
American J. of Engineering and Applied Sciences 4 (1): 102-107, 2011
ISSN 1941-7020
© 2010 Science Publications

Corresponding Author: Abdulwahab Ali Al-mazroi, School of Computer Sciences, University Science Malaysia,
 11800 Penang, Malaysia Tel: +604-6533640 Fax: +604-6573335

102

A Fast Hybrid Algorithm for the Exact String Matching Problem

Abdulwahab Ali Al-mazroi and Nur’Aini Abdul Rashid

Parallel and Distributed Computing Center, School of Computer Sciences,
University Science Malaysia, 11800, Penang, Malaysia

Abstract: Problem statement: Due to huge amount and complicated nature of data being generated
recently, the usage of one algorithm for string searching was not sufficient to ensure faster search and
matching of patterns. So there is the urgent need to integrate two or more algorithms to form a hybrid
algorithm (called BRSS) to ensure speedy results. Approach: This study proposes the combination of
two algorithms namely Berry-Ravindran and Skip Search Algorithms to form a hybrid algorithm in
order to boost search performance. Results: The proposed hybrid algorithm contributes to better
results by reducing the number of attempts, number of character comparisons and searching time. The
performance of the hybrid was tested using different types of data-DNA, Protein and English text. The
percentage of the improvements of the hybrid algorithm compared to Berry-Ravindran in DNA,
Protein and English text are 50%, 43% and 44% respectively. The percentage of the improvements
over Skip Search algorithm in DNA, Protein and English text are 20%, 30% and 18% respectively. The
criteria applied for evaluation are number of attempts, number of character comparisons and searching
time. Conclusion: The study shows how the integration of two algorithms gives better results than the
original algorithms even the same data size and pattern lengths are applied as test evaluation on each of
the algorithms.

Key words: Hybrid algorithm, string matching, pre-processing phase, searching phase

INTRODUCTION

 String matching algorithm is an essential segment
in computer science presently because of its usefulness
in searching and matching pattern and text from vast
databases containing huge of complicated data (Hassan,
2005). String matching algorithm effectiveness is
spread over a wide range of problem solving areas such
as computer applications, text processing, artificial
intelligence, information security and among others
(Raju and Babu, 2007). Due to increasing rate and
complex nature of biological sciences and scientific
data nowadays the usage of one algorithm alone for
string searching is not efficient thus the urgent need to
combine two or more algorithms to form a hybrid in
order to ensure efficient performance (Chen, 2007).
These concerns have arose the interest of researchers
who are coming up with new hybrid algorithms as the
application of one algorithm for string searching cannot
meet today’s complicated and large of data being
generated currently (Michailidis and Margaritis, 2002).
 This study therefore proposes a new hybrid
algorithm (called BRSS), by merging the best
properties of two algorithms specifically Berry-
Ranvindran and Skip Search algorithms in order to

ensure a better performance during string searching.
These algorithms are chosen because Skip Search
algorithm is more efficient for small alphabets and long
patterns, while Berry-Ravindran algorithm is more
effective for providing a better shift value from the two
successive characters immediately to the rightmost of
the window (Tathoo et al., 2006). An exact pattern
matching involves the identification of all occurrences
of a given pattern of m characters (X = x1, x2…xm)
built over a finite alphabet Σ size of σ.
 The principal concern of these algorithms is on
how to slide the window to match the pattern within a
given large pool of texts during the searching phase.
The algorithm is basically operated by scanning a given
set of texts through the assistance of a window, where
the window has the length of the pattern when a match
or mismatch occurs. After the texts in the window are
arranged in lines, the characters in the text are
compared with a pattern until a match is found. During
the searching phase, there would be either a match or
mismatch as is normally the case, such that the window
is shifted to the rightmost section for the alignment of
text which begins from left to right at the beginning of
the search (Mohammad et al., 2006).

Am. J. Engg. & Applied Sci., 4 (1): 102-107, 2011

103

Related study: Previous study undertaken by
researchers show that combining the best features of
two good algorithms to form a hybrid algorithm help
immensely in increasing the performance levels during
searching phase (Madan and Madan, 2010), because
they both complement each other weaknesses.
 Franek et al. (2005) is hybrid algorithm which
comprised of Boyer-Moore and Knuth-Moris-Pratt
Algorithms. The simple method of the algorithm is that;
the pattern is firstly lined up against the text in order
that m[1] is in line with y[1]. For every line up of the
pattern, the pattern is tested 2 against the text to find out
if there is a match occurring at that specific area. The
shifting of the pattern is done at one or more positions
to the end of texts which are aligned. These procedures
are repeat till there is no possible match, by that time
p[m] “slides off the end” of the text. Additionally,
BRFS (Huang et al., 2008) algorithm is also hybrid
algorithm made up of Fast Search and Berry-Ravindran
algorithms. This algorithm applies two operations for
the pre-processing stage namely Boyer Moore good
suffix function represented by bmGs(i) and Berry-
Ravindran bad character represented by brBc(x,y),
which is the computation of the two successive
characters after the current window. The searching
phase applied the Fast Search algorithm which
compares the pattern and text starting from left to right
till either a match or a mismatch occurs.

BRQS (Klaib and Osborne, 2009) hybrid algorithm
includes two combined algorithms that are Berry-
Ravindran and Quick Search algorithms. The shift
value depends on the two successive characters
immediately after the window for shifting the pattern
during the pre-processing phase. In the searching phase,
comparison is performed at the rightmost character in
the pattern with another rightmost text of the window.
The function of the search moves back the pattern one
character at a time till leftmost character is reached for
a pattern and a text of the window.

MATERIALS AND METHODS

 This research started by analyzing all the major
algorithms, before deciding on Berry-Ravindran and
Skip Search algorithms, by extracting their best
properties from both algorithms namely bad character
table for Berry-Ravindran and bucket for Skip Search.
The computation of the shift value in the pre-processing
phase is to ensure a bigger shift value for the window
during the searching phase of the hybrid algorithm. By
joining the two algorithms, each one will complement
the other's weaknesses. Thereby, this will increase the
performance of the new algorithm. Berry-Ravindran

provides the best shift value using two successive
characters. However, the disadvantage of this algorithm
is that it does not check the starting point as a first step.
In the case of Skip Search, the strength of this
algorithm is that it begins by checking the beginning
position in the text before starting the searching phase
while the weakness of this algorithm is that it uses all
the positions of the examining characters in case of
match or mismatch.

Hybrid algorithm pre-processing phase: The hybrid
algorithm build the pre-processing phase first (Zalata
and Alqadi, 2007) and at this phase the hybrid
algorithm consists of building two tables namely bad
character table and bucket list by computing the shift
values. The first table to be used in the pre-processing
phase of hybrid algorithm is bad character table; this
bad character table is built by using Berry-Ravindran
formula as shown in Eq. 1:

1 If x[m 1] m
m i 1 If x[i] [i 1] mn

brBc[m,n] min
m 1 If x[0] n
m 2 Otherwise

− =⎧ ⎫
⎪ ⎪− + × + =⎪ ⎪= ⎨ ⎬+ =⎪ ⎪
⎪ ⎪+⎩ ⎭

 (1)

 And the second table to be created is bucket list,
which contains all the locations of the characters that
exist in the pattern and the text.

Hybrid algorithm searching phase: The searching
phase of the hybrid algorithm begins by applying the
pattern length to start the operation of the searching
phase. The processes are described as follow:

• Scan the m-length character of the text to

demarcate a possible beginning search point
• If the examining character is not exist in the

bucket, first calculate the bad character shift value
by using the rightmost two consecutive characters
after the examining m-length character

• If the bad character shift value ≥ Pattern length, use
the bad character shift value, otherwise, apply the
shift value of pattern length

• If the scanning character exists in the bucket,
arrange the character of initial search point and the
pattern with the equivalent location of the character
in the bucket

• Begin the comparing of characters from left to
right

• When there is a match or mismatch happens,
compute the shift value of the Skip Search in the
first instance and secondly, calculate the bad
character shift value from the two rightmost
consecutive characters immediately after the
window

Am. J. Engg. & Applied Sci., 4 (1): 102-107, 2011

104

• If the bucket shift value ≥ bad character shift value,
use the bucket shift value, otherwise, use the bad
character shift value

• If the corresponding character is in the last position
in the bucket, first calculate the bad character shift
value from the rightmost two consecutive
characters immediately after the window

• If the bad character shift value ≥ Pattern length, use
the bad character shift value, otherwise, apply the
shift value of the pattern length

Analysis: The hybrid algorithm contains the pre-
processing phase of Skip Search and Berry-Ravindran
algorithms. Therefore, the pre-processing phase time
complexity of the hybrid algorithm is O (m+σ2). The
searching phase time complexity is categorized as
follows.

Lemma 1: The time complexity is O(mn) in the worst
case.

Proof: The worst case in the hybrid algorithm implies
that all characters within text are matched, which
should not be greater than m times. This worst case
normally happens during the process when all the
characters within the pattern are the same to the other
characters in the text. For example given text
T = “ddddddddddddddd” and pattern P =”ddddd” and
so consequently the time complexity is O(mn) in the
worst case.

Lemma 2: The time complexity is O(n/(m +2)) in the
best case.

Proof: in every attempt, when the examine character
did not exist in the Skip bucket, the shift value will be
m+2 as stated through Berry Ravindran function
calculated during the pre-processing phase. In the best
case, when every single character within the pattern are
uniquely different from the characters in text. For
example given text T = “ccccccccccccccccccc” and
pattern P = ”yyyyyyy”, there is the shift which is equal
to m+2, performed at every attempt throughout the
searching phase, so accordingly the time complexity is
O(n/(m +2)) in the best case.
 The basic elements which determine the average
time complexity are the size of the alphabet and the
possible occurrence of every single character in the
text. Accordingly, the maximum shift that can be
accomplished is m+2 and the minimum would be one;
character comparisons could be between 1-m, which is
totally random based on the input data. In view of this

random nature with no dependable estimation tool,
the average time complexity is impossible to predict
in this case.

Evaluation: The hybrid and the original algorithms are
tested on three different kinds of data in order to
appraise the random disparities for every algorithm and
the average value is chosen for each algorithm. These
data are chosen due to their standardization benchmarks
(Mahmood et al., 2009) and the usefulness in testing
algorithms and their related behaviors when giving
different sizes of alphabets and patterns. Accordingly,
the program is executed 6 times. The data used in the
evaluation is DNA data contain alphabet size equal to
four letters (σ = 4), Protein data contain alphabet size
equal to twenty letters (σ = 20) and English text made
up of 100 kinds of alphabets representing all the
English language characters, numbers and symbols. The
DNA data and English text are acquired from
Gutenberg project, while Protein data is acquired from
Swiss-Prot Database. The algorithms implemented on
Personal Computer with operating system being
Microsoft Windows Vista Service Pack 2 with 1.93
GHz Intel Core 2 Duo Processor, 3GB of RAM and
programming editor C++ Builder 2010 Architect. The
hybrid, Skip Search and Berry-Ravindran algorithms
are evaluated in terms of number of attempts, number
of character comparisons and searching time.

Number of attempts: Is the starting point where the
pattern of first character is mapped to a particular
character within the text and continues to shift till the
end of the text, so as to determine whether a match or
mismatch occurs before the text ends. The estimated
number of shifting to the end of the text is the number
of attempts (Hudaib et al., 2008).

Number of character comparisons: This is the
beginning point within a given text to the last letter of
the text, where the pattern characters are extracted
individually and compared with the text characters to
determine whether there is a match or mismatch
(Tathoo et al., 2006).

Searching time: the time taken in searching the whole
length of a given text to find out at the end of the search
whether there is a match or a mismatch of characters
within a given text (Kalsi et al., 2008).

RESULTS

 The hybrid and the original algorithms are tested
using data sizes of 200MB. Moreover the performance

Am. J. Engg. & Applied Sci., 4 (1): 102-107, 2011

105

Fig. 1: Searching time in DNA data

Fig. 2: Number of attempts in DNA data

Fig. 3: Number of character comparisons in DNA data

of the algorithms is evaluated by applying different
pattern lengths; these are 3, 5, 10, 15, 20, 30, 40, 50, 60,
70, 80, 90 and 100 characters. From Fig. 1-9 illustrate
the three criteria of evaluation namely number of
character comparisons, number of attempts and
searching time.
 The results from Fig. 1-9 imply that the hybrid
algorithm shows reduced levels of number of character
comparisons, number of attempts and searching time,
thus the combination of the two algorithms have made
good use of the best features extracted to form the
hybrid algorithm as they are improved performances.
For instance, the results for the DNA, Protein and
English text of the hybrid algorithm displayed enhanced
performance than the original algorithms; it is largely

Fig. 4: Searching time in protein data

Fig. 5: Number of attempts in protein data

Fig. 6: Number of character comparisons in protein data

Fig. 7: Searching time in English text

due to combination of the two tables of Berry-
Ravindran bad character and Skip Search bucket,
enables a bigger shift values for the window thereby
increasing the performances for the hybrid algorithm.

Am. J. Engg. & Applied Sci., 4 (1): 102-107, 2011

106

Fig. 8: Number of attempts in English text

Fig. 9: Number of character comparisons in English

text

DISCUSSION

 As explained earlier the objectives were to
integrate two different algorithms to form a hybrid
algorithm so as to increase the performance during pre-
processing and searching phases as scientific data are
very intricate and voluminous. So to gauge the
performances of the new hybrid algorithm three
different set of data were applied namely DNA, Protein
and English text. And the results demonstrated how
with Berry Ravindran-Skip Search hybrid algorithm
reduced the number of attempts, number of character
comparisons and searching time and as well as
increased the performances. And the performances of
the new hybrid algorithm improved between 50%, 43%
and 44% over Berry-Ravindran Algorithm and at the
same time also improve from 20%, 30% and 18% over
Skip Search Algorithm respectively when the three
different data were applied.
 The outcome implies that hybridization of the two
algorithms is the way forward for the future as the new
hybrid algorithm led to faster processing times and
diminishing number of attempts, comparisons and
searching times than the use of one algorithm for which
is ineffective for searching gigantic data as technology
develops and data becomes complex. The success for
the new hybrid algorithm also indicates, choosing the

right algorithms are of prime of importance when
deciding which algorithm(s) to select to form hybrid as
some of them cannot perform creditably even when
combine together. The results also established the
applicability of merging two search algorithms to form
hybrid algorithm and the benefits derived through
enhance searching performances.
 From this we strongly recommend the application of
hybrid algorithms for future development or even to a
larger extent the combination of two hybrid algorithms to
further boost performances to higher levels.

CONCLUSION

 This study presents a new hybrid algorithm called
BRSS, by combining two algorithms, Berry-Ravindran
and Skip Search. The hybrid algorithm demonstrates
enhanced character comparisons, number of attempts
and searching time performances in all the different
data size and pattern lengths, therefore the proposed
algorithm is useful for searching DNA, Protein and
English text. This also proved that the application of the
hybrid algorithm will lead to better searching and
matching of the patterns than the use of one algorithm
as data is becoming more complex presently.

REFERENCES

Chen, Y., 2007. A new algorithm for subset

matching problem. J. Comput. Sci., 3: 924-933.
DOI: 10.3844/jcssp.2007.924.933

Franek, F., C.G. Jennings and W.F. Smyth, 2005. A
simple fast hybrid pattern-matching algorithm.
Combinatorial Patt. Match., 3537: 13-70. DOI:
10.1007/11496656_25

Hassan, A.A., 2005. Mixed heuristic algorithm for
intelligent string matching for information
retrieval. Proceedings of the 6th International
Conference on Computational Intelligence and
Multimedia Applications, Aug. 16-18, Reading
University, UK., pp: 11-16. DOI:
10.1109/ICCIMA.2005.39

Huang, Y., L. Ping, X. Pan and G. Cai, 2008. A fast
exact pattern matching algorithm for biological
sequences. Proceedings of the International
Conference on Biomedical Engineering and
Informatics, May 27-30, Sanya, pp: 8-12. DOI:
10.1109/BMEI.2008.154

Hudaib, A., R. Al-Khalid, D. Suleiman, M. Itriq and
A. Al-Anani, 2008. A fast pattern matching
algorithm with Two Sliding Windows (TSW). J.
Comput. Sci., 5: 393-401. DOI:
10.3844/jcssp.2008.393.401

Am. J. Engg. & Applied Sci., 4 (1): 102-107, 2011

107

Kalsi, P., H. Peltola and J. Tarhio, 2008. Comparison of
exact string matching algorithms for biological
sequences. Bioinform. Res. Dev., 13: 417-426.
DOI: 10.1007/978-3-540-70600-7_31

Klaib, A.F. and H. Osborne, 2009. BRQS matching
algorithm for searching protein sequence
databases. Proceedings of the International
Conference on Future Computer and
Communication, Apr. 3-5, Kuala Lumpar, pp: 223-226.
DOI: 10.1109/ICFCC.2009.40

Mohammad, A., O. Saleh and R.A. Abdeen, 2006.
Occurrences algorithm for string searching based
on brute-force algorithm. J. Comput. Sci., 2: 82-85.
DOI: 10.3844/jcssp.2006.82.85

Mahmood, A.W., N.A. Rashid and A.A. Rozaq, 2009.
BM-KMP hybrid algorithm for exact and
subsequence string matching. Proceedings of the
3rd International Conference on Informatics and
Technology, USM, Kuala Lumpur Malaysia, Oct.
27-28, pp: 81-87.

Madan, M. and S. Madan, 2010. Convalesce
optimization for input allocation problem using
hybrid genetic algorithm. J. Comput. Sci., 6: 413-
416. DOI: 10.3844/jcssp.2010.413.416

Michailidis, P.D. and K.G. Margaritis, 2002. On-line
approximate string searching algorithms: Survey
and experimental results. Int. J. Comput. Math.,
79: 876-888.

Raju, S.V. and A.V. Babu, 2007. Parallel algorithms
for string matching problem on single and two
dimensional reconfigurable pipelined bus
systems. J. Comput. Sci., 3: 754-759. DOI:
10.3844/jcssp.2007.754.759

Tathoo, R., A. Virmani, S.S. Lakskmi, N. Balakrishnan
and K. Sekar, 2006. TVSBS: A fast exact pattern
matching algorithm for biological sequences. J.
Current Sci., 91: 47-53.

Zalata, M.A. and Z. Alqadi, 2007. Separating low pass
and high pass frequencies in the image without
loosing information. Am. J. Applied Sci., 4: 237-
244. DOI: 10.3844/ajassp.2007.237.244

