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Abstract: Problem statement: Elastic cylindrical shells are common structures in the fields of civil 
engineering and engineering mechanics. These thin-walled constructions may undergo buckling when 
subjected to axial compression. Buckling limits to large extent their strength performance. This 
phenomenon depends hugely on the initial distributed or localized geometric imperfections that are 
present on the shell structure. Localized geometric imperfections result in general from the operation 
of welding strakes to assemble the shell structure. In this study, reliability of buckling strength as it 
could be affected by shell material and geometry parameters was investigated. The localized geometric 
imperfections were chosen to be entering and having either a triangular or a wavelet form. Interaction 
between three localized imperfections had also been considered. Approach: A special software 
package which was dedicated to buckling analysis of quasi axisymmetric shells was used in order to 
compute the buckling load via the linear Euler buckling procedure. A set of five factors including shell 
aspect ratios, defect characteristics and the distance separating the localized initial geometric 
imperfections had been found to govern the buckling problem. A parametric study was performed to 
determine their relative influence on the buckling load reduction. Reliability analysis was carried out 
by using first order reliability method. Results: Wavelet imperfection was found to be more severe 
than triangular form in the range of low amplitude imperfections. It was shown also by comparison 
with the single imperfection case that further diminution of the critical load is obtained for three 
interacting imperfections. The interval distance separating the localized geometric imperfections was 
found to have important influence on the reliability index. Conclusion/Recommendations: In the he 
range of investigated parameters, reliability was found to increase with the distance separating the 
localized geometric imperfections. This can help performing optimal design of assembled strakes. 
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INTRODUCTION 

 
 Thin axisymmetric cylindrical shells are used in 
many fields of structural engineering as essential 
components: silos and tanks. A common feature of 
these structures is that whatever the manufacturing 
process is used, the final geometry is never perfect. 
Geometric imperfections affect always the ideal desired 
nominal form in the real assembled shell. Control and 
optimization of processes used for shell manufacturing 
and assembling may well decrease imperfection 

amplitudes, but could never eliminate them. Precise 
measurements would reveal definitely small geometric 
imperfections having in general the same order of 
magnitude than shell thickness. 
 During their service life, shell structures may be 
subjected to various kinds of loadings, such as axial 
compression, external/internal pressure, flexure or 
torsion. For thin cylindrical shells under uniform axial 
compression, the buckling strength constitutes always 
the most adverse design issue. Calculation of the 
buckling load as it could be affected by the presence of 
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various kinds of geometric imperfections represents 
therefore a main step to enhance shell design. The aim 
is to know how to achieve cost effective structural 
design with relevant margins of safety.  
 Several studies have been reported in the literature 
which deals with the effect of imperfections on strength 
buckling of thin shell structures. Arbocz (1987; 2005) 
have studied experimentally buckling of cylindrical 
shells subjected to general imperfections. They have 
shown that a huge reduction of the buckling critical 
load could be obtained by taking into account initial 
geometric imperfections. Van der Heijden (2009) has 
given an extensive review study about the effect of 
geometric imperfections on shell buckling strength. 
Various other general investigations have been 
achieved since then. They have dealt with the effect of 
both distributed and/or localized imperfections on 
reduction of the buckling load: Arbocz (2005); Yamaki 
(1984); Bushnell (1989); Godoy (1993) and Gusic et al. 
(2000). Kim and Kim (2002) have considered a 
generalized initial geometric imperfection having a 
modal superposition form. Studying the buckling 
strength of cylindrical shells and tanks built on soft or 
rigid foundations and subjected to axially compressive 
loads, they have found that the buckling load decreases 
significantly as the amplitude of initial geometric 
imperfection increases. 
 All the previous literature agrees on the fact that 
imperfections reduce drastically the buckling load of 
elastic cylindrical shells when subjected to axial 
compression. The obtained reduction depends however 
on the nature of initial geometric imperfections that 
disturb the shell structure. It has been found also that 
reduction of the buckling load is, in general, more severe 
in case of distributed imperfections than for localized 
ones.  
 Imperfections for which maximum reduction of the 
buckling load is obtained are artificial and purely 
theoretical like for example the well known generalized 
Van der Heijden (2009) imperfection. They might hence 
never be encountered in practice in case of real shells. 
Therefore, investigation has been motivated by the 
analysis of buckling in the presence of typical 
imperfections obtained from modal analysis of 
measured data or by considering realistic imperfection 
shapes such as those resulting from welding operations 
performed during assembling of shell parts. Steel silos 
and tanks are constructed from plates which are rolled 
to obtain the correct curvature and subsequently welded 
together to form strakes. The strakes are brought 
together then to assemble by welding the complete shell 
structure. At circumferential welds localized geometric 
imperfections develop. The welding profile can vary 
from one shell to another but a common feature of welds 

is that they can be characterized by only two parameters: 
The amplitude and wavelength. Measurements have 
revealed that mostly axisymmetric imperfections occur in 
shell structures assembled by welding, Ding et al. (1996). 
Hutchinson et al. (1971) and Khamlichi et al. (2004) 
investigated localized ax symmetric imperfections and 
have shown that a single axisymmetric imperfection is 
sufficient to yield large effect on buckling strength. 
Hubner et al. (2006) have used numerical methods to 
deal with weld-induced imperfections and have 
obtained results that corroborate those obtained by the 
previous authors. Jamal et al. (1999) have analyzed the 
influence of localized imperfections on the buckling 
load for long cylindrical shells under axial compression 
by using an analytical method based on interaction 
modes. Analytical formulas were derived to predict the 
reduction of the critical buckling load. Considering a 
single localized imperfection, the strength of thin 
cylindrical shell structures has been found to be highly 
dependent on the nature and magnitude of 
imperfections. Combining shell theory with actual field 
imperfection measurements, Pircher et al. (2001) have 
found that three parameters governed the shape of the 
surveyed weld imperfections: The amplitude (depth), 
the wavelength (width) and the roundness. Mathon and 
Limam (2006) have compared the relative influence of 
several localized imperfections on reduction of the 
buckling load of shells subjected to axial compression 
or to flexure. They have shown that an entering 
triangular imperfection shape has the most severe effect 
on buckling strength.  
 In almost all the previous works only single geometric 
imperfections were considered, Khamlichi et al. (2010) 
have analyzed interaction effects that could result from 
two geometric imperfections having entering triangular 
form. They have demonstrated that further reduction of 
the buckling load is reached with two localized 
imperfections. They have found also that the distance 
separating two consecutive imperfections is an 
additional parameter which has a significant influence 
on the shell buckling strength.  
 Shell resistance as well as the loads applied on it 
depend on several variables, most of which are random. 
Therefore, the use of a probabilistic approach in 
carrying out design of shell structures enables to tackle 
in a more realistic fashion structural safety purposes. 
 Structural reliability is concerned with the 
calculation and prediction of the probability to exceed a 
limit state for a given structure at any stage during its 
life. This approach gains nowadays a large number of 
engineering fields due to its rational character. 
 The classical way of integrating uncertainties in 
design of structures consists in using safety factors that 
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are based on engineering judgment and previous 
experience with analogous structures. This approach is 
questionable because it yields either to under estimation 
of the involved uncertainties and therefore to adverse 
results about strength loss, or sometimes to over 
estimation of the real involved uncertainties with as a 
result poor economic design.  
 Buckling of imperfect shells with small random 
initial geometric imperfections has been studied by 
several investigators like Hansen (1977) and Schenk 
and Schueller (2003). Later Elishakoff et al. (1987) has 
proposed a method which makes it possible to integrate 
the results of measured initial imperfections into the 
buckling analysis of shells. The proposed approach 
which he has introduced is based on the concept of a 
reliability function: 
 

R( ) P( )λ = Λ ≥ λ  
 
Where: 
λ = A normalized parameter fixing the threshold 

buckling load  
Λ = Normalized random actual buckling load 
 
 The knowledge of the reliability function permits 
the evaluation of the allowable load λa which is defined 
as the load level enabling the desired reliability to be 
reached. Initially Elishakoff et al. (1987) has used the 
Monte Carlo method to obtain the reliability function 
R(λ). Elishakoff et al. (1987) have shown that when 
replacing the Monte Carlo Method by the first-order, 
second-moment method the number of deterministic 
buckling load calculations needed to derive the 
reliability function R(λ) is greatly reduced. 
 Several recent investigations have been dedicated 
to shell buckling strength within the framework of 
reliability analysis. Arbocz and Hol (1995) has used an 
approximate analytical solution in conjunction with a 
random database description of geometric 
imperfections. Papadopoulos and Papadrakakis (2005) 
have introduced a spectral representation of the 
geometric imperfection within the stochastic finite 
element method.  
 One should notice that when considering localized 
imperfections a lot of Fourier series terms are needed to 
represent with sufficient accuracy the geometric 
imperfection, the spectral method may result to be 
cumbersome and a direct method is needed. Moreover, 
to our knowledge, the case of interacting localized 
imperfections has never been addressed within the 
framework of reliability analysis.  
 The objective of this study is to assess reliability of 
shell buckling strength as it could be affected by three 

initial localized geometric imperfections. Thin 
axisymmetric cylindrical shells made of homogeneous 
and isotropic elastic material are considered. They are 
assumed to deform under a purely axisymmetric strain 
state under the action of axially uniform compressive 
loads.  
 
Modeling thin cylindrical shells with localized 
geometric imperfections: Shell equations 
incorporating the effect of initial imperfections are 
used, Markus (1988), to analyze shell buckling strength 
for the particular case of thin circular cylindrical shells 
subjected to quasi-static uniform compressive loads. A 
variant of this model has been used by Gusic et al. 
(2000). Relevant finite element modeling of these 
equations can be straightforwardly carried out by means 
of Coque element developed under Stanlax software 
package, (Gusic et al., 2000). Stanlax software is based 
on an analytical expansion in terms of the 
circumferential variable and finite element modeling of 
axial dependant quantities. The initial imperfections are 
included in the shell model formulation under the 
assumption of small perturbations to shell geometry. 
Stanlax software is used in the following in order to 
model the imperfect axisymmetric cylindrical shell 
having three localized geometric imperfections. Stanlax 
offers either a linear Euler buckling analysis mode or a 
full non linear iterative method for the computation of 
buckling load. For shells under axial compression, it 
was shown that a linear Euler calculus is sufficient. 
 The shell material is linear elastic having Young’s 
modulus E and Poisson’s coefficient υ. The geometric 
imperfections are assumed to be localized in the median 
zone of the shell length in positions that are sufficiently 
far from the shell ends in order to avoid interactions 
with the boundary conditions. The selected boundary 
conditions are those corresponding to clamped shell 
ends.  
 As shown in Fig. 1, parameters t, H and R 
designate respectively shell thickness, shell length and 
shell mean radius.  
 Let A and d be respectively the geometric 
imperfection amplitude and the distance separating two 
contiguous imperfections. Denoting c 1.72 Rtλ = , the 

following non dimensional zed parameters are defined 
for the shell buckling problem (Fig. 2):  
 
• R/t radius to thickness ratio 
• H/R length to radius ratio 
• A/t defect amplitude parameter 
• H/d height to defect interval scale ratio 
• α = λ/λc defect wave length to critical wave length 
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Fig. 1: Shell geometry 
 

  
 (a) (b) 
 
Fig. 2: Shape of the localized imperfections; (a) 

Triangular geometric imperfection; (b) Wavelet 
geometric imperfection 

 

 
 

Fig. 3: Configurations of triangular localized geometric 
imperfections 

 
 During the parametric study to follow, the shell 
radius is maintained constant at the value R = 135 mm 

while the other parameters are varied. The considered 
localized triangular geometric imperfections have the 
configuration shown in Fig. 3. They are directed 
inwards the shell radius. Stanlax software package 
enables for each combination of parameters to compute 
the shell buckling load under the applied uniform axial 
compression. Use is made of shell element Coque and 
convergence assessment is performed in order to 
determine the optimal mesh size to be employed.  
 
Reliability analysis: The buckling strength capacity R 
and the axial loading S applied on the shell structure are 
random variables in nature. The main objective of 
reliability analysis is to ensure that S never exceeds R 
with regards to an accepted margin of risk. Because R 
and S are functions of basic design variables, to 
investigate the performance of shell under buckling 
loading requires specifying a limit state equation in 
terms of these basic variables. This limit state equation 
is referred to as the performance or state function and is 
expressed as: 
 
 ig(X ) R S= −  (1) 

 
where, iX , i 1,...,n=  are the basic design variables 

assumed to be uncorrelated and reduced such as 

iE(X ) 0=  and iV(X ) 1= . 

 The limit state of the system can then be expressed 
as: 
 

ig(X ) 0=  (2) 

 
 The curve ig(X ) 0=  represents the failure surface 

while ig(X ) 0<  represents the safe region and ig(X ) 0>  

is the failure region. 
 The distance D, from the origin of X space to a 

point [ ]t

1 nX X ... X= , where t denotes the 

transposing operation, which is located on the failure 
surface ig(X ) 0=  writes: 

 
2 2
1 nD X ... X= + +  (3) 

 

 The point on the failure surface 
t* * *

1 nX X ... X =    

having the minimum distance to the origin can be 
obtained by minimizing the function D when subjected 
to the constraint ig(X ) 0= . Lagrange multiplier method 

could be used. The lagrangian L writes: 
 

2 2
i 1 n 1 nL D g(X ) X ... X g(X ,...,X )= + λ = + + + λ  (4) 
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where, λ is the Lagrange multiplier. 
 Minimizing L, we obtain a system of n+1 equations 
having n+1 unknown as: 
 

i
i2 2

i i1 n

i

L X g
(X ) 0

X XX ... X

L
g(X ) 0

∂ ∂= + λ =
∂ ∂+ +
∂ = =
∂λ

 (5) 

 
 Solution of this system yields the most probable 

failure point 
t* *

1 nX ... X   . 

 The minimum distance from the origin to the curve 
representing the failure surface is termed the reliability 
index and is given by: 
 

* t *

* t *

( g ) X

( g ) g

∇β = −
∇ ∇

 (6) 

 
with *g∇  represents the gradient vector of g evaluated 
at the optimum point. 
 Design is said to be satisfactory if the failure 
probability fP P(g(X) 0)= <  does not exceed a given 

threshold. Estimating the reliability index and the 
failure probability is performed in the following by 
means of FORM method. 
 

MATERIALS AND METHODS 
 
 Considering homogeneous elastic axisymmetric 
cylindrical shells having initial geometric imperfections 
under the action of uniform axial compression, the shell 
buckling strength can be computed as follows. The 
shell geometry and material parameters as well as the 
features of initial geometric imperfections are fixed at 
first. Then, using Stanlax software package the 
buckling load is readily obtained. Investigation of the 
relative effect of the intervening factors on reliability 
index of the shell buckling load can be performed 
according to the following methodology. At first, the 
shell aspect ratios, for which maximum effect on the 
buckling strength is observed, are determined. Fixing 
the shell geometry configuration at the most adverse 
case with respect to shell aspect ratios, fixing also the 
distance separating two successive imperfections, a 
parametric study can be conducted by varying the two 
free remaining factors: namely imperfection amplitude 
and wavelength. A full factorial design of experiment 
table can be used for that. Here, three levels were 
chosen for each variable resulting in total number of 27 
combinations.  
 The obtained results, for each value of the distance 
separating the initial geometric imperfections, in terms 

of shell bucking strength can be treated via non linear 
regression techniques. Quadratic regressions have been 
shown to be quite adequate to get accurate response 
surface models in the present problem. Explicit 
quadratic polynomial approximations giving the shell 
bulking load as function of imperfection amplitude and 
wavelength were so derived to estimate the buckling 
load for each given realization of parameters.  
 Assuming that the imperfection amplitude and 
wavelength are random variables, the response surface 
models can be used to perform reliability analysis 
according to FORM method. Specialized reliability 
software was used for that purpose. Reliability index 
parameterized by the distance separating the localized 
initial geometric imperfections can then be obtained. 
The reliability probability is also obtained in the same 
conditions. This allows depicting for each distance 
separating the localized imperfections a curve giving 
the realibility probability as function of the chosen 
design shell buckling load. 
 

RESULTS AND DISCUSSION 
 
 A preliminary study has assessed that the shell 
aspect parameters that yield the most adverse 
buckling load are given by H/R = 3 and R/t = 1500, 
(Khamlichi et al., 2010).     
 Let’s consider a shell satisfying the previous 
aspects conditions with geometric and material 
properties that correspond to: R = 135 mm, H = 405 
mm, t = 0.09 mm, E = 7×1010 Pa and υ = 0.3. The 
classical buckling load is: 
 

6
cl 2

E t
σ = × =28.233×10 Pa

R3(1-υ )
 

 
 Considering three localized geometric 
imperfections matching the following parameters: α, 
A/t and d, their effect on shell buckling strength can be 
straightforwardly investigated by means of Stanlax 
software which provides the actual buckling load crσ . 

For the case where H/d = 40.5 the obtained results are 
presented in Fig. 4 in terms of σcr/σc1 versus parameter 
A/t for both triangular and wavelet geometric 
imperfections.  
 Full factorial design of experiment tables have been 
considered for each imperfection type: triangular or 
wavelet.  Three levels were chosen for the intervening 
three factors according to Table 1 and 2. The obtained 
results in terms of the reduced buckling load σcr/σc1 as 
function of parameters x = α, y = A/t and d are listed in 
Table 1 and 2. 
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Fig. 4: Comparison of the buckling load for the two 

considered localized imperfection shapes 

 
Table 1: The reduced buckling load as function of given 

combinations of parameters, triangular geometric 
imperfection 

x y d σcr/σcl 
1 1 50 0.4446 
1 1 100 0.4945 
1 1 150 0.5027 
1 2 50 0.3061 
1 2 100 0.3863 
1 2 150 0.3903 
1 3 50 0.2482 
1 3 100 0.3454 
1 3 150 0.3968 
2.5 1 50 0.3449 
2.5 1 100 0.3626 
2.5 1 150 0.3723 
2.5 2 50 0.1755 
2.5 2 100 0.2005 
2.5 2 150 0.2126 
2.5 3 50 0.1240 
2.5 3 100 0.1452 
2.5 3 150 0.1721 
3 1 50 0.3728 
3 1 100 0.3807 
3 1 150 0.3897 
3 2 50 0.1892 
3 2 100 0.2037 
3 2 150 0.2131 
3 3 50 0.1301 
3 3 100 0.1416 
3 3 150 0.1651 

 
 Fixing the distance, d, separating two successive 
geometric imperfections, a response surface model that 
gives the reduced buckling load σcr/σc1 as function of 
the imperfection characteristics x and y can be derived. 
Quadratic regression models of σcr/σc1 = P(x,y) can be 
steadily identified by using the Matlab command 
regress and σcr/σc1 results related to a given distance d 
such they appear respectively in Table 1 and 2. 

 
 

Fig. 5: Response surface for triangular geometric 
imperfections; d = 50 mm 

 
Table 2: The reduced buckling load as function of given 

combinations of parameters, wavelet geometric imperfection 
x y d σcr/σcl  
1 0.25 50 0.8810 
1 0.25 100 0.8434 
1 0.25 150 0.9282 
1 0.50 50 0.7562 
1 0.50 100 0.6512 
1 0.50 150 0.7967 
1 0.75 50 0.6766 
1 0.75 100 0.5370 
1 0.75 150 0.7078 
2.5 0.25 50 0.7375 
2.5 0.25 100 0.7480 
2.5 0.25 150 0.7600 
2.5 0.50 50 0.5405 
2.5 0.50 100 0.5472 
2.5 0.50 150 0.5577 
2.5 0.75 50 0.4282 
2.5 0.75 100 0.4297 
2.5 0.75 150 0.4399 
3 0.25 50 0.7288 
3 0.25 100 0.7370 
3 0.25 150 0.7521 
3 0.50 50 0.5253 
3 0.50 100 0.5311 
3 0.50 150 0.5475 
3 0.75 50 0.4070 
3 0.75 100 0.4099 
3 0.75 150 0.4300 

 
 Table 3 gives the quadratic regression models 
associated to the two geometric imperfection types 
according as function of the interval distance d 
separating the defects. Figure 5 gives the response 
surface obtained for the triangular geometric 
imperfections with d = 50 mm. 
 Considering the imperfection amplitude and 
wavelength as random variables obeying to lognormal 
distributions of probability for which the mean and the 
standard deviation are given in Table 4, Fig. 6 and 7 
present the index of reliability as function of the 
allowable design buckling load for different values of 
distance d.   
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Table 3: The identified quadratic response models 
Imperfection type Distance d (mm) R2 Quadratic response surface 
Triangular 50 0.91 P(x, y) = 0.9027-0.2508x-0.3019 y-0.01080 xy+0.05533x2+0.05383y2 
 100 0.91 P(x, y) = 0.9469-0.2919x-0.2446y-0.02259xy+0.06343x2+0.04816y2 
 150 0.90 P(x, y) = 0.9558-0.2783x-0.2677y-0.03007xy+0.06288x2+0.06111y2 
Wavelet 50 0.95 P(x, y) = 1.302-0.2572x-0.8649y-0.1227xy+0.05244x2+0.5737y2 
 100 0.98 P(x, y) = 1.224-0.1229x-1.247y-0.01960xy+0.01843x2+0.6553y2 
 150 0.96 P(x, y) = 1.414-0.3260x-0.9096y-0.1088xy+0.06582x2+0.5706y2 

 
Table 4: Mean and standard deviation of random variables 
 Random variable Mean SD 
Triangular imperfections x 2.50 0.25 
 y 2.00 0.20 
Wavelet imperfections x 2.50 0.25 
 y 0.50 0.05 

 

 
 
Fig. 6: Reliability index as function of the allowable 

buckling load, triangular geometric 
imperfections 

 

 
 
Fig. 7: Reliability index as function of the allowable 

buckling load, wavelet geometric imperfection 

 
 Figure 8 and 9 give the reliability probability in the 
same conditions than Fig. 6 and 7. 

 
 
Fig. 8: Reliability probability as function of the 

allowable buckling load, triangular geometric 
imperfection 

 

 
 
Fig. 9: Reliability probability as function of the 

allowable buckling load, wavelet geometric 
imperfection 

 
 From comparison of the buckling loads associated 
to three triangular localized imperfections and to three 
wavelet ones as given in Fig. 4, one can notice that the 
triangular imperfections yield the most severe reduction 
of the shell buckling load. But, if the geometric 
imperfection amplitude is controlled to not exceed the 
shell thickness, A/t≤1, than the wavelet defect 
represents the most prejudicial state as to shell buckling 
strength. This is why analysis of reliability has been 
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considered in these two different zones in terms of 
imperfection amplitude: A/t closer to 0.5 for which the 
wavelet geometric imperfection shape is used and A/t 
closer to 2 for which the triangular geometric 
imperfection shape is more selected. 
 From Fig. 6 and 7 one can notice that the distance 
d has a significant influence on reliability index. So, in 
practice this distance should be carefully selected to 
enhance reliability design. The pertinent allowable 
buckling load can be chosen to be 0.175 for d = 50 mm, 
this load can be augmented to 0.210 if d = 150 mm. A 
significant margin of buckling strength could then be 
achieved.  
 Figure 8 and 9 could be used to determine the 
allowable buckling load for a priori fixed level of 
reliability.  
 

CONCLUSION 
 
 Finite element simulations have been performed in 
order to analyze shell buckling as affected by the 
presence of initial localized geometric imperfections. 
Elastic thin cylindrical shells subjected to axial 
compression with three axisymmetric initial 
imperfections of entering triangular or wavelet shapes 
have been considered in order to assess reliability of the 
buckling load design. A set of five factors intervening 
in the problem have been taken into account during the 
process of reliability estimation. Fixing the shell aspect 
ratios yielding the most adverse buckling strength then 
varying the geometric imperfection characteristics 
(amplitude and wavelength) as random variables, 
reliability index and reliability probability have been 
derived in terms of the allowable design buckling load 
and the interval distance separating the localized 
imperfections. It has been shown in the investigated 
domain of variables that the distance separating the 
geometric imperfections has a drastic effect on 
reliability for the triangular imperfections. This effect is 
rather small for the wavelet imperfection shape. The 
obtained results may be of significant usefulness if one 
considers the design purpose of shell structures 
subjected to axial compression and which are affected 
by localized geometric imperfections resulting from 
welding operations. In particular pertinent selection of 
the distance separating the welds could be performed in 
order to optimize design reliability. 
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