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Abstract: Problem statement: In the area of globalization the degree of competition in the market 
increased and many companies attempted to manufacture the products efficiently to overcome the 
challenges faced. Approach: Mixed model assembly line was able to provide continuous flow of 
material and flexibility with regard to model change. The problem under study attempted to describe 
the mathematical programming limitation for minimizing the overall make-span and balancing 
objective for set of parallel lines. Results: A proposed mixed-integer model only able to find the best 
job sequence in each line to meet the problem objectives for the given number of job allotted to each 
line. Hence using the proposed mathematical model for large size problem was time consuming and 
inefficient as so many job allocation values should be checked. This study presented an intelligence 
based genetic algorithm approach to optimize the considered problem objectives through reducing the 
problem complexity. A heuristic algorithm was introduced to generate the initial population for 
intelligence based genetic algorithm. Then, it started to find the best sequence of jobs for each line 
based on the generated population by heuristic algorithm. By this means, intelligence based genetic 
algorithm only concentrated on those initial populations that produce better solutions instead of 
probing the entire search space. Conclusion/Recommendations: The results obtained from 
intelligence based genetic algorithm were used as an initial point for fine-tuning by simulated 
annealing to increase the quality of solution. In order to check the capability of proposed algorithm, 
several experimentations on the set of problems were done. As the total objective values in most of 
problems could not be improved by simulated algorithm, it proved the well performing of proposed 
intelligence based genetic algorithm in reaching the near optimal solutions.  
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INTRODUCTION 

 
 Evolutionary computing is a research area within 
computer science that used for solving combinatorial 
optimization  and complex problems which they 
perform base on principles of generic population-based 
heuristic techniques (Eiben and Smith, 2003). With the 
emergence of meta-heuristic algorithms in recent years, 
so many complex problems have been studied and 
solved by metaheuristic search techniques such as Ant 
colony optimization, Tabu Search, Genetic Algorithm 
and Simulated Annealing have been employed to deal 
with complex scheduling problems. Many Meta-
heuristic algorithms were applied to overcome the 
complexity of sequencing problems in assembly lines 
problems. Genetic algorithm is introduced by Goldberg 
(1989) as it works based on the procedure of natural 

mechanism and natural genetic. The population is 
composed of a collection of chromosomes which each 
string is encoded the problem solution as a finite-length 
of gens. The entire evolution process works based on 
natural mechanism. Evolutionary computing algorithms 
usually reach to the good solutions in the reasonable 
amount of time though the achieved solution can be 
local or global optimum. A two-stage flow shop 
problems is considered by Johnson (1954) and the 
proposed heuristic algorithm was developed to 
minimize the completion time. By increasing the 
complexity of practical problems in real world, 
sequence-dependent setup times become one of the 
most favored assumptions in the area of scheduling 
researches (Naderi, et al. 2008). A mixed integer 
programming model is developed by Wagner which 
minimizes the makespan in permutation flow shop 
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(Fm/permu/Cmax) with an arbitrary number of machines. 
This formulation focuses on minimizing the total idle 
time on the last machine which is associated with 
minimizing the total idle time on the last machine 
(Naderi, 2002). A comparison of two metaheuristic 
search in flow-line manufacturing cell was done by 
(Skorin-Kapov and Vakharia, 1993). The problem 
focuses on sequencing the part families with similar 
setup time and the heuristic search techniques was 
developed based on Tabu search. The results prove the 
outperforming of developed search techniques in 
comparison to previous simulated annealing. A hybrid 
Simulated Annealing and Tabu search is introduced by 
(Lin and Ying, 2009) for scheduling the non-
permutation flowshop problems. The objective 
considered in this problem was focus on optimizing the 
make-span time for non-permutation flowshop 
scheduling. The performance of hybrid search 
algorithm was compared to several metaheuristic 
algorithms such as Tabu Search, ant colony 
optimization and simulated annealing and the results 
confirm the well performance of hybrid approach.   
 
Problem statement: The problem under study attempts 
to describe the mathematical programming limitation 
for solving set of parallel lines. A mixed-integer model 
was developed by Wagner (Pinedo, 2002) to find the 
best job sequence that minimize the make-span for a 
single line. The number of jobs assigned to each line is 
predetermined for a single line problem, while for set of 
parallel lines different number of jobs can be assigned 
to each line that minimizes the overall make-span time 
of system so the mathematical model should be 
formulated for different values of job allocated to every 
single line. Meanwhile this study presented an 
intelligence based search approach to address the job 
allocation problem for parallel mixed-model assembly 
line to minimize the overall makespan and also balance 
the lines in way that all lines have almost equal 
processing time. A simple evolutionary based 
algorithms like GA, SA or etc also faced with 
difficulties as there is no guaranty that which 
configuration of job allocation provides best solution so 
an intelligence based genetic algorithm is developed to 
decrease the problem complexity through providing 
some degree of proficiency in selecting the potential . 
This study is organized as follows: A description of 
problem under study is provided to clarify the problem’s 
assumptions and the mathematical programming model 
for problem under study is described. The complexity of 
problem under study is discussed to demonstrate 

understanding of research problem and an intelligence 
based genetic algorithm is applied to overcome the 
problem complexity. A numerical example is illustrated 
in the following. Conclusion and future research are 
presented in the last part. 
 

MATERIALS AND METHODS 
 

 Typically, a mixed model assembly line is 
equipped with flexible workstations which are capable 
of producing variety of product models similar in 
product characteristics continuously and concurrently 
(Groover, 2001). The problem under study includes a 
number of parallel mixed-model assembly lines and 
each line consists of number of workstations which are 
capable of serving any job. A workstation in any line 
should be setup for the new materials requirement to be 
able to serve the new set of products. Initial setup time 
is essential for the first job of sequence and change over 
time is required to change the settings between jobs in 
the same line. The following assumptions are 
considered in this research: All the assembly lines 
perform assembly operation independently. The 
workstation time for every single job at all workstations 
are specified. Once the job allocated to any line, jobs 
are not allowed to shift to other assembly lines. No line 
should be left without job assignment. Each assembly 
line represents type of flow shop system and the 
workstations representative of involved machines in the 
flow shop system and in a larger prospect, the whole 
system likes parallel machine scheduling problems. 
Each assembly line acts as flow line system in which 
the overall make-spam for set of parallel lines is 
determined by the longest completion of line so 
minimizing the completion time of all lines directly 
effect on overall make span of system. Model diagram 
of problem under study is illustrated in Fig. 1. 
 

 
 
Fig. 1: Model diagram of parallel lines 
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Mathematical programming for job allocation: The 
proposed mixed-integer programming model is built 
based on flow shop model which is developed by 
Wagner (Pinedo, 2002) and it is expanded to consider 
the effect of initial setup time and sequential change 
over time for multiple lines. The mathematic formula is 
as follow: 
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Wi1l = 0; i = 1,.. …m-1, l = 1,…L (12) 
 
L1k,l = 0; k = 1, … …. n-1, l = 1,…L (13) 

Sik = 0; k = 2 ……n-1 (14) 
 
W≥0, I≥0 
 
X ijk∈0,1 
 
X jkl = If job j is the kth job in the sequence in line 

L 
I ikl = Ideal time on machine i between the 

processing of job in the kth and (k+1)th 
position in assembly line L 

Wikl = Waiting time of the job in the kth  position 
in between machine i and i+1 in the lth 
assembly line 

m = Number of workstations in assembly line 
n = Number of jobs in flow shop system 
Sik  = Initial setup time for job i in the kth 

position of job sequence 
Cij  = Change over time between job i and j 
Idle timel = Total idle time at the last workstation for 

lth assembly line.  
Setupl = Total setup time for lth assembly line 
Cmaxl = Completion time for lth assembly line 
Processl = Processing time at the last workstation of 

lth assembly line 
Bek = Total absolute difference among process 

time of line e and rest of lines 
tj = Total Process time for job j  
Ti   = Total process time of lth assembly line 
kl  = Number of jobs allocated to lth assembly 

line 
L  =  Number of assembly line 
Pij  = Process time of job j at workstation i 
Pmj  = Process time of job j at workstation m 
 
 The first term of objective function (1) attempts to 
minimize the overall make-span of this system is by 
minimizing the longest completion time of lines. The 
second term of objective function attempts to balance 
workload among all assembly lines by considering all 
jobs’ process time for every single job. Minimizing the 
absolute value of total differences in process time of all 
assembly lines is the procedure that is used for 
achieving this goal.  
 
Constraint explanation: Minimizing the makespan 
time in (Fm/permu/Cmax) is associated with minimizing 
the total idle time on the last workstation. The second 
set of Equation 2 is used to obtain the minimum total 
idle time at the last workstation for every single 
assembly line. Equation 3 calculates the total setup time 
by summing the initial setup time and the change over 
time between the different jobs in sequence for each 
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assembly line. It is obvious that initial setup time is 
only considered for the first job of sequence. Equation 4 
determines the processing time at the last workstation 
for every assembly line. Generally in the simple flow 
shop system, the completion time is achieved by 
summing the process time and idle time on the last 
workstation of the corresponding line. Equation 5 
calculates the total completion time for every single 
assembly line by adding job’s initial setup time and 
change over time to the flow time of the corresponding 
line. Equation 6 helps to find the difference in total 
process time for multiple lines by computing the 
absolute difference in total process time for lines. 
Equation 7 is used to attain the process time for every 
single line which is determined by summing all the jobs 
allocated to the assembly lines.The total process time 
for every single assembly line is attained by summing 
the process times of all the jobs allocated to that 
assembly line. Constraint (8) is used to dedicate all jobs 
to the available positions in which each job is placed at 
the unique position of that assembly line. Constraint (9) 
ensures that each job can be placed in only one of the 
available positions of sequence for each assembly line. 
Constraint (10) ensures that from all the available 
positions in the system, each job must be processed in 
only one of all available positions of sequences. The 
last set of constraints 11 show the inevitable relation 
between the idle time and waiting time in each 
assembly line. It represents the logical concept of 
involve variables in flow shop system. Equation 12 
reveals that the waiting time for the first job in a 
sequence is always equal to zero for any assembly line. 
Equation 13 shows that the first workstation is always 
ready to process the first job of a sequence in any 
assembly line. Equation 14 illustrates that the initial 
setup time is only considered for the first job of 
sequence and for the rest of jobs is zero.  
 
Complexity theory: The proposed mixed-integer 
model is able to find the best job sequence in each line 
to meet the problem objectives for a predetermined 
value of kl. specifying the best value of kl that provides 
opportunity for mixed integer model to be solved by 
exact methods are quite time consuming and inefficient 
while the problem should be formulated for all possible 
value of  kl. The total permutation of job allocation to 
set of parallel lines can be computed as follows:  
 

cN

C 1

Totalpermutation n!
=

=∑   (15) 

 
Where: 

Nc = Set of configurations for job allocation to 
assembly lines 

N = Number of jobs 
 
 It should be noted that the different number of jobs 
can be allocated to each line so the total permutations 
for this problem is obtained by summing the all 
possible configurations of job allocation. Due to 
massive permutations of job allocation, intelligence 
based genetic algorithm is applied to probe the solution 
space to find the near optimal solutions through 
reducing searching space by choosing the set of 
potential members of Nc that provides best job 
allocation and sequence that meet both problem 
objectives. In this case, the problem complexity is 
tended to n!. 
 
Problem solving procedure: All jobs involved in the 
system can be assigned to set of parallel assembly line 
in different way in which the total summation of all 
allocated jobs are fixed. This process provides different 
configuration of job allocation which increases the 
complexity of parallel mixed assembly line problems so 
different number of jobs can be allocated to each line, 
while only one of them can provides potential situation 
that may conduce to the best sequence of allocated jobs 
to meet the presumed objectives. The proposed mixed-
integer model gives the optimum solution for the given 
configuration of job allocation for each line while 
checking all the possible value of k1 for large size 
problems requires huge problem formulation and 
massive computation by exact methods. A simple 
genetic algorithm also faces with difficulties as there is 
no guaranty that which configuration of job allocation 
provides the best solution, because it’s directly 
associated with job’s process time so all configuration 
of job allocation should be checked. As can be seen 
from Eq. 15, this value can dramatically increases in 
large size problem, so checking all the configurations of 
job allocation would be so time consuming. In this case, 
an intelligence based evolutionary algorithm should be 
applied to solve the problem and find the solutions in 
efficient way. In a usual genetic algorithm, the fitness 
function is a particular function which quantifies the 
quality of generated chromosome and these functions 
are usually predetermined and specified with regard to 
objectives of the corresponding problem and they are 
usually expressed in terms of mathematical equations or 
even set of rules. As in each configuration of job 
allocation, several permutations of job allocation and 
job sequence are available so in the proposed 
intelligence based genetic algorithm, GA-2 is executed 
as a cost evaluation function to find the minimum 
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attainable cost for the corresponding chromosome. In 
this regard, the fitness function for GA-1 is not a 
specified function but the best result that can be 
achieved by GA-2 is considered as a related cost. The 
total configurations of job allocation are obtained by 
solving the Eq. 16: 
 

1 2 1

1 2 1 1

l l l   n

l l l ,  l Integer

+ + …+ =
 ≥ ≥ … ≥ ∈

 (16) 

 
Where: 
l l = Represents number of jobs assigns to the lth 

assembly line  
n = Shows the total number of jobs in the system 
 
       The best configuration of job allocation is directly 
depends on jobs’ process time so all should be checked 
to find the best solution. In order to tackle the 
complexity of this problem, an intelligence based 
genetic algorithm is proposed which provides some 
degree of intelligence to select the best configuration of 
job allocation and let the GA-2 to find the best 
sequence of allocated job based on the given job 
allocation configuration to avoid checking all the 
potential solution which is so time consuming. As 
illustrated in Fig. 2, a population of potential solution 
which can meet the condition (Eq. 16) is randomly 
generated. The cost computation for each chromosome 
is done by GA-2 through finding the best sequence of 
jobs  which is accompanied with the best job allocation.  
 

 
 
Fig. 2: Diagram of intelligence based genetic algorithm 

and fine-tuning process 
 

P1 P3P2 PL
… ……

 
 
Fig. 3: Chromosomes of integer numbers for GA-1 

The chromosomes are sorted according to their cost 
value and proceed to the genetic operators in (GA-1) 
for further evolution. In this process, GA-1 attempts to 
find the potential configuration of job allocation that 
has higher probability for better job allocation and 
sequencing. Meanwhile this probability is computed by 
GA-2 through finding the optimum job allocation and 
job sequence that optimize the presumed objective 
functions. This process continues until the optimum 
value is achieved. In the final step, a simulated 
annealing is used to fine-tune the best results obtained 
by intelligence based genetic algorithm to improve the 
quality of solutions. GA-1 aims to intelligently decrease 
the Nc and chose those configurations of job allocation 
that there is a higher possibility of optimum solution. It 
lets the GA-2 to mainly focus on specific value of Nc 
which is directly conduced to a better near optimal 
solution through reducing the search space. The 
flowchart of intelligence based GA and fine-tuning is 
shown in Fig. 2. 
      As mentioned in problem solving section, GA-1 
aims to find the best configuration of job allocation by 
GA-2 for finding the optimum job sequence that 
minimizes the objective function. The possible solution 
for Equation 16 can be set of integer value between 1 to 
n as it satisfies the condition. A chromosome for GA-1 
is a string of length L where it is composed of some 
integer values as the total summation of distributed jobs 
among lines is equal to total number of jobs in system. 
The chromosome for GA-1 is shown in Fig. 3.  
 Where: 
 

L

l
l 1

P n
=

=∑  (17) 

 
Pl = Represents number of jobs assigns to the lth 

assembly line  
n = Shows the total number of jobs in the system 
 
 
Example: In order to distribute 10 jobs among 4 lines, 
the chromosome can be initiated as follows: [4, 3, 2, 1] 
or [5, 2, 2, 1] or [3, 3, 2, 2]. 
 
Initial population generation: In order to generate the 
initial population for GA-1, a simple heuristic algorithm 
is proposed to generate possible solutions for different 
configuration of job allocation which as follows: 
 
• The following Linear Programming (LP) models 

capable of determining the upper and lower bounds 
of possible solutions for distributing n jobs among l 
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assembly line. Lp1 aims to maximize the 
maximum value of any involved variables as much 
as possible so it only force one of the variables to 
reach to the maximum while the rest of variables 
get the minimum value. The value obtained form 
LP1 is called upper bound for job allocation which 
guaranty that no lines is left without job 
assignment: 
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• LP2 attempts to maximize the minimum value of 

all variables so all intend to be in a minimum value 
difference. The solution achieved by LP2 is called 
lower bound: 
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• In order to generate new solutions, a particular 

combining technique is applied to construct new 
data points within the range of upper and lower 
point. The equation (20) and (21) are able to 
generate new points where α and β are arbitrary 
coefficient: 
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 z n Z (21)
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Where: 
  α = Random number on the interval [0, 1] 
  Xl = lth variable in the upper bound set 
  Yl = lth variable in the lower bound set 
  Zl = lth variable in the new generated point 

• A set of new generated points provide an initial 
population for GA-1 to start the intelligence based 
genetic algorithm 

 
 An example is provided to clarify the implemented 
techniques for generating new points. Twenty jobs are 
assigned to 4 lines in which each line must serve at 
least one job: 
 

1 2 3 4

1 2 3 4 1

l l l l 20

l l l l , l Integer

 + + + =


≥ ≥ ≥ ∈
 

 
 The solution obtained by LP1 and LP2 are 
illustrated as follows: 
 
LP1 = Upper bound = [x1 = 17, x2 = 1, x3 = 1, x4 = 1] 
LP2 = Lower bound = [y1 = 5, y2 =5, y3 = 5, y4 = 5] 
 
 For a given α = 0.3, a   new generated   point    is 
Z2 = [0.3*(1)+(1-0.3)*(5)]; l = 2,…,4  then [Z2 = 4, Z3 = 
4, Z4 = 4] and finally  

4

1 1l 2
Z   20 Z 8

=
= − =∑ . Meanwhile 

the new generated point is [Z1 = 8, Z2 = 4, Z3 = 4, Z4 = 
4] which is produced by linear interpolating of n-1 
variables. The first variable is not engaged in 
interpolation process to keep the number of jobs fix 
during the whole generation process. A population of 
new points can be produced by generating a random 
value of α. 
 
Crossover operator: As the entire algorithm moves 
forward those generated points that have minimum 
value of cost function have higher probability to be a 
part of candidate region around the optimum point so 
continuous crossover capable of producing new 
offspring inside the candidate region to do further 
evolution as the generation moves on. Meanwhile, a 
new offspring can be produced while carrying the 
information from both parents. The blending methods 
for this problem can be done by finding ways to 
combine variable values from the two parents into new 
variable values while keeping the jobs number fixed 
during the crossover process. A single offspring 
variable value comes from a combination of the n-1 
variables of two corresponding parents’ variable. 
Producing new offspring can be done through 
generating two different random value of β and 
combining the selected parents. The entire crossover 
procedure is shown as follows: 
 

( ) ( )1 l l

L

1 1
l 2
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 = β + − β = …
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Where: 
β = Random number on the interval [0, 1] 
P1l = lth variable in the mother chromosome 
P2l = lth variable in the father chromosome 
C1 = lth variable in the new generated point 
n = Number of jobs 
 
 In the continuous crossover, some gens are 
randomly selected to be combined while for the 
proposed crossover operator, the combining process 
should be done for all the n-1 variables and it can be 
seen as a main difference between ordinary continuous 
crossover and the proposed crossover operator. Figure 4 
illustrates the proposed crossover operator for the 
considered problem. Crossover operator is considered 
as a main genetic operator in genetic algorithm so 
mutation operator is not executed in GA-1. 
 
GA-2 for Job allocation problem:  GA-2 attempts to 
allocate jobs to the assembly lines and find the best job 
sequence in order to minimize the objective functions. 
As the best order of jobs provide the optimum solution, 
it falls to permutation based genetic algorithm category. 
The chromosome is a   string   of   length   N   where  
klc ; l  = 1,… L represents the number of jobs assigns to 
the lth assembly line in the Cth configuration of job 
allocation. Figure 5 represents a chromosome of tasks 
and the shows how they are assigned to the 
workstations. 
 

 
 
Fig. 4: Continuous cross over operator for GA-1 
 

 
 

Fig. 5: Chromosome of jobs 

 Generally an appropriate fitness function closely 
associates with mathematical objective function which 
is capable of computing the cost for each chromosome 
quickly. Fitness function is used to evaluate the 
generated chromosomes to measure the optimality of 
solutions. Total objective value is computed by 
summing the value of make-span time, process time 
difference and completion time difference. The 
proposed fitness function is given by: 
 

2L 1 L

l e k
e l k e l

F 1 / max{Cmax } T T
−

= = +

 = + − 
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Where: 
Cmaxl  =  Completion time for lth assembly line 
Tk  = Total process time of kth assembly line 
L  =  Number of assembly lines 
 
 Those chromosomes that provide minimum make-
span time and also balance the lines are selected for 
mating operation. This process continues until GA-2 
finds the best job sequence and allocation for the 
corresponding chromosome of GA-1. In the next step, 
the second chromosome of GA-1 is selected and the 
best attainable cost is computed through GA-2. All the 
computed costs for the entire population members are 
transferred to GA-1 for sorting operation. 

 
Tournament selection: Tournament selection is a very 
popular strategy that aims to imitate natural competition 
of specious (Michalewicz, 1996). The tournament 
selection works in the way that two individuals are 
randomly selected from the mating pool. The individual 
with the highest fitness value is selected as the winner 
of the tournament and the selection process continues 
by selecting a new tournament group randomly until all 
the individuals are selected. Finally the winner of each 
competition is copied to the worst chromosomes. 
Tournament selection is applied in both GAs as 
selecting mechanism for choosing the best individuals 
within population. Elitism is usually used to prevent the 
loss of the current fittest member of the population due 
to crossover or mutation operators and keep the best 
individual from generation to generation (Haupt and 
Haupt, 1997). Elitism is applied through genetic 
programming. 

 
Genetic parameter setting: Genetic Algorithm 
parameter setting aims to increase the algorithm 
performance by setting the genetic parameters by 
optimal values. The initial population is composed of a 
set of individuals, which are generated by using random 
generator. The size of population for both GA-1 and 
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GA-2 are fixed during all generations. Crossover is 
considered as most important genetic operator which 
combines set of information from different 
chromosomes and generates new offspring which 
captures the both individuals information. Partially 
Mapped Crossover (PMX) is employed as crossover 
operator in GA-2 algorithm which the cross over rate is 
set based on initial population size. Initial population 
size is directly associated with providing more diversity 
of potential solution which is varied for different 
complexity of problem. The complexity of job 
allocation problem is increasing by n! order so an 
appropriate level of population is required to provide 
more diversity of potential solutions and discourages 
premature convergence to local optimums. The 
population size for GA-2 is set to 80 with 50% of cross 
over rate which is used by many researchers and able to 
find good solution in a reasonable amount of time 
(Grefenstette, 1986). Mutation operator aims to provide 
a means to prevent algorithm from rapid convergence 
or premature convergence and drive algorithm to search 
further feasible problem space to escape from local 
optimum. For this means swap mutation is elected as 
mutation operator. The Mutation probability is set to 
0.02 in GA-2 algorithms which is a typical value for 
Genetic Algorithm (Leu, et al. 1994). Total number of 
generation is used as a stopping criterion in GA-2 
program to terminate the algorithm at 300 generations. 
 
Simulated annealing-fine-tuning: Simulated 
annealing is able to deal with noisy search space and 
complex problems. In the annealing process, the 
temperature of the molten metal decreases until the 
crystal is frozen. If the cooling procedure is done 
quickly some structural irregularities will happen in the 
atomic structure. The algorithm starts with a small 
random perturbation to the atomic structure. If this 
results in the lower energy sate, the algorithm is 
repeated by using new energy state. But if the higher 
energy state is achieved through the new atomic 
structure, the new state is accepted with certain 
probability which is depends on the history of the 
search (Winston, 2003). Simulated annealing is only 
used to fine-tune the solution obtained by intelligence 
based genetic algorithm to improve the quality of 
solutions. This procedure helps to find the optimum 
solution if it was not found in previous step. It also 
confirms the well performing of proposed search 
algorithm when no improvement is achieved during the 
fine-tuning algorithm. For each problem, the best job 
sequence which is obtained by intelligence based 
genetic algorithm is used as an initial point for 
simulated annealing. A neighborhood search is used as 

a main operator for exploring different solutions. 
Neighborhood search generates a new atomic structure 
by changing the candidate solution in order to visit 
more potential solutions within the search space. In this 
case, two jobs are randomly swapped by generating two 
random keys (Naderi, et al. 2008). In order to avoid 
algorithm to reach to the local optimum, some worse 
moves might be accepted based on current temperature. 
The exponential cooling scheduling is used in this 
research as it believed to be an appropriate cooling 
schedule for the SA (Wang and Zheng, 2001). The 
initial experiment demonstrated us that the temperature 
over the range 40-50 is proper for fine-tuning process 
and the stopping temperature is fixed at 0 while cooling 
temperature is set to 0.05. 

 
RESULTS AND DISCUSSION   

 
 In order to check the efficiency of proposed 
procedure, different numbers of jobs are allocated to the 
lines which each considered as a new problem that 
should be solved by intelligence based genetic 
algorithm. There are three lines in which each consists 
of two workstations. The first problem starts with the 
first 10 jobs in the system and the problem complexity 
is rising as the number of jobs increasing until reach to 
the maximum of 15. For each problem, upper bound 
and lower bound is computed by LP1 and LP2 to 
determine the range of variation for chromosomes of 
GA-1. Table 1 illustrates the required process time and 
the amount of workload in workstations for every single 
job. Table 2 includes the initial setup time and change 
over time matrix for all jobs. Metaheuristic algorithms 
only guaranty the local optimality so the best solution 
that provides minimum objective value is selected as a 
near optimal solution. Different experiments are done 
based on different number of jobs and for each 
problem, the chromosome values range between the 
lower bound and the upper bound within the problem. 
 
Table 1: Job process time and workload at workstation 

                                                     Work load 
  ---------------------------------------- 
Job Process time W1 W2 
1 160 80 80 
2 40 30 10 
3 30 18 12 
4 240 120 120 
5 700 450 250 
6 200 100 100 
7 300 150 150 
8 840 420 420 
9 100 70 30 
10 150 75 75 
11 180 100 80 
12 350 200 150 
13 200 100 100 
14 1500 650 850 
15 2000 1200 800 
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Table 2: Initial setup time and changeover time 
 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 Initial setup time 
J1 0 12 8 7 11 13 5 20 19 16 20 20 10 25 15 40 
J2 20 0 20 18 13 18 16 20 10 8 5 15 10 16 43 50 
J3 19 10 0 20 10 12 7 28 15 10 5 15 20 8 56 60 
J4 18 12 10 0 10 5 20 18 15 12 18 16 10 9 18 100 
J5 6 9 12 9 0 20 25 13 34 23 45 13 40 26 32 140 
J6 20 9 12 10 20 0 6 50 30 42 20 15 20 32 14 30 
J7 20 12 10 20 30 45 0 18 10 20 35 20 20 14 19 40 
J8 30 18 12 30 60 10 30 0 12 18 20 20 20 10 22 150 
J9 10 15 16 20 20 30 18 45 0 24 34 33 13 16 33 30 
J10 20 30 45 34 20 10 28 32 45 0 30 20 24 32 43 20 
J 11 25 35 40 30 20 15 25 32 25 20 0 24 42 28 13 120 
J 12 12 42 33 34 23 14 15 32 26 35 44 0 34 12 17 50 
J 13 12 23 34 35 42 21 23 42 34 23 43 23 0 16 20 40 
J 14 22 42 33 34 23 14 15 32 26 35 44 34 43 0 10 200 
J 15 55 34 29 30 80 73 43 65 39 18 20 15 11 9 0 300 
 
Table 3: Intelligent based genetic algorithm 
    Selected configuration  
Problem No. of job Upper bound Lower bound of job allocation Make-span Time difference Objective value 
1 10 [8, 1, 1] [4, 3, 3] [3, 4, 3] 964 100 1064 
2 11 [9, 1, 1] [4, 4, 3] [6, 2, 3] 967 40 1007 
3 12 [10, 1, 1] [4, 4, 4] [4, 3, 5] 1050 20 1070 
4 13 [11, 1, 1] [5, 5, 3] [4, 6, 3] 1067 20 1087 
5 14 [12, 1, 1] [5, 5, 4] [6, 6, 2] 1645 20 1665 
6 15 [13, 1, 1] [5, 5, 5] [5, 6, 4] 2274 0 2274 
 
Table 4: Job sequence for every single line 
 
No. of job Line 1     Line 2    Line 3 

10 2    8   3                            7       4     1     6 10     5     9 
11 3     6      7     4    2    1 10     8                               9      11    5 
12 10    2     6     5 9       1     8 7      3      4     12    11 
13 13    5     1     9 3       7     4     2     6    12 10    8      11 
14 10    2     4     13     8    6 5       9     7    11    12   3 1      14 
15 11   14    10   7       6 1       5     8    12     2    4 9      13    15     3 

 
Table 5: Fine-tuning process by SA 
 No. Selected configuration  Time  Objective  
Problem of job of job allocation Make-span difference value 
1 10 [4, 3, 3] 964 100 1064 
2 11 [6, 3, 2] 967 40 1007 
3 12 [5, 4, 3] 1009 20 1029 
4 13 [6, 4, 3] 1067 20 1087 
5 14 [6, 6, 2] 1645 20 1665 
6 15 [6, 5, 4] 2230 0 2230 
 
Table 6: Final result for job sequence for every single line  
No. of job Line 1    Line 2 Line 3 
10 2     8      3  7       4     1     6                         10     5     9 
11 3     6      7     4       2     1 10     8 9      11    5 
12 4    11    12     7     3 1     2     6     5 10     8     9 
13 13 5     1     9 3       7     4     2     6    12 10    8      11 
14 10    2     4     13     8     6 5       9     7    11    12   3 1      14 
15 7    11     1    10     2    14 4     5    12     8    13 6    15     3     9 

 
 Table 3 shows the result obtained by intelligent 
based genetic algorithm in which the total objective value 
is computed by summing the make-span time and time 
difference between the lines which is shown in Table 3. 
The corresponding job sequence for each problem is 
shown in Table 4. As can be seen from  the results,  there 
is no time difference between the lines in problem 6 and 
also this value is reach to the minimum of 20 in 
problem 3, 4 and 5. The selected configuration of job 

allocation for each problem clearly prove that there is 
no rules to determine the best configuration of job 
allocation as it directly based on jobs process time even 
though this value may dramatically change with a little 
changes in jobs time even with the same number of job. 
The solution obtained by intelligence based genetic 
algorithm is used as an initial point for fine-tuning 
process. The solution obtained from fine-tuning process 
is illustrated in Table 6. As can be seen from Table 6, 
no improvement is achieved by SA in minimizing the 
second objective (time differences between lines) in all 
problems. It clearly confirms that the solution obtained 
by intelligence based genetic algorithm was optimum as 
the total objective value for problem 1-4 are fixed and 
no further improvements are gained by SA. Therefore 
the intelligence based genetic algorithm is straightly 
directed to the optimum solution in problem 1-4 in all 
objectives. Fine-tuning process helps to find better 
solutions in problem 3 and 6 in finding the better job 
sequences which results in improving the first objective 
function (overall make-span). Although the time 
differences in both problem 3 and 6 are fixed, utilizing 
fine-tuning algorithm leads to a shorter make-span form 
1050 to 1009 in problem 3 and 2274 to 2230 in problem 
6. 
 

CONCLUSION  
 
 In this study, an intelligence based genetic 
algorithm is applied to tackle the complexity of 
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sequencing problem in parallel mixed-model assembly 
line problems. For solving such problems by 
mathematical methods the proposed multi objective 
mixed-integer model should be formulated for several 
configuration of job allocation which is quite time 
consuming and inefficient. A simple genetic algorithm 
also faces difficulties due to massive search space so 
the proposed search technique is implemented to reduce 
the problem complexity and overcome the required 
massive search space. The solving procedure initiates 
by generating initial population for different 
configuration of job allocation. The cost evaluation for 
the involved chromosomes is done by GA-2 and then the 
population is sorted according to computed cost. GA-2 
tries to allocate jobs to the assembly lines in order to 
minimize the multi objective functions. The simulated 
annealing is applied to fine-tune the obtain solution in 
order to increase the quality of solutions. The achieved 
results from SA proves that proposed algorithm capable 
of finding the best sequence of allocated job in the most 
of problems. However, there are enormous opportunities 
for future work of this research by engaging more 
practical issues of material handling systems in order to 
feed the workstations which are widely used in many 
industry units. Meanwhile some new parameters and 
constraints are required to represent the system 
properties. Other systematic local search algorithms can 
be developed to reduce the problem complexity as well 
as increasing the solution quality. 
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