
American J. of Engineering and Applied Sciences 3 (1): 15-24, 2010
ISSN 1941-7020
© 2010 Science Publications

Corresponding Author: A. Norozi, Department of Mechanical and Manufacturing, Engineering University Putra Malaysia,
43400 UPM Serdang, Malaysia

15

Application of Intelligence Based Genetic Algorithm for Job Sequencing Problem on

Parallel Mixed-Model Assembly Line

A. Norozi, M.K.A. Ariffin and N. Ismail
Department of Mechanical and Manufacturing Engineering, University Putra Malaysia,

43400 UPM Serdang, Malaysia

Abstract: Problem statement: In the area of globalization the degree of competition in the market
increased and many companies attempted to manufacture the products efficiently to overcome the
challenges faced. Approach: Mixed model assembly line was able to provide continuous flow of
material and flexibility with regard to model change. The problem under study attempted to describe
the mathematical programming limitation for minimizing the overall make-span and balancing
objective for set of parallel lines. Results: A proposed mixed-integer model only able to find the best
job sequence in each line to meet the problem objectives for the given number of job allotted to each
line. Hence using the proposed mathematical model for large size problem was time consuming and
inefficient as so many job allocation values should be checked. This study presented an intelligence
based genetic algorithm approach to optimize the considered problem objectives through reducing the
problem complexity. A heuristic algorithm was introduced to generate the initial population for
intelligence based genetic algorithm. Then, it started to find the best sequence of jobs for each line
based on the generated population by heuristic algorithm. By this means, intelligence based genetic
algorithm only concentrated on those initial populations that produce better solutions instead of
probing the entire search space. Conclusion/Recommendations: The results obtained from
intelligence based genetic algorithm were used as an initial point for fine-tuning by simulated
annealing to increase the quality of solution. In order to check the capability of proposed algorithm,
several experimentations on the set of problems were done. As the total objective values in most of
problems could not be improved by simulated algorithm, it proved the well performing of proposed
intelligence based genetic algorithm in reaching the near optimal solutions.

Key words: Intelligent based genetic algorithm, simulated annealing, mixed model assembly line

INTRODUCTION

 Evolutionary computing is a research area within
computer science that used for solving combinatorial
optimization and complex problems which they
perform base on principles of generic population-based
heuristic techniques (Eiben and Smith, 2003). With the
emergence of meta-heuristic algorithms in recent years,
so many complex problems have been studied and
solved by metaheuristic search techniques such as Ant
colony optimization, Tabu Search, Genetic Algorithm
and Simulated Annealing have been employed to deal
with complex scheduling problems. Many Meta-
heuristic algorithms were applied to overcome the
complexity of sequencing problems in assembly lines
problems. Genetic algorithm is introduced by Goldberg
(1989) as it works based on the procedure of natural

mechanism and natural genetic. The population is
composed of a collection of chromosomes which each
string is encoded the problem solution as a finite-length
of gens. The entire evolution process works based on
natural mechanism. Evolutionary computing algorithms
usually reach to the good solutions in the reasonable
amount of time though the achieved solution can be
local or global optimum. A two-stage flow shop
problems is considered by Johnson (1954) and the
proposed heuristic algorithm was developed to
minimize the completion time. By increasing the
complexity of practical problems in real world,
sequence-dependent setup times become one of the
most favored assumptions in the area of scheduling
researches (Naderi, et al. 2008). A mixed integer
programming model is developed by Wagner which
minimizes the makespan in permutation flow shop

Am. J. Engg. & Applied Sci., 3 (1): 15-24, 2010

16

(Fm/permu/Cmax) with an arbitrary number of machines.
This formulation focuses on minimizing the total idle
time on the last machine which is associated with
minimizing the total idle time on the last machine
(Naderi, 2002). A comparison of two metaheuristic
search in flow-line manufacturing cell was done by
(Skorin-Kapov and Vakharia, 1993). The problem
focuses on sequencing the part families with similar
setup time and the heuristic search techniques was
developed based on Tabu search. The results prove the
outperforming of developed search techniques in
comparison to previous simulated annealing. A hybrid
Simulated Annealing and Tabu search is introduced by
(Lin and Ying, 2009) for scheduling the non-
permutation flowshop problems. The objective
considered in this problem was focus on optimizing the
make-span time for non-permutation flowshop
scheduling. The performance of hybrid search
algorithm was compared to several metaheuristic
algorithms such as Tabu Search, ant colony
optimization and simulated annealing and the results
confirm the well performance of hybrid approach.

Problem statement: The problem under study attempts
to describe the mathematical programming limitation
for solving set of parallel lines. A mixed-integer model
was developed by Wagner (Pinedo, 2002) to find the
best job sequence that minimize the make-span for a
single line. The number of jobs assigned to each line is
predetermined for a single line problem, while for set of
parallel lines different number of jobs can be assigned
to each line that minimizes the overall make-span time
of system so the mathematical model should be
formulated for different values of job allocated to every
single line. Meanwhile this study presented an
intelligence based search approach to address the job
allocation problem for parallel mixed-model assembly
line to minimize the overall makespan and also balance
the lines in way that all lines have almost equal
processing time. A simple evolutionary based
algorithms like GA, SA or etc also faced with
difficulties as there is no guaranty that which
configuration of job allocation provides best solution so
an intelligence based genetic algorithm is developed to
decrease the problem complexity through providing
some degree of proficiency in selecting the potential .
This study is organized as follows: A description of
problem under study is provided to clarify the problem’s
assumptions and the mathematical programming model
for problem under study is described. The complexity of
problem under study is discussed to demonstrate

understanding of research problem and an intelligence
based genetic algorithm is applied to overcome the
problem complexity. A numerical example is illustrated
in the following. Conclusion and future research are
presented in the last part.

MATERIALS AND METHODS

 Typically, a mixed model assembly line is
equipped with flexible workstations which are capable
of producing variety of product models similar in
product characteristics continuously and concurrently
(Groover, 2001). The problem under study includes a
number of parallel mixed-model assembly lines and
each line consists of number of workstations which are
capable of serving any job. A workstation in any line
should be setup for the new materials requirement to be
able to serve the new set of products. Initial setup time
is essential for the first job of sequence and change over
time is required to change the settings between jobs in
the same line. The following assumptions are
considered in this research: All the assembly lines
perform assembly operation independently. The
workstation time for every single job at all workstations
are specified. Once the job allocated to any line, jobs
are not allowed to shift to other assembly lines. No line
should be left without job assignment. Each assembly
line represents type of flow shop system and the
workstations representative of involved machines in the
flow shop system and in a larger prospect, the whole
system likes parallel machine scheduling problems.
Each assembly line acts as flow line system in which
the overall make-spam for set of parallel lines is
determined by the longest completion of line so
minimizing the completion time of all lines directly
effect on overall make span of system. Model diagram
of problem under study is illustrated in Fig. 1.

Fig. 1: Model diagram of parallel lines

Am. J. Engg. & Applied Sci., 3 (1): 15-24, 2010

17

Mathematical programming for job allocation: The
proposed mixed-integer programming model is built
based on flow shop model which is developed by
Wagner (Pinedo, 2002) and it is expanded to consider
the effect of initial setup time and sequential change
over time for multiple lines. The mathematic formula is
as follow:

L 1 L

l ek
e 1 k e 1

Min (Max{Cmax }) B
−

= = +

 +

∑ ∑ (1)

Subject to:

lk 1m 1 n

l j,1,l ij m, j,l
i 1 j 1 j 1

Idle time (X * p) l
−−

= = =

= +∑∑ ∑ ; L = 1, …, L (2)

l

l l

k 1 n n

l ij ik ji,k ,l ,k 1,l
k 1 i 1 j i 1

Setup (C S) * (X) * (X);

l 1, L

−

+
= = ≠ =

= +

= …

∑∑∑ (3)

l

l

l

kn

l mjj,k ,l
j 1 k 1

Process X * P ;l 1,...L
= =

= =∑∑ (4)

Cmax1 = Setupl + Idle time1+Processl; l = 1,…L (5)

L

ek e k
k e 1

B T T ;e l,...L 1
= +

= − = −∑ (6)

l

l

l

kn

l j,k j,l
j 1 k 1

T X *t ;L l,...L
= =

= =∑∑ (7)

l

n

j ,l l l,k
j 1

X 1;k 1,...k , l 1,...L
=

= = =∑ (8)

l

l

l

k

j , k ,l
k 1

X 1; j 1,...n, l 1,...L
=

≤ = =∑ (9)

l

l

l

kL

j , k ,l
L 1 k 1

X 1; j 1,...n
= =

= =∑∑ (10)

l l l l l

l

n n

j ij i 1, ji,k ,l ,k 1,l i,k 1,l i,k ,l j,k ,l
j 1 j 1

li 1,k ,l

l X * P W W X * P

l 0;K 1,...,k 1,i 1,......m 1,l 1,...L

++ +
= =

+

+ + − −

− = = − = − =

∑ ∑
 (11)

Wi1l = 0; i = 1,.. …m-1, l = 1,…L (12)

L1k,l = 0; k = 1, … …. n-1, l = 1,…L (13)

Sik = 0; k = 2 ……n-1 (14)

W≥0, I≥0

X ijk∈0,1

X jkl = If job j is the kth job in the sequence in line

L
I ikl = Ideal time on machine i between the

processing of job in the kth and (k+1)th
position in assembly line L

Wikl = Waiting time of the job in the kth position
in between machine i and i+1 in the lth
assembly line

m = Number of workstations in assembly line
n = Number of jobs in flow shop system
Sik = Initial setup time for job i in the kth

position of job sequence
Cij = Change over time between job i and j
Idle timel = Total idle time at the last workstation for

lth assembly line.
Setupl = Total setup time for lth assembly line
Cmaxl = Completion time for lth assembly line
Processl = Processing time at the last workstation of

lth assembly line
Bek = Total absolute difference among process

time of line e and rest of lines
tj = Total Process time for job j
Ti = Total process time of lth assembly line
kl = Number of jobs allocated to lth assembly

line
L = Number of assembly line
Pij = Process time of job j at workstation i
Pmj = Process time of job j at workstation m

 The first term of objective function (1) attempts to
minimize the overall make-span of this system is by
minimizing the longest completion time of lines. The
second term of objective function attempts to balance
workload among all assembly lines by considering all
jobs’ process time for every single job. Minimizing the
absolute value of total differences in process time of all
assembly lines is the procedure that is used for
achieving this goal.

Constraint explanation: Minimizing the makespan
time in (Fm/permu/Cmax) is associated with minimizing
the total idle time on the last workstation. The second
set of Equation 2 is used to obtain the minimum total
idle time at the last workstation for every single
assembly line. Equation 3 calculates the total setup time
by summing the initial setup time and the change over
time between the different jobs in sequence for each

Am. J. Engg. & Applied Sci., 3 (1): 15-24, 2010

18

assembly line. It is obvious that initial setup time is
only considered for the first job of sequence. Equation 4
determines the processing time at the last workstation
for every assembly line. Generally in the simple flow
shop system, the completion time is achieved by
summing the process time and idle time on the last
workstation of the corresponding line. Equation 5
calculates the total completion time for every single
assembly line by adding job’s initial setup time and
change over time to the flow time of the corresponding
line. Equation 6 helps to find the difference in total
process time for multiple lines by computing the
absolute difference in total process time for lines.
Equation 7 is used to attain the process time for every
single line which is determined by summing all the jobs
allocated to the assembly lines.The total process time
for every single assembly line is attained by summing
the process times of all the jobs allocated to that
assembly line. Constraint (8) is used to dedicate all jobs
to the available positions in which each job is placed at
the unique position of that assembly line. Constraint (9)
ensures that each job can be placed in only one of the
available positions of sequence for each assembly line.
Constraint (10) ensures that from all the available
positions in the system, each job must be processed in
only one of all available positions of sequences. The
last set of constraints 11 show the inevitable relation
between the idle time and waiting time in each
assembly line. It represents the logical concept of
involve variables in flow shop system. Equation 12
reveals that the waiting time for the first job in a
sequence is always equal to zero for any assembly line.
Equation 13 shows that the first workstation is always
ready to process the first job of a sequence in any
assembly line. Equation 14 illustrates that the initial
setup time is only considered for the first job of
sequence and for the rest of jobs is zero.

Complexity theory: The proposed mixed-integer
model is able to find the best job sequence in each line
to meet the problem objectives for a predetermined
value of kl. specifying the best value of kl that provides
opportunity for mixed integer model to be solved by
exact methods are quite time consuming and inefficient
while the problem should be formulated for all possible
value of kl. The total permutation of job allocation to
set of parallel lines can be computed as follows:

cN

C 1

Totalpermutation n!
=

=∑ (15)

Where:

Nc = Set of configurations for job allocation to
assembly lines

N = Number of jobs

 It should be noted that the different number of jobs
can be allocated to each line so the total permutations
for this problem is obtained by summing the all
possible configurations of job allocation. Due to
massive permutations of job allocation, intelligence
based genetic algorithm is applied to probe the solution
space to find the near optimal solutions through
reducing searching space by choosing the set of
potential members of Nc that provides best job
allocation and sequence that meet both problem
objectives. In this case, the problem complexity is
tended to n!.

Problem solving procedure: All jobs involved in the
system can be assigned to set of parallel assembly line
in different way in which the total summation of all
allocated jobs are fixed. This process provides different
configuration of job allocation which increases the
complexity of parallel mixed assembly line problems so
different number of jobs can be allocated to each line,
while only one of them can provides potential situation
that may conduce to the best sequence of allocated jobs
to meet the presumed objectives. The proposed mixed-
integer model gives the optimum solution for the given
configuration of job allocation for each line while
checking all the possible value of k1 for large size
problems requires huge problem formulation and
massive computation by exact methods. A simple
genetic algorithm also faces with difficulties as there is
no guaranty that which configuration of job allocation
provides the best solution, because it’s directly
associated with job’s process time so all configuration
of job allocation should be checked. As can be seen
from Eq. 15, this value can dramatically increases in
large size problem, so checking all the configurations of
job allocation would be so time consuming. In this case,
an intelligence based evolutionary algorithm should be
applied to solve the problem and find the solutions in
efficient way. In a usual genetic algorithm, the fitness
function is a particular function which quantifies the
quality of generated chromosome and these functions
are usually predetermined and specified with regard to
objectives of the corresponding problem and they are
usually expressed in terms of mathematical equations or
even set of rules. As in each configuration of job
allocation, several permutations of job allocation and
job sequence are available so in the proposed
intelligence based genetic algorithm, GA-2 is executed
as a cost evaluation function to find the minimum

Am. J. Engg. & Applied Sci., 3 (1): 15-24, 2010

19

attainable cost for the corresponding chromosome. In
this regard, the fitness function for GA-1 is not a
specified function but the best result that can be
achieved by GA-2 is considered as a related cost. The
total configurations of job allocation are obtained by
solving the Eq. 16:

1 2 1

1 2 1 1

l l l n

l l l , l Integer

+ + …+ =
 ≥ ≥ … ≥ ∈

 (16)

Where:
l l = Represents number of jobs assigns to the lth

assembly line
n = Shows the total number of jobs in the system

 The best configuration of job allocation is directly
depends on jobs’ process time so all should be checked
to find the best solution. In order to tackle the
complexity of this problem, an intelligence based
genetic algorithm is proposed which provides some
degree of intelligence to select the best configuration of
job allocation and let the GA-2 to find the best
sequence of allocated job based on the given job
allocation configuration to avoid checking all the
potential solution which is so time consuming. As
illustrated in Fig. 2, a population of potential solution
which can meet the condition (Eq. 16) is randomly
generated. The cost computation for each chromosome
is done by GA-2 through finding the best sequence of
jobs which is accompanied with the best job allocation.

Fig. 2: Diagram of intelligence based genetic algorithm

and fine-tuning process

P1 P3P2 PL
… ……

Fig. 3: Chromosomes of integer numbers for GA-1

The chromosomes are sorted according to their cost
value and proceed to the genetic operators in (GA-1)
for further evolution. In this process, GA-1 attempts to
find the potential configuration of job allocation that
has higher probability for better job allocation and
sequencing. Meanwhile this probability is computed by
GA-2 through finding the optimum job allocation and
job sequence that optimize the presumed objective
functions. This process continues until the optimum
value is achieved. In the final step, a simulated
annealing is used to fine-tune the best results obtained
by intelligence based genetic algorithm to improve the
quality of solutions. GA-1 aims to intelligently decrease
the Nc and chose those configurations of job allocation
that there is a higher possibility of optimum solution. It
lets the GA-2 to mainly focus on specific value of Nc
which is directly conduced to a better near optimal
solution through reducing the search space. The
flowchart of intelligence based GA and fine-tuning is
shown in Fig. 2.
 As mentioned in problem solving section, GA-1
aims to find the best configuration of job allocation by
GA-2 for finding the optimum job sequence that
minimizes the objective function. The possible solution
for Equation 16 can be set of integer value between 1 to
n as it satisfies the condition. A chromosome for GA-1
is a string of length L where it is composed of some
integer values as the total summation of distributed jobs
among lines is equal to total number of jobs in system.
The chromosome for GA-1 is shown in Fig. 3.
 Where:

L

l
l 1

P n
=

=∑ (17)

Pl = Represents number of jobs assigns to the lth

assembly line
n = Shows the total number of jobs in the system

Example: In order to distribute 10 jobs among 4 lines,
the chromosome can be initiated as follows: [4, 3, 2, 1]
or [5, 2, 2, 1] or [3, 3, 2, 2].

Initial population generation: In order to generate the
initial population for GA-1, a simple heuristic algorithm
is proposed to generate possible solutions for different
configuration of job allocation which as follows:

• The following Linear Programming (LP) models

capable of determining the upper and lower bounds
of possible solutions for distributing n jobs among l

Am. J. Engg. & Applied Sci., 3 (1): 15-24, 2010

20

assembly line. Lp1 aims to maximize the
maximum value of any involved variables as much
as possible so it only force one of the variables to
reach to the maximum while the rest of variables
get the minimum value. The value obtained form
LP1 is called upper bound for job allocation which
guaranty that no lines is left without job
assignment:

{ }{ }l

L

l
i 1

l l 1

l

l

LP1

Max max x ; l 1,..., L

x n

x x ; l 1, L

x l; l 1, L

x Integer

=

+

=

=

≥ = …
≥ = …
∈

∑ (18)

• LP2 attempts to maximize the minimum value of

all variables so all intend to be in a minimum value
difference. The solution achieved by LP2 is called
lower bound:

{ }{ }l

L

l
i 1

l l 1

l

l

LP2

Max max x ; l 1, ..., L

x n

x x ; l 1, L

x l; l 1, L

x Integer

=

+

=

=

≥ = …
≥ = …
∈

∑ (19)

• In order to generate new solutions, a particular

combining technique is applied to construct new
data points within the range of upper and lower
point. The equation (20) and (21) are able to
generate new points where α and β are arbitrary
coefficient:

 () ()l l l

L

1 l
l 2

 Z [* X (1) * Y ; l 2, , L (20)

 z n Z (21)
=

 = α + − α = …

 = −

∑

Where:
 α = Random number on the interval [0, 1]
 Xl = lth variable in the upper bound set
 Yl = lth variable in the lower bound set
 Zl = lth variable in the new generated point

• A set of new generated points provide an initial
population for GA-1 to start the intelligence based
genetic algorithm

 An example is provided to clarify the implemented
techniques for generating new points. Twenty jobs are
assigned to 4 lines in which each line must serve at
least one job:

1 2 3 4

1 2 3 4 1

l l l l 20

l l l l , l Integer

 + + + =

≥ ≥ ≥ ∈

 The solution obtained by LP1 and LP2 are
illustrated as follows:

LP1 = Upper bound = [x1 = 17, x2 = 1, x3 = 1, x4 = 1]
LP2 = Lower bound = [y1 = 5, y2 =5, y3 = 5, y4 = 5]

 For a given α = 0.3, a new generated point is
Z2 = [0.3*(1)+(1-0.3)*(5)]; l = 2,…,4 then [Z2 = 4, Z3 =
4, Z4 = 4] and finally

4

1 1l 2
Z 20 Z 8

=
= − =∑ . Meanwhile

the new generated point is [Z1 = 8, Z2 = 4, Z3 = 4, Z4 =
4] which is produced by linear interpolating of n-1
variables. The first variable is not engaged in
interpolation process to keep the number of jobs fix
during the whole generation process. A population of
new points can be produced by generating a random
value of α.

Crossover operator: As the entire algorithm moves
forward those generated points that have minimum
value of cost function have higher probability to be a
part of candidate region around the optimum point so
continuous crossover capable of producing new
offspring inside the candidate region to do further
evolution as the generation moves on. Meanwhile, a
new offspring can be produced while carrying the
information from both parents. The blending methods
for this problem can be done by finding ways to
combine variable values from the two parents into new
variable values while keeping the jobs number fixed
during the crossover process. A single offspring
variable value comes from a combination of the n-1
variables of two corresponding parents’ variable.
Producing new offspring can be done through
generating two different random value of β and
combining the selected parents. The entire crossover
procedure is shown as follows:

() ()1 l l

L

1 1
l 2

C [* P 1 (1) * P 2]; l 2, L (22)

c n c (23)
=

 = β + − β = …

 = −

∑

Am. J. Engg. & Applied Sci., 3 (1): 15-24, 2010

21

Where:
β = Random number on the interval [0, 1]
P1l = lth variable in the mother chromosome
P2l = lth variable in the father chromosome
C1 = lth variable in the new generated point
n = Number of jobs

 In the continuous crossover, some gens are
randomly selected to be combined while for the
proposed crossover operator, the combining process
should be done for all the n-1 variables and it can be
seen as a main difference between ordinary continuous
crossover and the proposed crossover operator. Figure 4
illustrates the proposed crossover operator for the
considered problem. Crossover operator is considered
as a main genetic operator in genetic algorithm so
mutation operator is not executed in GA-1.

GA-2 for Job allocation problem: GA-2 attempts to
allocate jobs to the assembly lines and find the best job
sequence in order to minimize the objective functions.
As the best order of jobs provide the optimum solution,
it falls to permutation based genetic algorithm category.
The chromosome is a string of length N where
klc ; l = 1,… L represents the number of jobs assigns to
the lth assembly line in the Cth configuration of job
allocation. Figure 5 represents a chromosome of tasks
and the shows how they are assigned to the
workstations.

Fig. 4: Continuous cross over operator for GA-1

Fig. 5: Chromosome of jobs

 Generally an appropriate fitness function closely
associates with mathematical objective function which
is capable of computing the cost for each chromosome
quickly. Fitness function is used to evaluate the
generated chromosomes to measure the optimality of
solutions. Total objective value is computed by
summing the value of make-span time, process time
difference and completion time difference. The
proposed fitness function is given by:

2L 1 L

l e k
e l k e l

F 1 / max{Cmax } T T
−

= = +

 = + −

∑ ∑ (24)

Where:
Cmaxl = Completion time for lth assembly line
Tk = Total process time of kth assembly line
L = Number of assembly lines

 Those chromosomes that provide minimum make-
span time and also balance the lines are selected for
mating operation. This process continues until GA-2
finds the best job sequence and allocation for the
corresponding chromosome of GA-1. In the next step,
the second chromosome of GA-1 is selected and the
best attainable cost is computed through GA-2. All the
computed costs for the entire population members are
transferred to GA-1 for sorting operation.

Tournament selection: Tournament selection is a very
popular strategy that aims to imitate natural competition
of specious (Michalewicz, 1996). The tournament
selection works in the way that two individuals are
randomly selected from the mating pool. The individual
with the highest fitness value is selected as the winner
of the tournament and the selection process continues
by selecting a new tournament group randomly until all
the individuals are selected. Finally the winner of each
competition is copied to the worst chromosomes.
Tournament selection is applied in both GAs as
selecting mechanism for choosing the best individuals
within population. Elitism is usually used to prevent the
loss of the current fittest member of the population due
to crossover or mutation operators and keep the best
individual from generation to generation (Haupt and
Haupt, 1997). Elitism is applied through genetic
programming.

Genetic parameter setting: Genetic Algorithm
parameter setting aims to increase the algorithm
performance by setting the genetic parameters by
optimal values. The initial population is composed of a
set of individuals, which are generated by using random
generator. The size of population for both GA-1 and

Am. J. Engg. & Applied Sci., 3 (1): 15-24, 2010

22

GA-2 are fixed during all generations. Crossover is
considered as most important genetic operator which
combines set of information from different
chromosomes and generates new offspring which
captures the both individuals information. Partially
Mapped Crossover (PMX) is employed as crossover
operator in GA-2 algorithm which the cross over rate is
set based on initial population size. Initial population
size is directly associated with providing more diversity
of potential solution which is varied for different
complexity of problem. The complexity of job
allocation problem is increasing by n! order so an
appropriate level of population is required to provide
more diversity of potential solutions and discourages
premature convergence to local optimums. The
population size for GA-2 is set to 80 with 50% of cross
over rate which is used by many researchers and able to
find good solution in a reasonable amount of time
(Grefenstette, 1986). Mutation operator aims to provide
a means to prevent algorithm from rapid convergence
or premature convergence and drive algorithm to search
further feasible problem space to escape from local
optimum. For this means swap mutation is elected as
mutation operator. The Mutation probability is set to
0.02 in GA-2 algorithms which is a typical value for
Genetic Algorithm (Leu, et al. 1994). Total number of
generation is used as a stopping criterion in GA-2
program to terminate the algorithm at 300 generations.

Simulated annealing-fine-tuning: Simulated
annealing is able to deal with noisy search space and
complex problems. In the annealing process, the
temperature of the molten metal decreases until the
crystal is frozen. If the cooling procedure is done
quickly some structural irregularities will happen in the
atomic structure. The algorithm starts with a small
random perturbation to the atomic structure. If this
results in the lower energy sate, the algorithm is
repeated by using new energy state. But if the higher
energy state is achieved through the new atomic
structure, the new state is accepted with certain
probability which is depends on the history of the
search (Winston, 2003). Simulated annealing is only
used to fine-tune the solution obtained by intelligence
based genetic algorithm to improve the quality of
solutions. This procedure helps to find the optimum
solution if it was not found in previous step. It also
confirms the well performing of proposed search
algorithm when no improvement is achieved during the
fine-tuning algorithm. For each problem, the best job
sequence which is obtained by intelligence based
genetic algorithm is used as an initial point for
simulated annealing. A neighborhood search is used as

a main operator for exploring different solutions.
Neighborhood search generates a new atomic structure
by changing the candidate solution in order to visit
more potential solutions within the search space. In this
case, two jobs are randomly swapped by generating two
random keys (Naderi, et al. 2008). In order to avoid
algorithm to reach to the local optimum, some worse
moves might be accepted based on current temperature.
The exponential cooling scheduling is used in this
research as it believed to be an appropriate cooling
schedule for the SA (Wang and Zheng, 2001). The
initial experiment demonstrated us that the temperature
over the range 40-50 is proper for fine-tuning process
and the stopping temperature is fixed at 0 while cooling
temperature is set to 0.05.

RESULTS AND DISCUSSION

 In order to check the efficiency of proposed
procedure, different numbers of jobs are allocated to the
lines which each considered as a new problem that
should be solved by intelligence based genetic
algorithm. There are three lines in which each consists
of two workstations. The first problem starts with the
first 10 jobs in the system and the problem complexity
is rising as the number of jobs increasing until reach to
the maximum of 15. For each problem, upper bound
and lower bound is computed by LP1 and LP2 to
determine the range of variation for chromosomes of
GA-1. Table 1 illustrates the required process time and
the amount of workload in workstations for every single
job. Table 2 includes the initial setup time and change
over time matrix for all jobs. Metaheuristic algorithms
only guaranty the local optimality so the best solution
that provides minimum objective value is selected as a
near optimal solution. Different experiments are done
based on different number of jobs and for each
problem, the chromosome values range between the
lower bound and the upper bound within the problem.

Table 1: Job process time and workload at workstation

 Work load
 --
Job Process time W1 W2
1 160 80 80
2 40 30 10
3 30 18 12
4 240 120 120
5 700 450 250
6 200 100 100
7 300 150 150
8 840 420 420
9 100 70 30
10 150 75 75
11 180 100 80
12 350 200 150
13 200 100 100
14 1500 650 850
15 2000 1200 800

Am. J. Engg. & Applied Sci., 3 (1): 15-24, 2010

23

Table 2: Initial setup time and changeover time
 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 Initial setup time
J1 0 12 8 7 11 13 5 20 19 16 20 20 10 25 15 40
J2 20 0 20 18 13 18 16 20 10 8 5 15 10 16 43 50
J3 19 10 0 20 10 12 7 28 15 10 5 15 20 8 56 60
J4 18 12 10 0 10 5 20 18 15 12 18 16 10 9 18 100
J5 6 9 12 9 0 20 25 13 34 23 45 13 40 26 32 140
J6 20 9 12 10 20 0 6 50 30 42 20 15 20 32 14 30
J7 20 12 10 20 30 45 0 18 10 20 35 20 20 14 19 40
J8 30 18 12 30 60 10 30 0 12 18 20 20 20 10 22 150
J9 10 15 16 20 20 30 18 45 0 24 34 33 13 16 33 30
J10 20 30 45 34 20 10 28 32 45 0 30 20 24 32 43 20
J 11 25 35 40 30 20 15 25 32 25 20 0 24 42 28 13 120
J 12 12 42 33 34 23 14 15 32 26 35 44 0 34 12 17 50
J 13 12 23 34 35 42 21 23 42 34 23 43 23 0 16 20 40
J 14 22 42 33 34 23 14 15 32 26 35 44 34 43 0 10 200
J 15 55 34 29 30 80 73 43 65 39 18 20 15 11 9 0 300

Table 3: Intelligent based genetic algorithm
 Selected configuration
Problem No. of job Upper bound Lower bound of job allocation Make-span Time difference Objective value
1 10 [8, 1, 1] [4, 3, 3] [3, 4, 3] 964 100 1064
2 11 [9, 1, 1] [4, 4, 3] [6, 2, 3] 967 40 1007
3 12 [10, 1, 1] [4, 4, 4] [4, 3, 5] 1050 20 1070
4 13 [11, 1, 1] [5, 5, 3] [4, 6, 3] 1067 20 1087
5 14 [12, 1, 1] [5, 5, 4] [6, 6, 2] 1645 20 1665
6 15 [13, 1, 1] [5, 5, 5] [5, 6, 4] 2274 0 2274

Table 4: Job sequence for every single line

No. of job Line 1 Line 2 Line 3

10 2 8 3 7 4 1 6 10 5 9
11 3 6 7 4 2 1 10 8 9 11 5
12 10 2 6 5 9 1 8 7 3 4 12 11
13 13 5 1 9 3 7 4 2 6 12 10 8 11
14 10 2 4 13 8 6 5 9 7 11 12 3 1 14
15 11 14 10 7 6 1 5 8 12 2 4 9 13 15 3

Table 5: Fine-tuning process by SA
 No. Selected configuration Time Objective
Problem of job of job allocation Make-span difference value
1 10 [4, 3, 3] 964 100 1064
2 11 [6, 3, 2] 967 40 1007
3 12 [5, 4, 3] 1009 20 1029
4 13 [6, 4, 3] 1067 20 1087
5 14 [6, 6, 2] 1645 20 1665
6 15 [6, 5, 4] 2230 0 2230

Table 6: Final result for job sequence for every single line
No. of job Line 1 Line 2 Line 3
10 2 8 3 7 4 1 6 10 5 9
11 3 6 7 4 2 1 10 8 9 11 5
12 4 11 12 7 3 1 2 6 5 10 8 9
13 13 5 1 9 3 7 4 2 6 12 10 8 11
14 10 2 4 13 8 6 5 9 7 11 12 3 1 14
15 7 11 1 10 2 14 4 5 12 8 13 6 15 3 9

 Table 3 shows the result obtained by intelligent
based genetic algorithm in which the total objective value
is computed by summing the make-span time and time
difference between the lines which is shown in Table 3.
The corresponding job sequence for each problem is
shown in Table 4. As can be seen from the results, there
is no time difference between the lines in problem 6 and
also this value is reach to the minimum of 20 in
problem 3, 4 and 5. The selected configuration of job

allocation for each problem clearly prove that there is
no rules to determine the best configuration of job
allocation as it directly based on jobs process time even
though this value may dramatically change with a little
changes in jobs time even with the same number of job.
The solution obtained by intelligence based genetic
algorithm is used as an initial point for fine-tuning
process. The solution obtained from fine-tuning process
is illustrated in Table 6. As can be seen from Table 6,
no improvement is achieved by SA in minimizing the
second objective (time differences between lines) in all
problems. It clearly confirms that the solution obtained
by intelligence based genetic algorithm was optimum as
the total objective value for problem 1-4 are fixed and
no further improvements are gained by SA. Therefore
the intelligence based genetic algorithm is straightly
directed to the optimum solution in problem 1-4 in all
objectives. Fine-tuning process helps to find better
solutions in problem 3 and 6 in finding the better job
sequences which results in improving the first objective
function (overall make-span). Although the time
differences in both problem 3 and 6 are fixed, utilizing
fine-tuning algorithm leads to a shorter make-span form
1050 to 1009 in problem 3 and 2274 to 2230 in problem
6.

CONCLUSION

 In this study, an intelligence based genetic
algorithm is applied to tackle the complexity of

Am. J. Engg. & Applied Sci., 3 (1): 15-24, 2010

24

sequencing problem in parallel mixed-model assembly
line problems. For solving such problems by
mathematical methods the proposed multi objective
mixed-integer model should be formulated for several
configuration of job allocation which is quite time
consuming and inefficient. A simple genetic algorithm
also faces difficulties due to massive search space so
the proposed search technique is implemented to reduce
the problem complexity and overcome the required
massive search space. The solving procedure initiates
by generating initial population for different
configuration of job allocation. The cost evaluation for
the involved chromosomes is done by GA-2 and then the
population is sorted according to computed cost. GA-2
tries to allocate jobs to the assembly lines in order to
minimize the multi objective functions. The simulated
annealing is applied to fine-tune the obtain solution in
order to increase the quality of solutions. The achieved
results from SA proves that proposed algorithm capable
of finding the best sequence of allocated job in the most
of problems. However, there are enormous opportunities
for future work of this research by engaging more
practical issues of material handling systems in order to
feed the workstations which are widely used in many
industry units. Meanwhile some new parameters and
constraints are required to represent the system
properties. Other systematic local search algorithms can
be developed to reduce the problem complexity as well
as increasing the solution quality.

REFERENCES

Eiben, A.E. and J.E. Smith, 2003. Introduction to

Evolutionary Computing. 1st Edn., Springer,
ISBN: 978-3-540-40184-1, pp: 299.

Goldberg, D.E., 1989. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-
Wesley Longman Publishing Co., Inc., Boston,
MA., USA., ISBN: 0-201-15767-5, pp: 4412.

Grefenstette, J.J., 1986. Optimization of control
parameters for genetic algorithms. IEEE
Transactions Syst. Man Cybernet., 16: 122-128.
DOI: 10.1109/TSMC.1986.289288

Groover, M.P., 2001. Automation, Production Systems
and Computer-Integrated Manufacturing. 2dn Edn.,
Prentice Hall, London, NJ., ISBN: 10:
0130889784, pp: 856.

Haupt, R.L. and S.E. Haupt, 1997. Practical Genetic
Algorithms. Wiley-Interscience, New York, ISBN:
10: 0471188735, pp: 192.

Johnson, S.M., 1954. Optimal two-and three-stage
production schedules with setup times included.
Naval Res. Logist. Q., 1: 61-68. DOI:
10.1002/nav.3800010110

Leu, Y.Y., L.A. Matheson and L.P. Rees, 1994.
Assembly line balancing using genetic algorithms
with heuristic-generated initial populations and
multiple evaluation criteria. Dec. Sci., 25: 581-605.
DOI: 10.1111/j.1540-5915.1994.tb01861.x

Lin, S.W. and K.C. Ying, 2009. Applying a hybrid
simulated annealing and Tabu search approach to
non-permutation flowshop scheduling problems.
Int. J. Prod. Res., 47: 1411-1424. DOI:
10.1080/00207540701484939

Michalewicz, Z., 1996. Genetic Algorithms + Data
Structures = Evolution Programs. 3rd Edn.,
Springer, ISBN: 10: 3540606769, pp: 387.

Naderi, B., M. Zandieh, A. Khaleghi Ghoshe Balagh
and V. Roshanaei, 2008. An improved simulated
annealing for hybrid flowshops with sequence-
dependent setup and transportation times to
minimize total completion time and total tardiness.
Expert Syst. With Appli., 36: 9625-9633. DOI:
10.1016/J.ESWA.2008.09.063

Pinedo, M.L., 2002. Scheduling: Theory, Algorithms
and Systems. Prentice Hall, Upper Saddle River,
New Jersey, pp: 586.

Skorin-Kapov, J. and A.J. Vakharia, 1993. Scheduling a
flow-line manufacturing cell: A tabu search
approach. Int. J. Prod.. Res., 31: 1721-1734.
http://cat.inist.fr/?aModele=afficheN&cpsidt=4781
237

Wang, L. and D.Z. Zheng, 2001. An effective hybrid
optimization strategy for job-shop scheduling
problems. Comput. Res., 28: 585-596. DOI:
10.1016/S0305-0548(99)00137-9

Winston, W.L., 2003. Introduction to Mathematical
Programming: Applications and Algorithms.
Duxbury Resource Center, ISBN: 0534423574.

