between days 5 and 14 post-mating is not effective in improving pregnancy, embryonic survival and lambing rates in Awassi ewes pretreated out-of-season. Pregnancy loss which occurred only in P_4 -D10-14 and P_4 -D5-14 groups maybe attributed to factors including the sharp decrease in P₄ concentrations on day 15 and stress experienced during the period of maternal recognition of pregnancy process.

Key words: post-mating, progesterone supplement, Awassi ewes, out-of-season

INTRODUCTION

Reproductive performance of Awassi ewes has been low under semi arid conditions^[1]. The fertility rate has been estimated to be 0.9 lambs per ewe mated and the majority of lambs born are singles, with some twins and rare triplets. Of approximately the 90% ewes that exhibit estrus, between 25 and 55% conceive and lamb from mating at first service^[1,2,3]. The remaining ewes that do not become pregnant to first service remain prone to be bred during the second or third service or even some are not bred at all during a given breeding season. The low fertility rate is primarily attributed to factors including breed, heredity, environment, management and the reproductive soundness of the ewes^[1,4]. Ovulation, fertilization and early embryonic mortality rates are also among factors influencing litter size^[2]. Of these factors embryonic mortality has been considered to be the greatest limitation to reproductive efficiency across mammalian species and has been estimated to between 25 and $60\%^{[5]}$. Early embryonic mortality usually occurs during the first 3 weeks of gestation which results in pregnancy rates ranging from 16 to $76\%^{[2,3,6,7]}$.

Although factors causing early embryonic mortality in sheep are not well established, there is evidence suggesting the involvement of luteal inadequacy^[8]. Luteal inadequacy, resulting from environmental factors such as heat stress or nutrition, has been shown to be a major cause of embryonic loss in sheep^[8]. Progesterone is the principal hormone maintaining pregnancy and controlling embryo

Corresponding author: Dr. Mustafa Q. Husein, Department of Animal Production, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan

development. It is well known that P_4 levels during the early-mid luteal phase increase rapidly from day 4 to day 10 after estrus in ewes^[9]. Pregnancy maintenance is largely dependent on P₄ of luteal source for approximately the first 50 days of gestation^[10]. Therefore, it would be advantageous to note that high plasma P_4 concentrations during the luteal phase are important for maintaining pregnancy^[11]. Moreover, a positive association exists between additional corpora lutea and the maintenance of pregnancy^[12]. Low P_4 concentrations can lead to poor pregnancy and fertility rates^[13]. Progesterone concentrations in ewes with luteal inadequacy remain below the level required to provide suitable uterine environment for normal embryo growth and development^[9]. In addition, ewes with lower concentration of P4 are more prone to embryonic loss, perhaps, as a result of insufficient maternal recognition of pregnancy signals^[12]. It is during the second week of pregnancy that the changes in the uterine secretions are critical for embryo survival^[11]. Since P₄ is essential for maintenance of pregnancy there would appear to be a rationale for its use to improve conception rates and to minimize early embryonic mortality^[14]. Therefore, we hypothesize that post-mating P₄ supplement is important for improving pregnancy and lambing rates in anestrous ewes pretreated with intravaginal P₄ inserts for 12 days. The objective of this study was to determine whether or not post-mating P4 supplement improves pregnancy and lambing rates of ewes bred out-of-season.

MATERIALS AND METHODS

Animals: The experiment was conducted during the months of May and June at the sheep unit at the Agricultural Center for Research and Production at Jordan University of Science and Technology (32°33'N, 35°51'E) located in the northern part of Jordan at an altitude of 510 m above sea level. Ewes age ranged from 3 to 5 years and had a body condition score of 2.5 to 3 (scale= 0 lowest to 5 highest, Russel^[15] and weighed between 40 and 59 kg (Mean \pm SEM = 47.3 \pm 1.1). All ewes had previously lambed during the past lambing season and their lambs weaned at least 6 weeks before the start of the experiment. Ewes were housed in a single pen (18 x 6 m), one-third of which is sheltered and the south wall is open. During the experimental period, ewes were fed 1.2 kg wheat straw and 0.5 kg concentrate mixture per ewe per day and had free access to water, shade and mineral salt blocks.

Experimental design: Thirty-nine Awassi ewes were synchronized to estrus using intravaginal P4 inserts (CIDR-G, Pharmacia & Upjohn n.v./s.a. Puurs, Belgium) containing 300 mg P₄. Inserts were inserted on May 27 and were removed 12 days later on June 8 at 0600. At the time of CIDR-G removal (day 0 and 0 hour) four Awassi rams fitted with marking harnesses were turned in with the ewes which were checked for breeding marks at 6-h intervals for 5 days. After five days of ram exposure, ewes were randomly assigned to four groups to be treated with intramuscular (i.m.) injections of 20 mg P₄ (Acros Organics, New Jersey, USA) supplement given once daily from day 5 to day 9 (P₄-D5-9), from day 10 to day 14 (P₄-D10-14), and from day 5 to day 14 (P_4 -D5-14) or did not receive P_4 supplement (control group). Ewes from the four groups were all run together in one mob in a single pen with the four rams and no ram rotation was used. Transrectal ultrasonography was performed on day 30 for pregnancy diagnosis and confirmed on day 45 using transabdominal ultrasonography.

Blood sampling and hormone assav: Blood samples were collected via jugular venipuncture once on days-12 and-10 and once daily from day 0 until day 5 and then on alternate days thereafter until day 19 to compare P₄ concentrations among groups and for pregnancy diagnosis. All blood samples (5 ml each) were drawn into heparinized tubes (5 IU/ml blood) and centrifuged within 30 min of collection at 1500 g for 15 min. Plasma was pipetted and stored at -20°C until assayed. Plasma P₄ concentrations were measured using a solid phase RIA kit containing antibody coated tubes and ¹²⁵I-labeled P₄ (Coat-A-Count kit, Diagnostic Products Corporation, DPC, Los Angeles, CA, USA). Sensitivity of the assay was 0.1 ng mL⁻¹. Intra-assay coefficient of variation (CV%) was 7.2%. The experimental protocols were performed according to the guidelines made by the Animal Use and Care committee at Jordan University of Science and Technology.

Statistical analysis: Data were analyzed using SAS/STAT ANOVA procedures^[16]. Data in text, tables and figures are presented as means \pm SEM. The effects of P₄ supplement following CIDR-G removal on pregnancy and lambing rate were analyzed using Chi-square test. Plasma P₄ concentrations were analyzed for the effect of post-mating P₄ supplement and time using the repeated-measures procedure of the GLM. Pregnancy rate was defined as the number of ewes bred

by the rams within 5 days following day 0 and became pregnant based upon sustained P_4 concentrations of ≥ 3 ng mL between days 15 and $19^{[17]}$. Lambing rate was defined as the proportion of ewes that became pregnant from mating at first service and lambed between 145 and 155 days following day 0.

RESULTS

Progesterone levels before CIDR-G removal and Mean initial plasma P₄ estrus responses: concentrations on day -12 were basal and averaged 0.2 \pm 0.04, 0.3 \pm 0.1, 0.4 \pm 0.1 and 0.3 \pm 0.1 ng mL⁻¹ for the P₄-D5-9, P₄-D10-14, P₄-D5-14 and control groups, respectively. Following CIDR-G insertion plasma P₄ concentrations increased rapidly in all ewes and values on day -10 were 5.2 \pm 0.2, 5.4 \pm 0.1, 5.3 \pm 0.2 and 5.5 \pm 0.1 ng mL⁻¹ for the P₄-D5-9, P₄-D10-14, P₄-D5-14 and control groups, respectively. Progesterone concentrations declined to day 0 values of 2.4 ± 0.1 , 2.4 \pm 0.1, 2.3 \pm 0.1 and 2.5 \pm 0.2 ng mL⁻¹ for the P₄-D5-9, P₄-D10-14, P₄-D5-14 and control groups, respectively. Plasma P_{4} concentrations on days -12, -10 and 0 were not significantly different among groups (p>0.05). All ewes expressed estrus at similar intervals following CIDR-G removal among groups (Table 1).

Progesterone profiles following CIDR-G removal, pregnancy and lambing rates: Following day 0, plasma P₄ concentrations rapidly fell to ≤ 0.3 ng mL⁻¹ within 24 h of CIDR-G withdrawal and remained basal through day 4. All ewes ovulated during this period based upon the subsequent rise in P₄ concentrations following CIDR-G removal. On day 5 (at the beginning of P₄ treatment), P₄ concentrations began to increase and did not differ (p>0.05) significantly among ewes of the four treatment groups and averaged 0.9 \pm 0.1 ng mL⁻¹. Progesterone concentrations increased gradually thereafter until day 15 and differed significantly (p<0.001) by day among groups. Mean P₄ concentrations between days 5 and 15 were 4.94 \pm 0.17, 4.78 \pm 0.26, 6.70 \pm 0.22 and 3.99 \pm 0.17 ng mL⁻¹ for groups P₄-D5-9, P₄-D10-14, P₄-D5-14 and control, respectively.

Concentrations of P_4 in the control group increased gradually until day 15 as those typically seen during the process of luteal development. Likewise P_4 concentrations in group P_4 -D10-14 increased gradually until day 10 and then increased sharply until day 15.

Fig. 1. Plasma P₄ profiles following CIDR-G removal in Awassi ewes treated with P₄ supplement from days 5 to 9 (P₄-D5-9, □), days 10 to 14 (P₄-D10-14, ■), days 5 to 14 (P₄-D5-14, O), and control (●)

Table 1:Reproductive responses following CIDR-G removal in Awassi ewes treated during the seasonal anestrous period with 20 mg P_4 supplement between days 5 and 9 (P_4 -D5-9 group), 10 and 14 (P_4 -D10-14 group), 5 and 14 (P_4 -D5-14 group) and control group

	Treatments			
Parameter	P ₄ -D5-9 (n=10)	P ₄ -D10-14 (n=10)	P ₄ -D5-14 (n=10)	Control (n=9)
Ewes expressing estrus	10/10	10/10	10/10	9/9
Interval to onset of estrus (h)	37.3 ± 2.5	36 ± 2.5	34.2 ± 2.5	35.3±2.7
Ewes pregnant (%) ¹	5 (50%)	6 (60%)	5 (60%)	5 (55.6%)
Ewes pregnant $(\%)^2$	5 (50%)	3 (30%)	3 (30%)	5 (55.6%)
Pregnancy loss $(\%)^2$	0/5 (0%)	3/6 (50%)	2/5 (40%)	0/5 (0%)
Embryonic/fetal survival (%) ³	5/5 (100%)	3/6 (50%)	3/5 (60%)	5/5 (100%)
Ewes lambed /ewes exposed $(\%)^3$	5 (50%)	3 (30%)	3 (30%)	5 (55.6%)
Prolificacy ^a	1.0	1.0	1.0	1.0

^a No. of lambs born live per ewes lambing

¹Occuring based upon P₄ concentration between days 15-19 and transrectal ultrasonic examination on day 30

²Occuring based upon transabdominal ultrasonic examination on day 45

³Ewes lambing from mating at first service (145-155 days following day 0)

Fig. 2. Plasma P₄ profiles in P₄-D5-9, P₄-D10-14, P₄-D5-14 and control groups following CIDR-G removal in pregnant (●) and non-pregnant (○) ewes

Progesterone concentrations in groups P_4 -D5-9 and P_4 -D5-14 rose in a similar manner between days 5 and 10 due to treatment effect (Fig. 1). Maximum P_4 concentrations were reached on day 9 in group P_4 -D5-9 and between days 11 and 15 in group P_4 -D5-14. Concentrations of P_4 decreased after day 9 only in group P_4 -D5-9 ewes and then were maintained from day 11 to day 15 at levels typical of those usually detected during normal luteal phase. Plasma

concentrations of P_4 were greater (p<0.001) in P_4 -D5-9 and P_4 -D5-14 groups than P_4 -D10-14 and control from day 5 to day 9. Between days 11 to 14, P_4 concentrations were significantly higher (p<0.001) in P_4 -D10-14 and P_4 -D5-14 groups than P_4 -D5-9 and control (Fig. 1).

Progesterone concentrations remained elevated from day 15 through day 19 in 5/10, 6/10, 5/10, and 5/9 ewes for groups P₄-D5-9, P₄-D10-14, P₄-D5-14 and control, respectively, and these ewes were confirmed pregnant based upon ultrasonography performed on day 30. However, early signs of embryonic demise were evident in 3/6 and 2/5 ewes in groups P₄-D10-14 and P₄-D5-14, respectively. Pregnancy loss was confirmed to have occurred in these ewes later on day 45 by ultrasonography. Progesterone concentrations dropped spontaneously after day 15 in the remaining 5/10, 4/10, 5/10, and 4/9 (p>0.2) ewes of groups P₄-D5-9, P₄-D10-14, P₄-D5-14, and control, respectively (Fig. 2). These ewes were confirmed non-pregnant based upon ultrasonography on days 30 and 45. Of the 21 ewes that became pregnant from mating at first service, 16 lambed 149.4 \pm 0.3 days following day 0 and were 5/10, 3/10, 3/10 and 5/9 ewes of groups P₄-D5-9, P₄-D10-14, P₄-D5-14 and control, respectively (Table 1). Embryonic survival rates were 100, 50, 60 and 100% for groups P₄-D5-9, P₄-D10-14, P₄-D5-14 and control, respectively. There was no significant difference (p>0.05) among ewes of the four treatment groups in the number of ewes that became pregnant or lambed. The number of lambs born live per ewes lambed was similar among groups and was not influenced by P₄ supplement (Table 1). The overall pregnancy and lambing rates were 53.8 and 41%, respectively.

DISCUSSION

As expected, post-mating plasma P_4 concentrations increased during the periods of treatment between days 5 and 9, 10 and 14 and 5 and 14 for groups P_4 -D5-9, P_4 -D10-14 and P_4 -D5-14, respectively. The number of ewes failing to establish pregnancy was similar among P_4 groups. The overall pregnancy (53.8%) and lambing (41%) rates obtained in this study, do not suggest direct involvement of P_4 supplement, rather it may be considered as a normal outcome of the synchronization protocol (CIDR-G for 12 days) used since no gonadotropin treatments were incorporated. The acceptable pregnancy rates obtained in the present study using CIDR-G were better than those previously reported using 500 mg P₄ sponges^[18]. The use of CIDR-G in estrus synchronization in sheep has been shown to improve estrus responses and pregnancy rates compared with progestagen sponges^[19,20].

The experimental hypothesis was that P_4 supplement post-mating between days 5 and 14 is crucial for improving embryonic survival in ewes pretreated out-of-season with exogenous P_4 for 12 days. Results of the present study did not support the experimental hypothesis in that the P₄ supplement did not improve pregnancy and lambing rates. No differences were found between groups supplemented with P₄ and the control and all groups showed similar reproductive performance pre- and post-mating. Notably, P₄ supplement in P₄-D10-14 and P₄-D5-14 groups, although not significant, numerically decreased the number of ewes lambing compared with the two other groups. On the other hand, the P₄ supplement from day 5 to day 9 post-mating (group P₄-D5-9) did not affect lambing rate and was similar to the control.

Results of the present are in agreement with those reported in sheep^[3,21,22], cattle^[23] and women^[24], which showed no benefit of using post-mating P4 supplement in improving or minimizing early embryonic losses. According to McMillan^[22], P₄ supplement using intravaginal inserts from day 7 to day 14 post-mating did not improve pregnancy rate in mature ewes but increased litter size by 23%. In contrast, other researchers indicated that the use of intravaginal P₄ inserts has a potential of reducing the incidence of pregnancy loss during the early fetal period in dairy cattle^[24]. Villarroel and coauthors^[26] showed that intravaginal P₄ supplement administered from day 5 to day 9 post insemination prevented pregnancy losses in dairy cows. In hoggets, P4 supplement using CIDR-G from day 7 to day 14 post-mating positively affected both pregnancy rate and litter size which increased by 17 and 40%, respectively^[22].

Based on the results obtained in the present study and those reported in the literature, it would be advantageous to note that P_4 supplement has been administered by means of injections, implants, oral or intravaginal inserts. In this regard, fertility rates were improved when P_4 supplement was administered intravaginally rather that orally, intramuscularly or by implants. Therefore, it seems likely that vaginal deposition of P_4 was superior to other routes^[26]. These authors indicated that vaginal administration of P_4 could have acted to increase P_4 levels in uterine arteries by means of a counter-current transfer from the vaginal and cervical venous drainage into the corresponding arterial blood. Such application results in avoidance of first pass metabolism in the liver and in preventing sustained high plasma concentration of $P_4^{[28]}$. In the present study, P4 was administered intramuscularly and its influence may have been predominantly to raise P₄ concentrations in the systemic circulation. Approximately 90% of P₄ in hepatic portal blood is metabolized during the first pass through the liver^[29]. Moreover, P₄ administration by mean of injections results in its accumulation in the fat tissues within the muscles, resulting in more sustained serum P_4 concentrations after injection^[26]. However, vaginal administration of P₄ seems to disappear more rapidly the circulation than from intramuscular administration^[27].

Various other reproductive parameters were examined for differences in the overall ewes that did (groups P₄-D5-9, P₄-D10-14 and P₄-D5-14; n=30) or did not (control; n=9) receive P₄ supplement. Results of the present study indicated similar overall pregnancy (16/30 {53.3%} versus 5/9 {55.6%}) and numerically different but not significant lambing rates (11/30 $\{36.7\%\}$ versus 5/9 $\{55.6\%\}$) among groups receiving P₄ supplement versus the control group, respectively. Progesterone supplement in groups P₄-D10-14 and P₄-D5-14 tended (p=0.1) to negatively affect lambing rates. In fact, of the ewes that became pregnant in groups P₄-D10-14 and P₄-D5-14, 3/6 (50%) and 2/5 (40%), respectively, lost their embryos and did not lamb. Notably, the reduction in pregnancy occurred only in groups P_4 -D10-14 and P_4 -D5-14 (shared P_4 supplement during the overlap period between days 10 and 14) but not in groups P_4 -D5-9 and control. In this regard, P₄ concentrations in group P₄-D5-9 declined after day 10 and then approached their corresponding typical (sustained) luteal phase values between days 11 and 15. On the other hand, for groups P₄-D10-14 and P₄-D5-14 which had P₄ supplement through day 14, P₄ levels sharply declined after day 15 and may have been responsible for initiating embryonic loss process in some ewes (Fig. 1). Interestingly, the overlap period of P_4 supplement in groups P_4 -D10-14 and P_4 -D5-14 corresponds well with period of maternal recognition, which takes place about days 12-13 of pregnancy^[30]. Maintaining high P₄ levels during this period of time is critical for establishment of pregnancy by the maternal recognition process. More specifically, the concentration of P_4 in maternal blood must be sustained at a high level in order that the endometrium is maintained in a state conducive to embryonic survival^[11].

Thus, pregnancy diagnosis based on P_4 levels and ultrasonography revealed that the process of pregnancy loss started before day 30 since ultrasonic examination performed on this day demonstrated early signs of embryonic death. Authors suggest two factors attributing to pregnancy loss; the sharp decline in P_4 after the end of P_4 supplement and stress imposed on ewes due to handling and treatment in groups P_4 -D10-14 and P_4 -D5-14 between days 10 and 14. Stressful conditions result in elevated levels of cortisol^[31,32] and have been associated with decreased reproductive responses. Doney et al.^[33] provided evidence of decreased pregnancy rates due to stress through exposing ewes to stressful conditions.

In conclusion, P_4 supplement administered intramuscularly between days 5 and 14 post-mating is not effective in improving pregnancy, embryonic survival and lambing rates in Awassi ewes pretreated out-of-season with CIDR-G for 12 days. Factors attributing to pregnancy loss may include the sharp decrease in P_4 concentrations on day 15 and stress experienced during the period of maternal recognition. The overall acceptable pregnancy and lambing rates obtained are normal outcome of using the 12-day CIDR-G estrus synchronization protocol out-of-season. Further studies are needed to ascertain the negative impact of the sharp decline in P_4 and stress during the period of maternal recognition and their interaction on pregnancy and lambing rates.

AKNOWLEDGEMENTS

Authors are grateful to Dr. Ali Debiri and Dr. Nabeel Salameh (Pharmacia and Upjohn) for providing CIDR-G. The authors wish to acknowledge the Deanship of Scientific Research at Jordan University of Science and Technology for funding this project (Fund # 14/2004). Authors express their appreciation to Mr. Hassan Ghozlan and staff led by I. M. Tahat for technical assistance and animal management and care at the sheep unit at the Center of Agricultural Research and Production.

REFERENCES

- Husein, M.Q. and R.T. Kridli, 2002. Reproductive responses of Awassi ewes treated with either naturally occurring progesterone or synthesis progestagen. Asian-Aust. J. Anim. Sci., 15 (9): 1257-1262.
- 2. Beck, N.F.G., A.R. Peters and S.P. Williams, 1994. The effect of GnRH agonist (Buserelin) treatment on day 12 post mating on the reproductive performance of ewes. Anim. Prod., 48: 243-247.
- Nephew, K.P., H. Cardenas, K.E. McClure, T.L. Ott, F.W. Bazer and W.F. Pope, 1994. Effects of administration of human chorionic gonadotropin or progesterone before maternal recognition of pregnancy on blastocyst development and pregnancy in sheep. J. Anim. Sci., 72: 453-458.
- Husein, M.Q., M.T. Bailey, M.M. Ababneh, J.E. Romano, B.G.Crabo and J.E. Wheaton, 1998. Transcervical artificial insemination of ewes out-of season using frozen-thawed semen Effect of equine chorionic gonadotropin on pregnancy rate. Theriogenology, 49: 997-1005.
- Roberts, R.M., J.D. Godkin, F.W. Bazer, K.B. Fincher, W.W. Thatcher, J. Knickerbocker and F.F. Bartol, 1985. Antiluteolysins produced by mammalian conceptuses. In: Edwards KG, Purdy J, Steptoe PJ (eds.), Implantation of the Human Embryo. London: Academic Press, pp, 253–282.
- Hamra, A.H., J.W. McNally, J.M. Marcek, K.M Carlson and J.E. Wheaton, 1989. Comparison of progesterone sponges, cronolone sponges and controlled internal drug release dispensers on fertility in anestrous ewes. Anim. Reprod. Sci., 18: 219-226.
- Quirke, J.F., J.P. Hanrahn and J.P. Gosling, 1981. Duration of oestrus, ovulation rate, time of ovulation and plasma LH, total oestrogen and progesterone in Galway adult ewes and ewe lambs. J. Reprod. Fert., 61: 265-272.
- Wilmut, I., D.I. Sales and C.J. Ashworth, 1986. Maternal and embryonic factors associated with prenatal loss in mammals. J. Reprod. Fertil., 76: 851-864.
- 9. Hafez, E.S.E., 1993. Reproductive Cycles. In: Reproduction in farm animals. 6th ed. Philadelphia, Lea and Fibeger; pp, 94-113.

- Jammes, H., A. Schirar and J. Djiane, 1985. Differential patterns in luteal prolactin and LH receptors during pregnancy in sows and ewes. J. Reprod. Fertil., 73: 27-35.
- 11. Goff, A.K., 2002. Embryonic Signals and Survival. Reprod. Dom. Anim., 37: 133-139.
- Binelli, M., W.W. Thatcher, R. Mattos and P.S. Baruselli, 2001. Antiluteolytic strategies to improve fertility in cattle. Theriogenology, 56: 1451-1463.
- Johnson, S.K., R.A. Dailey, E.K. Inskeep and P.E. Lewis, 1996. Effect of peripheral concentrations of progesterone on follicular growth and Fertility in ewes. Dom. Anim. Endocrinol., 13: 69-79.
- Inskeep, E.K., 2004. Preovulatory, postovulatory, and postmaternal recognition effects of concentrations of progesterone on embryonic survival in the cow. J. Anim. Sci., 82: 24-39.
- Russel, A., 1991. Body condition scoring of sheep. In: E. Boden (Ed.) Sheep and Goat Practice. p 3. Bailliere Tindall, Philadelphia.
- 16. SAS. Institue Inc. 1997. SAS/STAT. User's Guide, Version 6, SAS Institute Inc. Carry, NC.
- Husein, M.Q. and R.T. Kridli, 2002. Reproductive responses following royal jelly treatment administered orally or intramuscularly into progesterone-treated Awassi ewes. Anim. Reprod. Sci., 74: 45-53.
- Husein, M.Q., J.E. Romano, M.T. Bailey, M.M. Ababenh, B.G. Crabo, R.W. Godfrey, W.A. Head and J.E. Wheaton, 1998. Estrus synchronization and pregnancy rate of transcervically inseminated ewes during the breeding season. Sheep and Goat Res. J., 14(2): 148-152.
- Thompson, J.G.E., A.C. Simpson, R.W. James and H.R. Tervit, 1990. The application of progesteronecontaining CIDR devices to superovulated ewes. Theriogenology, 33: 1297-1305.
- Shackell, G.H., 1991. The timing of oestrus, LH surge and ovulation in ewes following synchronization with MAP sponges or CIDR's. Proc. New Zealand Soc. Anim. Prod., 51: 73-77.
- Diskin, M.G. and G.D. Niswender, 1989. Effect of progesterone supplementation on pregnancy and embryo survival in ewes. J. Anim. Sci., 67(6): 1559-1563.
- McMillan, W.H., 1987. Post-mating progesterone supplementation in ewes and hoggets. Proc. New Zealand Anim. Prod., 47: 151-153.

- Hanlon, D.W., P.J. Davidson, A.R. Hittmann and A.K. Joe. 2005. Supplementing previously treated anestrous dairy cows with progesterone does not increase first-service conception rate. Theriogenology, 63(1): 239-245.
- 24. Schmidt, K.L.T., S. Ziebe, B. Propovic, A. Lindhard, A. Loft and A.N. Andersen, 2001. Progesterone supplementation during early gestation after in vitro fertilization has no effect on the delivery rate. Fertil. Steril., 75: 337-341.
- Lopez-Gatius, F., P. Santolaria, J.L. Yaniz and R.H.F. Hunter, 2004. Progesterone supplementation during the early fetal period reduces pregnancy loss in high-yielding dairy cattle. Theriogenology, 62: 1529-1535.
- Villarroel, A., A. Martino, R.H. BonDurant, F. Deletang and W.M. Sischo, 2004. Effect of postinsemination supplementation with PRID on pregnancy in repeat-breeder Holstein cows. Theriogenology, 61: 1513-1520.
- Tavaniotou, A., J. Smitz, C. Bourgain and P. Devroey, 2000. Comparison between different routes of progesterone administration as luteal phase support in infertility treatments. Human Reprod. (Update), 6: 139-148.
- Norman, T., C. Morse and L. Dennerstein, 1991. Comparative bioavailability of orally and vaginally administered progesterone. Fertil. Steril., 56: 1034-1039.
- Vasconcelos, J.L.M., S. Sangsritavong, S.J. Tsai and M.C. Wiltbank MC. 2003. Acute reduction in serum progesterone concentrations after feed intake in dairy cows. Theriogenology, 60: 795-807.
- Moor, R.M. and L.E.A. Rowson, 1966. The corpus luteum of the sheep: functional relationship between the embryo and the corpus luteum. J. Endocrinol., 34: 233–239.
- Hargreaves, A.L. and G.D. Hutson, 1990. The stress response in sheep during routine handling procedures. App. Anim. Beh. Sci., 26:.83-90.
- 32. Hargreaves, A.L., G.D. Hutson, 1990. Some effects of repeated handling stress on stress responses in sheep. App. Anim. Beh. Sci., 26: 253-265.
- Doney, J.M., W.F. Smith and R.G. Gunn, 1976. Effects of post-mating environmental stress or administration of ACTH on early embryonic loss in sheep. J. Agri. Sci., 87: 133-136.