
American J. of Engineering and Applied Sciences 2 (1): 80-87, 2009 
ISSN 1941-7020 
© 2009 Science Publications 

Corresponding Author: Abgeer Consulting Engineers, No. 62, 2nd 16-m St., Motahari 18-m St., Paknezhad Blvd., Sarv Sq., 
 Saadat Abad, Postal Code: 1998964473, Tehran, Iran  Tel: +98 (0)912 398 92 73  Fax: +98 (0)21 2209 1381 

80 

 
Applying Simulated Annealing For Optimal Operation of 

Multi-Reservoir Systems 
 

F. Khodabakhshi, A.R. Ghirian and N. Khakzad 
1Department of Civil Engineering, K.N. Toosi University of Technology, Iran 

2Department of Civil Engineering, Bahonar University, Iran 
3Department of Civil Engineering, Shomal University, Iran 

 
Abstract: The need to optimize the operation of water reservoirs is an issue that is becoming 
increasingly a concern for water resources planners in developing countries. This issue particularly 
becomes more significant in large systems with multiple reservoirs where operation of one reservoir 
has an impact on the others. In other word, the set of reservoirs in these systems act like a united series 
and require specific methods to handle various modeling issues. Problem statement: Sirvan River 
basin in west of Iran, standing in fifth order in respect of discharge, is an example of such a complex 
system. The project of water transfer from western tropical regions which is one of the large-scale 
projects in water resources management in Middle East, consists of a number of reservoirs and transfer 
systems. The matter of optimum operation of such a collection is one of the complicated and 
outstanding issues in water resources management. Approach: It was found that, due to increasing 
decision-making variables, conventional models used in optimizing water resources systems were not 
any longer capable of obtaining a desired solution, either because of low precision or time constraints. 
Hence, the intelligent random research approach "Simulated Annealing" has been used which in recent, 
decades has revealed appropriate results in solving major problems. Results: The results of this 
research indicate that the annealing approach is capable of solving such complex problems in water 
resources management with good precision in a reasonable period of time. 
Conclusions/Recommendations: The results were also compared with outputs of MODSIM which is 
a widely known model for solving complex water resources systems problems and benefits from “out 
of kilter” algorithm. The results indicate SA as a very robust and effective model in optimization of 
large real multi-reservoir systems. 
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INTRODUCTION 

 
 For a multi reservoir system, where the number of 
reservoirs is large, the conventional modeling by 
Dynamic Programming (DP) or classical Stochastic 
Dynamic Programming (SDP) presents difficulty, due 
to the curse of dimensionality inherent in the model 
solution. It takes a long time to obtain a steady state 
policy; also, it requires large amount of computer 
storage space, which form drawbacks in application. So 
an attempt is made to explore the concept of “local 
search” to provide a viable alternative in this context.  
 Simulated Annealing (SA), proposed by 
Kirkpatrick et al., is a randomized search method for 
optimization. It tries to improve a solution by walking 
randomly in the space of possible solutions and 
gradually adjusting a parameter called “temperature”. 

At high temperature, the random walk is almost 
unbiased and it converges to essentially the uniform 
distribution over the whole space of solutions. As the 
temperature drops, each step of the random walk is 
more likely to move towards solutions with a better 
objective value and the distribution is more and more 
biased towards the optimal solutions[1]. The sequence of 
temperatures and lengths of time for which they are 
maintained is called the annealing schedule in analogy 
with statistical mechanics. 
 The simulated annealing algorithm, though by 
itself it is a local search algorithm, avoids getting 
trapped in a local minimum by also accepting cost 
increasing neighbors with some probability. In SA, first 
an initial solution is randomly generated and a neighbor 
is found and is accepted with a probability between 0 
and 1[2]. Although “SA” can be implemented quite 
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easily with the degree of coding quite minimal relative 
to other nonlinear optimization algorithms; but it is not 
without its critics. One negative feature of SA is that it 
can be quite time-consuming to find an optimal fit, 
especially when using the “standard” Boltzmann 
technique. 
 Cunha and Sousa[3] utilized this method to obtain 
the least-cost design of a looped water distribution 
network. The implemented simulated annealing for 
optimum installation of sampling sites in the river. 
Cunha used for groundwater management. Teegavarapu 
and Simonovic[4] used that for the best exploitation 
from four-reservoir system with irrigation and hydro-
electro purposes. In order to utilized this approach to 
prepare a program for distribution of water in irrigating 
channels. By applying this method to prepare a 
mathematics model of optimizing the hydraulic 
performance of irrigating channels.  
 In this study we demonstrate how simulated 
annealing, a Heuristic algorithm, can be used to solve 
high dimensional, linear and non-linear optimization 
problems for multi-reservoirs allocation system. The 
main objective pursued in the research is to obtain the 
optimal operating policies by minimizing the total 
irrigation deficits during a critical drought year in 
Sirvan river basin. 
 It should be noted that all of the computations in 
this study accomplished by a personal computer with 
Pentium IV, 2800 MHz processor and 256 MB RAM 
and computation times are corresponding to this 
computer.  
 

MATERIALS AND METHODS 
 
 In order to choose a proper approach to model the 
main problem (herein Sirvan river basin), the 
computation was initially performed over a single 
reservoir model. For this purpose Dez reservoir was 
considered, the highest double arched concrete 
reservoir in southwest of Iran with the total capacity of 
3460 MCM. 
 Dez reservoir is one of the first multi objective 
reservoirs in Iran. The main goals of this structure and 
relative establishments are as follows: 
 
• Controlling the vernal flood water and prevention 

of damages of flood 
• Providing the water for irrigation and agriculture 

uses 
• Producing hydro-power energy and supplying the 

water for massive industry of state of Khuzestan 
 
 To better illustrate the efficiency of various 
methods, two models have been defined: “short-term 

and long term model”. The Short-term model was 
performed only for one year by means of the average 
inflows over a 42 year history record. On the other 
hand, the long-term model was computed for all the 42-
year historic records. Either of models was considered 
for both instances that the final storage of water in the 
reservoir is equal to its initial storage at the beginning 
of the period and also unequal to its initial storage. 
 For simplicity, water supply is considered as the 
only operating aim. Evaporation and direct rainfall on 
the reservoir also are ignored and monthly demands are 
fixed. All of the simulations begin in October 1956-
September 1998. Figure 1 shows Annual Reservoir 
inflows and related moving averages. 
The objective of these models is to minimize the annual 
sum of squared deviations from target demands. In Eq. 
1, belongs to short-term model, TD t is the total of 
municipal and agricultural Demands needed in each 
particular period t and Rt represents the allocated flow 
from the reservoir in period t: 
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 These optimization methods are based on mass-
balance equations for routing flows through the 
reservoir. The mass balance or continuity equations 
which have been shown in Eq. 2, explicitly define 
storage volume at the beginning of each period t. 
 

t 1 t t tS S Q R t 1,...12+ = + − =  (2)  
 
where, St, Qt and Rt are the storage volume in the 
reservoir, the inflow to and the release from the 
reservoir at the beginning of period t, respectively. 
 It was assumed that the initial and final reservoir 
storages in the whole period are unknown but equal. 
However, In the second scenario this constraint was 
relaxed. 
 The objective function of long-term model, similar 
to the short-term model, is to minimize the total long-
term deficits as explained by Eq. 3: 
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Fig. 1: Annual inflows and related Moving Averages- Dez Reservoir 
 
 The model was developed on monthly basis for 
operation. In the model an initial storage was 
considered as initial volume in the first period and then 
amount of release in each period was selected according 
to request approach. Then with regard to mass balance 
equation shown in Eq. 4 the final storage of each period 
was computed. 
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 The performance of Simulated Annealing is also 
compared with the Genetic Algorithm (GA), Ant 
Colony Optimization (ACO) and DP programming. 
 After Dez-model the proposed algorithm was 
applied to a complex system with 22 reservoirs and 
several water demand sections. In all, the system 
contains 52 nodes which are basically points between 
links. This resource allocation system requires input 
from extensive spatial databases and involves a 
complex decision making problem. Figure 2 shows the 
schematic topology of this system. The availability of 
high-speed digital computers of large capacity makes it 
possible to simulate the performance of relatively 
complex river-basin systems for periods of any desired 
length, whereas conventional methods using only desk 
computers permit operating only selected parts of the 
system during a limited period of hydrologic record. 
 It is obvious from Fig. 2 that an interconnected 
reservoir system can be represented as a network of 
nodes and links. Nodes depict storage or non storage 
points of confluence or diversion and links represent 
reservoir release, river or channel flows. So the 
attention must be paid to operational effectiveness and 
the efficiency of existing reservoir system for 
maximizing the beneficial uses of this project. 

 
 
Fig. 2: The schematic topology of SIRVAN’s model 
 
Therefore the objective can be to minimize the cost of 
flow network as: 
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Where: 
A = Set of all links in the network 
N = Set of nodes 
Oi = Set of all links originating at node i 

(outflow links) 
Ii = Set of all links terminating at node i 

(inflow links) 
xlij = Flow rate in link l during period i and j 
llij and ulij = Lower and upper bounds, respectively, on 

flow in link l 
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 The statistics and information that have been used 
are as follows: 46 years statistics of historic yields, 
minimum and maximum storage volumes in different 
months, total water demand in different months and 
surface-volume-height curve data.  
 Like previous model, here, we have also 
considered two different states. In the state I, the 
optimum operating policies of reservoirs are obtained 
by one by one reservoirs' optimization, but in state II, 
the system is considered as an integrated model.  
 As the performance and the accuracy of “simulated 
annealing” has introduced it as an elite method, in this 
large scale model this approach has been considered 
and also the results of that have been compared with the 
result of MODSIM model. 
 MODSIM is a general-purpose simulation-
optimization model, incorporated into a Decision 
Support System (DSS). It was originally developed by 
Dr. John Labadie of Colorado State University (CSU) 
in the mid-1970’s and is currently being used by the 
U.S. Bureau of Reclamation for operational planning in 
the Upper Snake River Basin. The Windows-based 
Graphical User Interface (GUI) in MODSIM allows the 
user to create any reservoir system topology by simply 
clicking on various icons and placing system objects in 
any desired configuration on the screen. Data structures 
embodied in each model object on the screen are 
controlled by a database management system, with 
formatted data files prepared interactively and a 
network flow optimization model automatically 
executed from the interface. Results of the optimization 
are presented in useful graphical plots, or even 
customized reports available through a scripting 
language included with MODSIM complex, non-
network constraints on the optimization in MODSIM 
are incorporated through an iterative procedure using 
the embedded PERL scripting language [5]. 
 For adjusting the algorithm parameters of SA, we 
should specify the Initial Temperature (T0), the Final 
Value of Temperature, the Length of Markov Chains 
(epoch length), the Temperature Schedule and the 
Acceptance Criteria. Also we must declare the 
randomly tweak solution.  
 The initial value of T, T0, is determined in such a 
way that virtually all transitions are accepted, i.e. T0 is 
such that exp (- ∆ E/T0) ≈ 1 for almost all i and j. 
Skiscim and Golden[6] and Lundy and Mees[7] determine 

T0 by calculating the average increase in cost, 
( )

E
+

∆ , 
for a number of random transitions and solve T0 from 
Eq. 6: 
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where, x0 or acceptance ratio defined as a number of 
accepted transitions divided by a number of proposed 
transitions and E represents the energy or objective 
function. Equation 6 leads to the following choice for 
T0: 
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 In current optimization models x0 = 0.9. 
 A stop criterion has been considered by terminating 
execution of the algorithm if the last configurations of 
consecutive Markov chains are identical for a number 
of chains. 
 The simplest choice for Lk, the length of k-th 
Markov chain, is a value depending on the size of the 
problem. Thus, Lk is independent of k. Here Lk has 
been selected among some various values in sensitivity 
analysis test. Sensitivity analysis is a technique that 
allows the identification of the parameters and variables 
which have a greater influence on system performance 
and allows evaluation of the scale of this influence.  
 First we chose a geometric schedule using the 
equation below: 
 

k 1 kT .T+ = α  (8) 
 
where, α is a constant smaller than but close to 
1and [.8 .99]α ∈ − . 
 In SA algorithm, we have two solutions. The first 
is our original solution called the current solution and 
the second is the tweaked version called the working 
solution. Each has an associated energy which is the 
strength of the solution (let’s say that the lower the 
energy, the better the solution).Our working solution is 
then compared to the current solution. If the working 
solution has less energy than the current solution (i.e., is 
better solution), then we copy the working solution to 
the current solution and move on to temperature 
reduction[8]. 
 However, if the working solution is worse than the 
current solution, we evaluate the acceptance criteria to 
figure out what to do with the current working solution. 
The probability of acceptance is based on Eq. 6 (which 
is based upon the law of thermodynamics)[1]: 
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 To randomly modify the working solution, the 
following equation is used: 
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i i
k 1 ka a .Gam(a)+ = + β  (10) 

 
 Let i

ka  be a parameter in dimension i generated at 
annealing-time k, β  be a random variable [ 1,1]β∈ −  and 
Gam(a) be the pace of motion in the neighborhood 
space of possible solutions and is dependent to the size 
of problem and is selected through a sensitivity analysis 
of various values of this parameter. 
 

RESULTS 
 
 The results of Dez short-term model are tabulated 
in Table 1. The quality of the solution obtained by SA 
algorithm is quite much better than the other methods. 
Because the parameters and the resulted objective 
function may vary in different runs of the model, here 
average results of 10 runs are considered for evaluation 
and comparison purposes. Figure 3 shows the values of 
objective function which have been made by accepted 
transitions. 
 

 
 
Fig. 3: Trajectory for SA is given for function f0, the 

abscissa indicates the number of function calls, 
while the ordinate shows the best function 

 
Table 1: Various methods over the short and long term model  
   Average of Run time 
Model Scenario Method 10 runs (106) (Sec) 
Short term Scenario 1 SA * 1.243 3 
  ACO** 1.370 880 
  GA*** 1.270 55 
  ****DP 1.310 60 
 Scenario 2 SA  0.210 4 
  ACO 0.740 878 
  GA 0.310 54 
  DP 0.320 59 
Long term Scenario 1 SA  93.000 180 
  ACO 177.000 11832 
  GA 93.000 2962 
  DP 93.000 314 
 Scenario 2 SA  84.000 158 
  ACO 171.000 11391 
  GA 90.000 2843 
  DP 91.000 318 
*SA: Simulated Annealing; **ACO: Ant Colony Optimization; 
***GA: Genetic Algorithm; ****DP: Dynamic Programming 

 Table 3 makes a comparison between the results of 
SA via long-term model and those of different methods. 
The comparison shows that simulated annealing 
provides optimal solutions, converging into the fitness 
values within a short time. The SA is able to produce 
more satisfactory results as compared to those by GA or 
DP in much shorter run times. 
 There are still other procedures that facilitate the 
SA and hence making it possible to obtain similar 
results in less time. Furthermore in course of the 
algorithm’s execution, the pace of motion values is 
gradually lowered, eventually to 0, in which case only 
improvements are accepted. This change made the 
results much better, whereas using logarithmic 
schedules[9], shown in (11), had no more effective 
improvement: 
 

K 0

0
K 1 K 0 2

T T exp((c 1)k)

ln k
T T T

k(ln k)+

= −

= −
 (11) 

 
 The results of above tables confirm the advantage 
of SA model in comparison with other methods both in 
terms of objective values and computational times. In 
other words, not only the objective value of SA is less 
than by an amount or at least equal to the objective 
value of DP or GA, but also the running time of this 
method is less than the others. 
 Figure 4 and 5 show the comparison between SA 
and GA and SA using different logarithmic temperature 
schedules, respectively. 
 The first model of Sirvan large scale system has 
been executed for initial theoretical release values of 0, 
0.7,  0.8,  0.9  and 1.0 times each node's demands.  
 

 
 
Fig. 4: Comparison between GA and SA is given for 

function f0; the abscissa indicates the number of 
function calls, while the ordinate shows the best 
function evaluation found so far. Although the 
obtained optimal solutions are the same, but the 
run time of GA is nearly 16 times more than SA 
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Table 2: SA starting with different initial conditions 
*Obj. Fun. ×105 **Init. Rel = 0×Dem Init. Rel. = 0.7×Dem Init. Rel. = 0.8×Dem Init. Rel. = 0.9×Dem Init. Rel. = 1×Dem 
***SA 7.43 7.39 7.43 7.42 7.41 
Calc. Time**** (sec) 8840 8620 8650 8670 8690 
*: Objective function; **: Initial release = 0×Demand; ***SA: Simulated Annealing ****: Calculation time (sec) 
 
Table 3: Comparison between elite models 
Obj. Fun.×105* **SA Init. Rel. = 0.7×Dem MODSIM 
SA 7.39 7.411 
Calc.Time (sec) 8620 60 
*: Objective function; **: SA Initial Release = 0.7×Demand 
 
Table 4: Comparison between MODSIM and SA results 
  Run time  Run time 
Obj. Fun.* SA (sec) MODSIM (sec) 

 
n 52 46 12

j ij
n 1 i 1 j 1

(TD R )
=

= = =

−���  3.07E4 161 3.45E4 60 

 
2n 52 46 12

j ij
n 1 i 1 j 1

(TD R )
=

= = =

−���  6.52E5 8710 7.41E5 60 

*: Objective function 
 
Table 2 demonstrates the accrue results. It is 
worthwhile to mention that all the results obtained from 
different initial conditions are nearly the same, Except 
for the second column from the left. 
 It is clear that in this large-scale problem with large 

number of decision variables )124652( ×× and 
constraints, starting the computation with initial 
theoretical release values far from the target values 
takes more time to obtain an optimum solution. with 
respect to the depicted results in Table 4. The best 
result from different initial theoretical release values 
has been obtained for initial release of 0.7 times 
demand. Thus, accrued results from this model were 
compared with MODSIM model. In order to assimilate 
the results of two models, the values of losses caused 
by deviations from target operating conditions in 
MODSIM model were being to the power of 2 and 
compared with SA model. Accrued results are shown in 
Table 5. In Fig. 6 quantitative reliability of both models 
have been compared. As it is implied, in particular, in 
downstream nodes of Sirvan, MODSIM model was 
better capable to provide region demands than 
simulated annealing model. Of course it is due to the 
linear objective function of MODSIM model which 
optimize the linear deviations from desired demands. 
Despite the previous model, in this model system is 
considered to be integrated. The results of this model 
were also compared with those of MODSIM model. In 
Table 6 the results are shown. As results indicate, in 
this situation, annealing model has done better than 
MODSIM model, in both supplying the downstream 
nodes’ demands and obtaining a good result for both 
linear and squared deviations from target demands.  

 
 
Fig. 5: Comparison between SA models with two 

different temperature schedules is given for 
function f0; the abscissa indicates the number of 
function calls, while the ordinate shows the best 
function 

 

 
 
Fig. 6: Comparison between quantitative reliability of 

SA and MODSIM model 
 

 
 
Fig. 7: Trajectory for SA is given for function f0 

 
 Figure 7 shows the trajectory for SA model versus 
the number of model calls, it is evident that after some 
iteration no better result is obtained; Fig. 8 shows the 
comparison   between  Quantitative  Reliability  of   SA 
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Fig. 8: Comparison between Quantitative Reliability of 

SA and MODSIM model 
 

 
 
Fig. 9: Comparison between maximum monthly 

shortages of SA and MODSIM 
 

 
 
Fig. 10: The average of optimal storage volume in 

upper SIRVAN 
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Fig. 11: The average of optimal storage volume in 

lower SIRVAN 

and MODSIM model. Figure 9 shows the comparison 
between maximum monthly shortages of SA and 
MODSIM model and finally Fig. 10 and 11 show the 
average of optimal storage volume for all 22 reservoirs. 
 

DISCUSSION 
 
 Application of Simulated Annealing algorithm is 
evaluated in this study for optimization of simple to 
multi reservoir system. As the first problem, a single-
reservoir system is considered and the results of SA and 
some heuristic methods have been compared. As far as 
the performance of SA is concerned, it can be inferred 
that for many applications the quality of the solution 
produced by the algorithm is much better than the other 
heuristic methods. Therefore SA can be considered as a 
new method in optimization of multi-reservoir systems, 
especially in real large system, even with nonlinear 
complex objective function.  
 

CONCLUSION 
 
 Optimization and exploitation management of a 
multi-reservoir system is such an important issue that 
must be considered by planning staff. It well can be 
elicited that small improvements in operation of these 
systems will result in significant profits. Obtained 
results from simulated annealing method show that to 
achieve the best answer, proper determination of the 
pace of motion in the possible answer space is of great 
importance and if these variations do not fall within an 
appropriate range, the obtained answer may be locally 
optimum. The demonstrated model in this study reveals 
the high potential of annealing method in solving the 
water resources problems and in particular the 
exploitation of reservoir. Hence with regard to easy 
coding and acceptable results of this approach, it can be 
selected and used as the first option in solving the 
optimization problems.  
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