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Abstract: MicroRNA-92a (miR-92a) is an evolutionarily conserved 

noncoding small RNA that can regulate gene expression after 

transcription. Previous studies have found that miR-92a is 

overexpressed in many tumors and can regulate numerous tumor 

suppressor genes negatively, with relevant effects on the development 

of different tumors, by regulating the DUSP10/c-Jun N-terminal kinase 

(JNK), phosphatase and tensin homologs (PTEN)/AKT, Wnt and 

EP4/Notch1 signaling axes. MiR-92a also promotes the proliferation and 

migration of vascular smooth muscle cells (VSMCs) through the Rho-

associated coiled-coil-forming kinase/myosin light chain kinase signaling 

pathway and inhibits VSMC apoptosis through the MKK4/JNK signaling 

pathway. Moreover, miR-92a affects endothelial functions; mediates 

endothelial dysfunction in chronic kidney diseases; mediates THBS1 

inhibition; promotes the migration, proliferation and angiogenesis of 

neighboring endothelial cells (ECs); mediates the Nrf2/KEAP1/ARE 

signaling pathway to regulate vascular endothelial aging; and is 

involved in immune responses to activate ECs. This review summarizes 

the potential role and pathogenic mechanism of the miR-92a gene in 

certain diseases to provide possible new treatment options.  
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Introduction 

MicroRNAs (miRNAs) are small (19-24 nt) single-

stranded noncoding RNAs that regulate messenger RNA 

(mRNA) translation and stability by binding to the 3'-

Untranslated Region (UTR) of target genes (Sun and 

Lai, 2013; Ameres and Zamore, 2013). Numerous 

studies have demonstrated that miRNAs play critical roles 

in various biological processes, such as cell proliferation 

and apoptosis, glucose and lipid metabolism and infection 

and immune responses (Szabo and Bala, 2013;    

Pritchard et al., 2012; Rottiers and Naar, 2012). In 

addition, the function of miRNAs in human 

tumorigenesis has been well established, which can add 

new insights into diagnosis and prognosis procedures 

(Ling et al., 2013). The miR-17-92 cluster encodes six 

miRNAs, namely, miR-17, miR-18a, miR-19a, miR-19b, 

miR-20a and miR-92a, which are located in the coding 

region of the open reading frame of the C13 or f25 gene. 

The human miR-17-92 cluster gene is mapped to 

chromosome 13q31 (Rao et al., 1998; Ota et al., 2004; 

Tagawa and Seto, 2005). MicroRNA-92a (miR-92a) is a 

member of the miR-17-92 cluster and an evolutionarily 

conserved noncoding small RNA that can regulate gene 

expression at the post-transcriptional level. In other 

words, one miRNA generally targets the 3’-UTR of 

various mRNAs involved in different steps of one 

precise metabolic/signaling pathway. Moreover, 

microRNA-92a is an oncogenic (Tsuchida et al., 2011; 

Wang et al., 2016) as well as a tumor suppressor gene 

(Shin et al., 2018; Smith et al., 2015). A change in the 

level of a key miR-92a affects the individual steps of a 

pathway; thus is promoted or suppressed (Wang et al., 

2019) depending on the cancer model. Although the 

functions of most identified miRNAs have yet to be 

determined, they are considered as potential biomarkers 

for several human diseases and cancers (Calin et al., 

2004; Volinia et al., 2006). 
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Relationship Between miR-92a and Tumors 

Expression and Targeting of miR-92a in Different 

Tumors 

The ability of miR-92a expression regulation to 
influence cell proliferation may prove to be a new 
mechanism for preventing and treating tumors. In 
addition, miR-92a has the advantage of being stable, 
noninvasive, convenient and highly sensitive as a 
biomarker for the early diagnosis of cancer (Yang et al., 
2014a). MiR-92a is overexpressed in many tumors and 
can negatively regulate numerous tumor suppressor 
genes (Tsuchida et al., 2011), including the 
downregulated target genes of the von Hippel-Lindau 
tumor suppressor, farnesoid X receptor and cadherin1 
(Scapoli et al., 2010; Yu et al., 2013; Si et al., 2013). 
Previous studies have shown that miR-92a is upregulated 
in the development of several tumors, including in 
cervical, colon, gastric, oral, breast and lung cancer 
(Tsuchida et al., 2011; Scapoli et al., 2010; Yu et al., 
2013; Si et al., 2013; Valera et al., 2011; Al-Nakhle et al., 
2010; Hayashita et al., 2005). Furthermore, miR-92a 
promotes cancer cell proliferation and survival through 
several mechanisms, such as downregulation of Estrogen 
Receptor beta (ER β), Phosphatase and Tensin 
Homologs (PTEN) and BH3-protein (Tsuchida et al., 
2011; Yu et al., 2013; Al-Nakhle et al., 2010). The 

decreased expression of miR-92a in cancer stem cells 
leads to the high expression levels of target molecules, 
that is, integrin αV and α5 subunits, which in turn 
enhances TGF-β activation, as proven by increased 
phosphorylation of SMAD2 (Shidal et al., 2019). 

MiR-92a and Signaling Pathways that Regulate 

Tumorigenesis and Development 

MiR-92a Promotes Pancreatic Cancer Cell 

Proliferation Via DUSP10/c-Jun N-terminal Kinase 

(JNK) Signaling Axis 

Pancreatic cancer is one of the most common causes 

of tumor-related deaths in the world (He et al., 2014). 

Rapid proliferation is the most important characteristic 

of cancer cells. JNK signaling is a well-known signaling 

pathway that regulates the formation and development of 

cancers and is related to oncogenic transformation 

(Takahashi et al., 2013; Nateri et al., 2005; Yunoki et al., 

2013). MiR-92a enhances the activation of the JNK 

signaling pathway by directly targeting the JNK 

signaling inhibitor DUSP10. DUSP10 is responsible for 

miR-92a-induced JNK signaling and cell proliferation. 

Overall, the miR-92a/DUSP10/JNK signaling pathway 

plays an important role in regulating the proliferation of 

pancreatic cancer cells (He et al., 2014) (Fig. 1). 

 

 
 

Fig. 1: Effect of miR-92a on cancer cell signaling axis 
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Role of miR-92a and PTEN-Related Signaling 

Pathways in Tumorigenesis and Development 

PTEN, which is a well-known tumor suppressor, is 

the direct downstream target of miR-92a in 

osteosarcoma, nasopharyngeal carcinoma and Non-Small 

Cell Lung Carcinoma (NSCLC) (Xiao et al., 2017; 

Zhang et al., 2016; Lu et al., 2017). Moreover, PTEN, 

which is a versatile protein, can inversely regulate 

PI3K/AKT/Epithelial Mesenchymal Transition (EMT) 

signaling in NSCLC (Scapoli et al., 2010) (Fig. 1). The 

overexpression of miR-92a enhances EMT-related 

protein levels, promotes EMT in NSCLC metastasis, 

facilitates the migration and invasion of NSCLC cells in 

vitro and increases tumor growth in vivo (Lu et al., 

2017). Furthermore, the PTEN/AKT pathway mediates 

the phosphorylation of p27 (Thr157), AKT (Ser473) and 

MDM2 (Ser166) (Xie et al., 2016) (Fig. 1). PTEN 

promotes OS proliferation, inhibits apoptosis and 

facilitates transfer in NPC by regulating the expression 

and phosphorylation of the aforementioned proteins 

(Xiao et al., 2017; Lu et al., 2017). Furthermore, miR-

92a plays an oncogenic role in OS, NPC and NSCLC by 

targeting the PTEN signaling pathway. 

MiR-92a Promotes Invasion and Chemoresistance 

by Targeting GSK3β and Activating Wnt Signaling 

in Bladder Cancer Cells 

Prognosis for bladder cancer lies in its histological 

subtype, tumor size, lymph node metastasis and distant 

metastasis (Reddy et al., 2015; Szarvas et al., 2012; 

Yang et al., 2012; Wang et al., 2016). Luciferase 

reporter assays reveal that miR-92a can directly bind to 

the 3′-UTR of GSK3β, thereby demonstrating that 

GSK3β is a direct target of miR-92a (Wang et al., 2016). 

Additionally, depleted GSK3β replace the role of miR-

92a in its downstream protein cyclin D1 and MMP7. 

Given that cyclin D1, c-myc and MMP7 are Wnt target 

proteins, miR-92a binds directly to the 3'-UTR region 

of GSK3β to promote proliferation, invasion and 

Wnt/c-myc/MMP7 signaling in bladder cancer cells 

(Wang et al., 2016) (Fig. 1).  

MiR-92a Suppresses Proliferation and Induces 

Apoptosis by Targeting EP4/Notch1 Axis in Gastric 

Cancer 

Notch signaling activation has been proven in gastric 

cancer growths and has a high expression level in human 

gastric cancer tissues (Yeh et al., 2009). The expression 

of mir-92a in primary tumors in patients with gastric 

cancer can be verified via real-time PCR. NF-κB 

expression is negatively regulated with miR-92 levels in 

gastric tissues, whereas transfection with NF-κB siRNA 

(p50 and p65) increases miR-92 expression in gastric 

cancer (Shin et al., 2018). Notch signaling has been 

implicated in various carcinogenesis, including gastric 

cancer. The phosphorylation of STAT3 and Twist-

promoted gastric cancer progression is regulated by the 

Notch1 receptor intracellular domain (Hsu et al., 2012). 

Moreover, Prostaglandin E2 (PGE2) plays a crucial role 

in cancer initiation and progression through its receptors 

(EP receptor). PGE receptors comprise four G-protein-

coupled cell surface receptors, namely EP1, EP2, EP3 

and EP4, for signal transduction. Strong evidence shows 

that PGE2 and its receptors are implicated in the 

carcinogenesis of different types of tumors, including 

gastric cancer. Thus, miR-92a has been suggested to 

regulate cell proliferation and cell invasion through the 

EP4/Notch1 signaling pathway (Shin et al., 2018) (Fig. 1). 

MiR-92a and Signaling Pathways Regulate 

Vascular Smooth Muscle Cells (VSMCs) 

MiR-92a Promotes VSMC Proliferation and 

Migration through Rho-Associated Coiled-Coil-

Forming Kinase (ROCK)/Myosin Light Chains 

(MLCK) Signaling Pathway 

Endothelial Cells (ECs) and VSMCs are the main cell 

types within the vasculature and are closely related in 

terms of structure and function. ECs that cover the 

interior surface of blood play an important role in the 

regulation of vascular tone by releasing vasoactive 

agents that control VSMC proliferation or migration 

(Zhao et al., 2012). PDGF-BB, which is found in 

atherosclerotic lesions, is a well-known potent mitogen 

and chemoattractant for VSMCs. Moreover, PDGF-BB 

can activate ROCK and MLCK (Xiong et al., 2017), 

which regulate the phosphorylation of MLCs (Zhou et al., 

2011). The phosphorylation of MLCs promotes cell 

contraction and cell motility, thereby generating changes 

in the actin cytoskeleton (Shimokawa and Rashid, 2007). 

In vitro results indicate that MLCK and miR-92a share 

the same signaling pathway. The transfection of miR-92a 

mimics can partially restore the effect of the deficiency 

of MLCK and antagonize the effect of Y27632 (an 

inhibitor of ROCK) on the downregulation of VSMC 

activities (Wang et al., 2019). ML-7 increases the 

expression of Kruppel-like factor 4 (KLF4, which is an 

miR-92a target) (Loyer et al., 2014) and siRNA-KLF4 

increases the activity levels of VSMCs. The inhibition of 

either MLCK or ROCK enhances KLF4 expression 

consistently. Moreover, ROCK/MLCK upregulates miR-

92a expression in VSMCs through Signal Transducer 

and Activator of Transcription 3 (STAT3) activation. In 

summary, the activation of ROCK/STAT3 and/or 

MLCK/STAT3 may upregulate miR-92a expression, 

which subsequently inhibits KLF4 expression and 

promotes the PDGF-BB-mediated proliferation and 

migration of VSMCs (Wang et al., 2019) (Fig. 2). 
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Fig. 2: Effect of miR-92a on VSMC signaling axis 
 

MiR-92a Inhibits Apoptosis of VSMCs Through 

MKK4/JNK Signaling Pathway 

The apoptosis of VSMCs is believed to be triggered 
by oxidative stress that is present in diseased vascular 
milieu (Loyer et al., 2014). The JNK pathway plays a 
crucial role in VSMC apoptosis in atherosclerotic plaque 
instability and rupture induced by oxidative stress  

(Loyer et al., 2014). Given that the JNK1 pathway is 
involved in VSMC apoptosis induced by oxidative stress 
(Tchivilev et al., 2008) and MKK4 and JNK1 are 
identified as target genes for miR-92a, the present study 
uses a luciferase reporter assay to show that miR-92a 
regulates the expression of MKK4 by targeting its 3'-

UTR (Lai et al., 2013). The overexpression of miR-92a 
reduces the level of the MKK4 protein by 30% and that 
of the p54 JNK1 protein by 20% (Zhang et al., 2014). 
Moreover, MKK4 and JNK1 are downregulated by miR-
92a, thereby inhibiting oxidative stress-induced VSMC 
apoptosis (Zhang et al., 2014) (Fig. 2). 

MiR-92a and Signaling Pathways Regulate 

Endothelial Damage 

MiR-92a Mediates Endothelial Dysfunction in 

Chronic Kidney Disease (CKD) 

CKD is an independent risk factor for 

cardiovascular disease (CVD) (Jourde-Chiche et al., 

2006). MiR-92a is induced by oxidative stress in ECs 

(Chen et al., 2015) and involved in angiogenesis and 

atherosclerosis (Loyer et al., 2014). Mechanistically, 

miR-92a targets the 39 UTRs of mRNA-encoding 

sirtuin 1 (SIRT1), KLF2 and KLF4, all of which 

positively regulate eNOS-derived NO (Fang and 

Davies, 2012). In ECs, miR-92a targets SIRT1, KLF2 

and KLF4, which are essential for endothelial 

homeostasis and functions (Chen et al., 2015). CKD-

induced miR-92a potentiates endothelial dysfunction 

and contributes to CVD. Uremic toxins (e.g., IS) in 

CKD increase the oxidative stress burden in vascular 

endothelium. In turn, oxidative stress-induced miR-92a 

can lead to endothelial dysfunction and is released by 

MPs into the circulation, which can impair endothelial 

homeostasis further and increase CVD risk (Shang et 

al., 2017) (Fig. 3). 

Regulation of miR-92a in Vascular Endothelial Aging 

by Mediating Nrf2-KEAP1-ARE Signal Pathway 

When a body is under oxidative stress, the 
overproduction of free oxygen species may exceed the 
clearance potency of the body, thereby leading to an 
imbalance in the oxidation/antioxidation system and 
causing further tissue inflammation and injury    

(Zhang et al., 2015). SOD is an important antioxidase in 
the body for clearing ROS and plays a critical role in 
oxidation/antioxidation homeostasis (Liu et al., 2015). 
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Fig. 3: Effect of miR-92a on EC signaling axis 

 

MPO cannot penetrate a membrane alone but can be 

released abundantly under cell injury or death      

(Yang et al., 2014b). Moreover, the downregulation of 

miR-92a facilitates SOD expression in aging vascular 

ECs and decreases ROS and MPO, thereby further 

illustrating that miR-92a downregulation can mediate 

oxidation/antioxidation balance, thereby decreasing 

caspase-3 activity and facilitating proliferation and 

aging cells. Nrf2 is a transcription factor with cell-

protecting effects (Jiang et al., 2016). The Nrf2-

KEAP1-ARE signal pathway is a critical endogenous 

antioxidation signal pathway in the body and can 

resist internal/external oxidation and chemical 

substances by mediating redox balance, inhibiting 

oxidative stress further and exerting defense effects 

(Chatterjee et al., 2016; Menegon et al., 2016) (Fig. 

3). Moreover, the downregulation of miR-92a can 

inhibit KEAP1 expression substantially and facilitate 

Nrf2 and ARE expression, thereby indicating that the 

Nrf2-KEAP1-ARE signal pathway plays a critical role 

in aging oxidative stress response. The 

downregulation of miR-92a can affect the aging 

process of vascular ECs by mediating the Nrf2-

KEAP1-ARE signal pathway (Liu et al., 2017). 

MiR-92 Promotes the Migration, Proliferation and 

Angiogenesis of Neighboring ECs by Mediating 

THBS1 Inhibition  

As an independent risk factor of atherosclerosis, 

Low-Density Lipoprotein (LDL), specifically its 

oxidized form (i.e., oxLDL), plays a key role in 

endothelial dysfunction and atherogenesis (Pirillo et al., 

2013). OxLDL induces the expression of miR-92 and 

promotes the packing of miR-92 from ECs into the EMV. 

Under atherosclerotic conditions, the expression of miR-

92 in ECs and the EMV is upregulated in a STAT3-

dependent manner. The EMV released from maternal ECs 

contains miR-92, which is transferred to neighboring ECs, 

thereby promoting the migration, proliferation and 

angiogenesis of adjacent ECs through the inhibition of 

miR-92-mediated THBS1 (Liu et al., 2019) (Fig. 3). 

MiR-92a Activates EC Immunity 

Given the positive effect of SIRT1, KLF2 and KLF4 

on NO bioavailability, the finding that SREBP2-miR-

92a suppresses the expression of SIRT1, KLF2 and 

KLF4 reveals a post-transcriptional mechanism through 
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which oxidative stress diminishes NO bioavailability, 

thereby resulting in endothelial dysfunction (Chen et al., 

2015). Oxidative stress induces SREBP2 and miR-92a in 

ECs as well as SREBP2-activated miR-92a. Oxidative 

stress-induced miR-92a-targeting SIRT1, KLF2 and 

KLF4 increase endothelial innate immunity but decrease 

NO bioavailability. Moreover, miR-92a levels are 

negatively correlated with patient EC functions (Fang 

and Davies, 2012; Wu et al., 2011; Chen et al., 2010) 

(Fig. 3). SREBP2-induced miR-92a targets key 

molecules in endothelial homeostasis, including 

SREBP1, KLF2 and KLF4, thereby leading to NOD-like 

receptor family, pyrin domain containing 3 

inflammasome activation and eNOS inhibition. In EC-

specific SREBP2 transgenic mice, locked nucleic acid 

(LNA)-modified antisense miR-92a (LNA-92a) 

attenuates inflammasome, improves vasodilation and 

ameliorates Ang II-induced and aging-related 

atherogenesis (Chen et al., 2015). 

Conclusion and Perspectives 

MiR-92a binds different target genes to regulate 

numerous signaling pathways that can alter cancer cells 

and plays an important role in tumorigenesis, development 

and metastasis. Given that miRNAs are stable in tumor 

tissues and plasma, miR-92a is expected to make a 

breakthrough in early tumor diagnosis and tumor gene 

therapy research. MiR-92a promotes the proliferation and 

migration of VSMCs and inhibits the apoptosis of VSMCs 

effectively by regulating their related signaling pathways. 

Moreover, miR-92a mediates endothelial dysfunction in 

CKD, regulates vascular endothelial aging and promotes 

migration, proliferation and angiogenesis in adjacent ECs. 

These processes can in turn lead to endothelial damage in 

the human body, thereby reducing inflammation and 

improving vasodilation and atherosclerosis by regulating 

the expression level of miR-92a. Furthermore, miR-92a 

can be used as a biomarker and potential therapeutic target 

for the diagnosis of diseases. Overall, the miR-92a can 

participate in the regulation of multiple signaling 

pathways and play a potential role in certain diseases. 

Abnormal changes in different signaling pathways cause 

different diseases and also induce miR-92a abnormal 

expression (up- or down-). Different pathways correspond 

to different disease states or/and physiological 

environments. Under this specific state and environment, 

it is only possible to activate a related signaling pathway 

and other signaling pathways may not be activated. With 

further research, the differential expression of the miR-92a 

gene in cells, stem cells, or drug-resistant cells as well as 

its mechanism may provide a new direction for disease 

studies. Further research should be conducted in the future 

to discover the target of miR-92a and its role in different 

disease signaling pathways and to understand the 

pathogenic mechanism behind its activity. 
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