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Abstract: Generation of reactive oxygen-nitrogen species (ROS/RNS) has long been ascribed to 
pathophysiological conditions like ageing, neurodegenerative and cardiovascular disorders. However, 
more recent evidences suggest that while generation of ROS/RNS at a higher threshold is deleterious, 
at a lower dose these can act as second messengers, influencing specific cellular events like cell growth 
and differentiation, embryonic development, protection against ischemic injuries and progression of 
diseases like cancer. With the advent of sophisticated tools of biochemistry and cell biology, it is 
becoming apparent that various ROS/RNS, when generated transiently at a moderate level, can 
reversibly modify proteins, causing loss-gain of functions, analogous to that by phosphorylation-
dephosphorylation. More significantly, recent studies also suggest that even apoptosis induced by 
ROS/RNS might also involve discrete cell signaling rather than general surge of ROS/RNS as the 
dterminant. Taken together, coming days are likely to reveal more discrete nature of ROS/RNS 
signaling in various cellular contexts including cell death. 
 
Key words: Reactive oxygen-nitrogen species, Cell signaling, Redox-signaling, Cell survival, 

Apoptosis. 
 
 Intracellular generation of free radicals and/or 
reactive oxygen species has long been attributed to 
deleterious effects such as cell death (apoptosis), 
ageing, neurodegenerative and cardiovascular diseases 
[1, 2].  The general term used by the biologists in 
describing these phenomena is “oxidative stress”; first 
coined by Nakashima et. al in late seventies and since it 
has been one of most widely investigated subject in 
biology with 45930 entries in Pubmed as on February 9, 
2007 [3]. Interestingly, in spite of extensive research for 
about thirty years, understanding of mechanisms of 
oxidative stress and its effects on cellular processes 
have been painstakingly evolving [1, 2, 4-6].  Noticeably, a 
large number of experimental evidences, especially 
during the past decade, have suggested that although 
the generation of reactive oxygen/nitrogen species at a 
higher threshold is deleterious, at a lower dose these 
can act as second messengers, transmitting intracellular 
signals (as done by kinases and phosphatases), 
regulating specific cellular events like cell growth and 
differentiation, embryonic development, protection 
against ischemic injuries and diseases like cancer [5-8]. 
With the advent of sophisticated tools of biophysical 
chemistry, a plethora of free radicals and reactive 
oxygen species have been identified till date and their 
effects on cellular macromolecules have been 
investigated [9]. Furthermore, following the seminal 

discovery of nitric oxide as intracellular messenger [10], 
it was appreciated that in the intracellular milieu, 
generation of reactive oxygen species are highly 
interlinked with that of a number of reactive nitrogen 
species and thus the biology of reactive 
oxygen/nitrogen species are often investigated in 
conjunction. As an example, nitric oxide can interact 
with superoxide radical (O2.), hydrogen peroxide 
(H2O2), or transition metal centers resulting in the 
generation of a number of highly reactive entities [9]. 
Although reactive oxygen species have long been 
known for their deleterious effects on cellular 
macromolecules (proteins, DNA and lipids); 
accumulating evidences suggest that reactive 
oxygen/nitrogen species, especially when generated in 
limited amounts in a specific location (intracellular), 
can reversibly modify certain proteins and modulate 
their functions, thereby acting as second messengers 
[11]. The present review is aimed towards describing 
some of the recent studies related to the role of reactive 
oxygen/nitrogen species (ROS/RNS) in cell signaling in 
general and in modulating cell death and survival in 
particular.      
 
Reactive oxygen/nitrogen species (ROS/RNS) and 
their roles in biology: Free radicals contain one or 
more unpaired electrons in the outermost orbital of their 
constituent atoms, making them highly reactive and 
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labile (vis-à-vis their normal counterparts carrying 
paired electrons; 9, 11, 12). Certain other compounds 
like hydrogen peroxide, is not a free radical as such; but 
in presence of metal ions it generates hydroxyl radicals 
(OH.), and thus in a specific context, H2O2 is a reactive 
(oxygen) species [9, 11, 12].  While certain pathological 
stimuli generate ROS/RNS with deleterious 
consequences; certain others like cytokines and growth 
factors, environmental toxicants like tobacco smoke, 
ultra-violet radiation, sphingolipids, etc induce 
ROS/RNS as a physiological response with distinctive 
effects [5-8, 13-15].  The effects of ROS/RNS can also be 
context and tissue specific. While in phagocytic cells, 
superoxide free radicals (O2.-) generated by 
nicotinamide adenine dinucleotide phosphate 
(NADPH)-oxidase complex kill invading microbes in 
the phagosomes;  in fibroblasts, endothelial cells etc.,  
O2.- is generated by NADPH-oxidase at a lower and 
constitutive level that is involved in cell signaling [16, 17]. 
Alike reactive oxygen species, a number of nitrogen 
containing free radicals and reactive species (RNS) are 
also generated under various pathophysiological 
conditions and nitric oxide synthase (both inducible and 
constitutive) play a nodal role in this process [9, 18].   
 
Intracellular generation of ROS/RNS and redox 
homeostasis: Mitochondria, being the key mediator of 
oxidative metabolism, are a major source of 
intracellular ROS [19]. Mitochondrial electron transport 
chain (complex I to IV) is a highly structured assembly 
of redox-proteins dedicated to the generation of a 
proton gradient across the inner mitochondrial 
membrane that is utilized for ATP synthesis. Under 
decreased ATP requirement, electron transport is 
inhibited by a feedback mechanism; leading to an 
accumulation of electrons in the transport chain which 
then leak out, bind to oxygen and generate O2.-. 
Amongst four electron transport complexes, complex I 
and III are the primary producer of O2.- [20, 21]. Since 
O2.- is a highly reactive free radical, it is 
instantaneously attenuated into less reactive hydrogen 
peroxide by superoxide dismutase (Mn-SOD in the 
mitochondria and Cu/Zn-SOD in the cytosol].  H2O2 is 
then converted into oxygen and water by catalase. 
However, if generated in excess, O2.- may escape this 
attenuation process producing a number of other 
ROS/RNS through various intracellular pathways [22].  
As an example, O2.-  reacts with NO., generating 
peroxynitrite (ONOO-). This reaction is diffusion 
controlled and is of potential importance in 
macrophages and endothelial cells which 
simultaneously produce O2.- and NO.. Peroxynitrite is 

highly reactive and interacts with lipids, DNA, and 
proteins. When it is of low intensity, it brings in subtle 
modifications of cellular proteins, inducing cell 
signaling; while upon high intensity, it causes extensive 
oxidative injury resulting in cell death by necrosis and 
apoptosis [23].  Peroxynitrite generation has been 
attributed to numerous pathological conditions like 
stroke, myocardial infarction, heart failure, diabetes, 
circulatory shock, chronic inflammatory diseases, 
cancer, and neurodegenerative disorders [24]. Also, upon 
protonation, peroxynitrite produces ONOOH, which 
then dissociates into either NO2. (nitrogen dioxide 
radical) and OH. or NO3- and H+ [9].  In addition to 
mitochondria, several other organelles like microsomes 
(cycloxigenase) and perxisomes (xanthine oxidase) may 
also contribute towards the intracellular pool of ROS [25, 

26].  Other reactive species such as nitroxyl radical 
(HNO), especially in the context of ischemic brain, 
have also been described [27].  
 
 Although the side chains of a number of amino 
acids are responsive to oxidative and nitrosative 
modifications (by ROS/RNS), cysteine thiols are most 
sensitive amongst them and thus have drawn have 
drawn considerable attention [28]. Many of the cysteine 
oxidations are reversible, transiently activating/ 
inactivating the respective proteins and thus is 
functionally analogous to phosphorylation-dephos-
phorylation [28]. Oxidative modifications of cysteines 
play a critical role in pathobiology in general and 
cardiovascular biology in particular [29]. As expected, 
nature has thus evolved an elaborate set of enzymes and 
low molecular weight peptides viz., thioredoxin and 
glutaredoxin oxidoreductases that play a key role in 
restoring protein thiols and thereby maintaining redox 
homeostasis. Noticeably, these proteins are functionally 
equivalent to free radical scavengers, but with much 
wider role(s) in regulating cellular metabolism, 
signaling and gene expression [30, 31]. Thioredoxin is a 
general disulphide reductase with a low redox potential 
and thus capable of acting upon a wide range of 
oxidized proteins. In mammals, there are two 
thioredoxins i.e., Trx1 (cytosolic) and Trx2 
(mitochondrial) [32]. Antioxidant effects of thioredoxin 
is mediated via its interaction with a diverse family of 
regulatory molecules like Apoptotic signal regulating 
kinase 1 (ASK-1), Vitamin D3-upregulated protein-1 
(VDUP1), gene regulatory proteins NFkB and AP-1 [33, 

34]. Thioredoxin has also been attributed to the 
upregulation of antioxidant genes like Mn-SOD and 
Hemeoxiganase-1 [35].  Like thioredoxin, glutaredoxin 
system comprising glutaredoxin, glutathione and 
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glutathione reductase also play a key role in 
maintaining intracellular redox equilibrium. In 
mammals, there are two glutaredoxin genes viz. Grx 1 
and Grx 2 [36]. Mitochondrial electron transport chain 
being a major source of ROS leads to reduced 
GSH/GSSG ratio and glutathionylation of various 
proteins in complex I while Grx 2 plays a major role in 
regenerating key mitochondrial proteins by 
deglutathionylation [37].  
Taken together, generation of various ROS/RNS and 
their simultaneous attenuation by the antioxidant 
enzymes may lead to transient and reversible 
oxidative/nitrosative modifications of cellular proteins 
which may generate specific signals.  Also, excessive 
generation of ROS/RNS may cause extensive (and non 
specific) modifications of cellular proteins (such as 
formation of carbonyls, oxidation of 
methionines/cysteines and cross-linking of poly-
peptides), lipids and DNA with deleterious 
consequences [38–41].  
 
Cell signaling by ROS/RNS: Potential role of a 
reactive species in cell signaling was revealed by the 
discovery of nitric oxide as a signal transducer [10]. 
Since, a number of other ROS/RNS have also emerged 
as the mediators of intracellular signals, resulting in a 
paradigm shift in redox biology [11].  It is now believed 
that ROS/RNS, when generated for a brief period at a 
moderate level, can transiently and reversibly modify 
proteins, causing loss-gain of functions [11, 42]. Second 
messengers are characterized by their transitory nature 
and specificity of action [43]. In that context, ROS/RNS 
are also generated upon receptor stimulation, they are 
very transient in nature, but their specificity of action 
(except that of nitric oxide) has often been questioned 
[11, 44, 45]. As an example, while O2. and H2O2 are 
highly diffusible, less reactive and therefore might act 
in a specific manner; other highly reactive species like 
OH. is unlikely to have any specificity [46]. 
Nevertheless, generation of ROS/RNS has been 
attributed to the modulation of a number of cell 
signaling/gene regulatory modules including MAP 
kinase, PI3-kinase/Akt, transcription factors AP-1 and 
NFκB [47-49].  A few direct targets of 
oxidative/nitrosative modifications have also identified 
till date and those are primarily the cysteine residues 
present in the catalytic sites of the respective proteins 
[11, 50, 51]. Noticeably, a number of non-signaling 
regulatory modules like ryanodine receptor, 
Sarco/endoplasmic Ca2+ pumps (SERCA) are also 
targeted by ROS/RNS.  Ryanodine receptor contains a 
large number of cysteine residues and redox-

modifications of at least some of those modulate its 
function [52, 53]. Nitric oxide (NO) can also form S-
nitroso derivatives of some of those cysteine residues 
and thereby play a role in modulating its activity [54]. 
Similarly, peroxynitrite inhibits SERCA activity by 
oxidative modifications, thereby affecting calcium 
transients [55]. 
 
Redox homeostasis and cell survival: Aerobic 
organisms harness energy by the oxidation of glucose 
through a series of redox reactions conserved in nature. 
A plethora of other redox-sensitive molecules, also 
conserved during evolution, carry out other cellular 
functions. Nevertheless, by large, intracellular 
environment is reducing in nature and excessive 
generation of ROS/RNS perturbs the redox equilibrium. 
Whenever ROS/RNS is generated in the cellular milieu, 
it reacts with lipids, proteins, carbohydrates and nucleic 
acids and the outcome depends upon the intracellular 
localization, amplitude and the life span of the reactive 
species as well as the cell type [56-61].  Since redox 
homeostasis is critical for normal cellular functions, 
cells also have an extensive network of antioxidant 
enzymes like heme oxygenase, superoxide dismutase, 
catalase, glutathione peroxidase, thioredoxin-
thioredoxin reductase, glutaredoxin-glutaredoxin 
reductase and small molecules like vitamin E and C [62-

64]. Thus, while an elaborate assembly of pro-oxidant 
and antioxidant enzymes and other biomolecules 
generate, utilize and attenuate intracellular ROS/RNS 
for various biological purposes; any disharmony in this 
redox-equilibrium has profound effects on the cellular 
physiology [65-67].  
 
ROS/RNS induce apoptosis in cardiac myocytes by 
multiple mechanisms: Although the deleterious effects 
of ROS/RNS on cellular processes have been known for 
many years; it is only recently, biologists had a better 
understanding of the specific mechanisms by which 
reactive species elicit cognate responses. Apoptosis or 
programmed cell death is one of the major 
consequences of cellular injuries caused by the 
generation of RO/RNS. Furthermore, by definition, 
apoptosis is a genetically programmed conserved 
sequence of events with distinct characteristics. 
However, the mechanisms of inducing apoptosis by 
various stimuli can be diverse and whether a cell will 
opt for apoptosis or survival depends on the 
agonist/stimuli as well as the cellular context [68-70].  
Noticeably, based on the accumulating evidences, 
Buttke and Sandstrom for the first time suggested in 
1994, a unifying hypothesis, according to which 
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oxidative stress can be a common mediator of apoptosis 
induced by various agents [71]. In agreement, numerous 
studies thereafter have attributed ROS/RNS generation 
towards apoptosis induced by various 
pathophysiological stimuli [72-75].  
The phenomena of apoptosis have been extensively 
investigated for almost all known cell types from yeast 
to mammals. However, it has been of intense interest 
for cardiac myocytes and neuronal cells as these cells 
are of minimum regenerative potential [70, 76-79]. 
Neonatal rat cardiac myocytes, upon exposure to 
various pathophysiological agonists, induce 
intracellular ROS followed by hypertrophic or apoptotic 
response depending upon the agonist type and its 
concentration [80-83]. Attenuation of ROS by 
pharmacological and molecular inhibitors mitigates 
these responses [81, 83].  Also upon treatment with an 
exogenous oxidant like H2O2 at low to moderate doses 
(≤ 30�M) myocytes elicit hypertrophic response while 
further increase in concentration (up to 200 �M) leads 
to apoptosis [83]. These studies thereby evolved a 
conceptual framework according to which a moderate 
level of ROS generation leads to hypertrophy and at 
elevation of a yet unspecified threshold, induces 
apoptosis [84]. However, recent study from our 
laboratory has demonstrated that H9c2 cardiac 
myoblasts upon treatment hypertrophic and apoptotic 
doses of norepinephrine [2µM and 100 µM 
respectively) induces ROS at comparable levels while 
eliciting cognate responses [85]. Also, as assessed by the 
induction of a number of downstream mediators like 
transcription factors AP-1 and Nrf-2, the respective 
signals were different for hypertrophy and apoptosis, 
thereby indicating the existence of distinct signaling 
pathways, in which ROS might be a contribute in a 
discrete rather than a dose dependent manner [85]. In 
agreement to this observation, Frazier et al., have also 
demonstrated that in cardiac myocytes upon ischemia-
reperfusion, ROS is generated from mitochondria; 
induces a pathway involving proline-rich kinase (Pyk2), 
the small GTP binding factors Rac-1 and Cdc42, 
protein kinase-c (PKC) and TGF-beta activated kinase 
1 (TAK-1) leading to the activation of JNK [86]. In 
another study, Yaniv et al., have recently demonstrated 
that cardiac myocytes upon treatment with H2O2 
become sensitized to Fas mediated apoptosis via a 
Daxx-ASK-1-JNK pathway [87].   Taken together, it 
appears that norepinephrine, ischemia-reperfusion and 
exogenous oxidant H2O2, induce ROS mediated 
discrete signal pathways in cardiac myocytes leading to 
cell death. Such prospect of divergence in oxidative 
signaling is further exemplified by a recent report that 

in failing heart, loss of myocytes occurs concurrently 
by three independent mechanisms viz., apoptosis, 
autophagy and necrosis [88].  
 

CONCLUSION 
 

Roles of free radicals and other reactive species in 
biology have been an puzzle for many years. With the 
advent of sophisticated tools of analytical chemistry, 
biochemistry, cellular and molecular biology has 
revealed the existence of various reactive species and 
their functions in biological processes including cell 
death, differentiation and survival. However, the 
precise mechanisms by which they mediate such 
divergent effects are still emerging. On the contrary to 
prevailing tenets that a general surge of ROS under 
various pathophysiological conditions triggers cell 
death; recent evidences suggest that apoptosis might as 
well be induced by discrete redox signaling. Thus in 
coming years, more complex roles ROS in cell death 
and survival is likely to emerge.  
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