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Abstract: Problem statement: In this research, we addressed the problem of minimizing the earliness-
tardiness penalties and manufacturing costs of a single machine with a stochastic controllable processing 
and tooling cost. Approach: We developed a mathematical non-linear integer programming model and 
its linearised version to find the optimal solution. We introduced a new genome representation in single 
machine scheduling literature that evolved by a genetic algorithm to solve the problem. The genome 
representation includes two genes per job, one represents the job starting time and other corresponds to 
the job processing time. The algorithms were compared based on the solution quality, CPU time and 
memory consumption in bytes on a set of randomly generated test problems. Results: The results showed 
that developed algorithms could define the global optimal solution of most scheduling problems with n ≤ 
20 jobs. For larger n, the developed genetic algorithm outperforms the math models in terms of solution 
quality and less CPU seconds while consumes moderate memory kilobytes of 3295 compared with 5058 
and 1685 of linear and nonlinear models on the average. Conclusion: The GA’s average performance 
achieves 6.013 related to the lower bound of math linear program whereas nonlinear model achieves an 
average of 1.034. The GA’s performance increases by increasing n compared with other techniques. We 
hope to expand the developed algorithms for different configurations as parallel and job shops. 
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INTRODUCTION 

 
 In this article, we examine the single machine 
scheduling problem with controllable processing time. 
In various real-life systems, the job processing time 
may be controlled by allocating extra resources such as 
money, manpower, energy, catalysts, spindle speed, 
feed rate, overtime, subcontracting and so on. For more 
interesting applications of such scheduling problems, 
Trick (1994); Kaspi and Shabtay (2003); Wang and 
Cheng (2005); Kayan and Akturk (2005) and Gurel and 
Akturk (2007a) for CNC turning operation in flexible 
manufacturing systems. In relation to these systems, 
resource allocation and scheduling objectives should be 
optimized simultaneously to achieve the most efficient 
system performance. 
 The modern continuous improvement paradigms 
such as lean manufacturing and 6-sigma focus on the 
creation of value through the relentless elimination of 
waste by the precise allocation of their resources and 

producing jobs according to the just-in-time principle. 
Moreover, these paradigms working on the optimal 
resource allocations in order to minimize the 
manufacturing cost that can be reflected in an 
increase in profit by cost reduction rather than the 
conventional approach of increasing the profit by 
price increase. Also, a significant value added to the 
product price is the inventory holding cost resulting 
from the excess production that could be eliminated 
by considering the earliness and lateness penalties. 
Various research work has been done that combine 
resource allocations and scheduling objectives as the 
work of Wassenhove and Baker (1982); Janiak 
(1987); Daniels and Sarin (1989); Daniels (1990); 
Panwalkar and Rajagoplan (1992); Cheng et al. 
(1996a; 1996b) and Janiak and Kovalyov (1996). 
 Vickson (1980) initiated the research in the 
controllable processing for a single machine with a 
linear resource consumption function to minimize the 
total weighted flow time cost plus controllable job 
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processing cost followed by the work done by 
Wassenhove and Baker (1982); Janiak (1987) and 
Janiak and Kovalyov (1996). For a survey concerning 
this area before 1990 Nowicki and Zdrzalka (1990) and 
brief surveys given later by Chen et al. (1998); 
Hoogeveen (2005) and Shabtay and Steiner (2007). 
Hoogeveen and Woeginger (2002) considered a 
controllable processing single machine scheduling 
problem to minimize the multi-criteria of the total 
weighted job processing times plus the linear 
compression cost function of the processing times and 
showed that the problem was NP-complete. 
 Kaspi and Shabtay (2004) considered the single 
machine scheduling problem with controllable 
processing time for identical and non-identical job 
release times restricted by a common limited convex 
decreasing resource consumption function for 
minimizing makespan. Moreover, Shabtay and Kaspi 
(2004) considered the same problem to minimize the 
total weighted flow time. Janiak et al. (2005a) 
minimized the multi-criteria of the total weighted 
completion and compression times for a controllable 
processing single machine. They showed that the 
problem was equivalent to the half-product 
minimization problem. Cheng et al. (2001) and Ng et 
al. (2005) considered single machine partitioned-jobs 
group scheduling problems with controllable 
processing times and the machine processed jobs of 
the same group simultaneously. Janiak et al. (2005b) 
presented the polynomial time algorithms based on 
solving two variables linear programming problems 
by geometric techniques to minimize the total 
weighted resource consumption of sequencing a set of 
jobs’ groups with independent setup times between 
groups of a single machine. The setups and processing 
times are compressible depending on the availability 
of two resources.  
 The single machine scheduling problems with 
resource dependent release times have been extensively 
studied by Janiak (1985); Cheng and Janiak (1994); 
Janiak (1998); Janiak (1991) and Li (1994) to 
minimize a single objective as makespan subjective to 
the total resource consumption or to minimize the 
multi-criteria of the total resource consumption cost 
plus the makespan. The single machine scheduling 
problem in which both release times and processing 
times could be controlled by the amount of the 
resource consumed was recently addressed by Wang 
and Cheng (2005) to minimize the makespan plus total 
resource consumption cost. 

 Although there has been a significant body of 
research work on process planning decisions for a 
turning operation with multi-objectives on parallel 
machine configuration with controllable processing 
time such as minimizing the sum of makespan and total 
processing cost as the work done by Alidaee and 
Ahmadian (1993); Cheng et al. (1996a; 1996b ); Jansen 
and Mastrolilli (2004) and Shabtay and Kaspi (2006) 
there is a little research work done for the single 
machine scheduling case. Recently, Gurel and Akturk 
(2007b) considered the minimization of the total 
manufacturing cost and total completion time 
simultaneously on identical parallel CNC turning 
machines. They developed an effective math 
formulation for the problem by minimizing the total 
manufacturing cost subject to a given makespan value. 
Also, they proved some optimality attributes which 
facilitate efficient heuristic algorithms to generate 
approximate non-dominated solutions. 
 Most of the scheduling literature focused on the 
optimization of scheduling objectives as makespan, 
total weighted completion times, or solving the multi-
criteria objective composed of these two scheduling 
objectives plus the optimization of the linear resource 
consumption function. Also, they assumed a discrete 
compression cost function or linear processing. In a 
different manner this article focuses on the 
minimization of earliness and tardiness penalties as 
scheduling objective plus the manufacturing cost 
function expressed as a nonlinear convex function of its 
processing time as showed by Kayan and Akturk 
(2005). In this article the manufacturing cost is defined 
in terms of tooling and operating costs. 
 The purpose of this article is to study the 
effectiveness of Applying Genetic Algorithms (GAs) to 
minimize the total manufacturing cost and the earliness-
tardiness penalties for manufacturing a set of n jobs of 
controllable processing times on a single machine. The 
main reason of selecting GAs is the non-linear nature of 
the problem that makes it is difficult to find optimal 
solutions by math programming algorithms when they 
are always trapped in local optimal solutions. 
Moreover, GAs are capable of obtaining near to optimal 
solutions of optimization problems consuming less 
CPU time and memory bytes (Mansour and Dessouky, 
2010). Also, they have the advantage of their flexibility 
of modeling complex constraints and objective 
functions. The manufacturing costs include the cost of 
operating the machine plus the tooling costs. We 
develop a genome representation that can be considered 
as a new addition to the single machine scheduling 
problem with controllable processing and investigate its 
reliability and applicability for solving large problems.  
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 The remainder of this article is organized as 
follows. In section 2, we give the problem definition 
and provide non-linear and linearised math formulation 
for the problem. The developed genetic algorithm is 
developed in Section 3. Section 4 provides numerical 
results on a set of generated test problems compared 
with the commercial math programming solver. Finally, 
Section 5 provides the conclusions and future research. 
 
Problem definition: The single machine scheduling 
problem with controllable processing time can be 
formulated as follows. Let π = {1,2,3,..,n} be a set of 
independent and non-preemptitive jobs which have to 
be executed on a single machine and ready to be 
processed at the start of production period. Each job has 
a single operation to be performed on the machine and 
has a uniform random processing time with an upper 
( U

jp ) and lower bounds (Ljp ). Also, each job has its due 

date (dj) and earliness-tardiness penalties (aj) and (βj). 
The cost parameters of performing job j on the machine 
were given in terms of machining cost per unit time (cj) 
of job j and the tooling cost multiplier (mj) and 
exponent (ej). The problem consists on allocation of 
jobs  to  time  slots  on  the  machine  and   defining   
the   processing   time   for each one to minimize the 
sum of earliness-tardiness penalties plus the 
manufacturing costs. 
 We use Kayan and Akturk (2005) formula for the 
manufacturing cost function of producing job j as a 
function of pj as shown in Eq. 1 bellow: 
  
 je

j j o j j jf (p ) c p m p= +  (1) 

 
 The first term is a linear increasing function of pj 
representing the cost of operating the machine for pj 
unit times and the second term is a nonlinear decreasing 
function of pj representing the tooling cost. The 
parameters mj and ej representing the job tooling cost 
multiplier and exponent of job j whereas the conditions 
mj>0 and ej<0 always hold and guarantee that fj(pj) is a 
non-linear convex function. Moreover, the processing 
time for job j is constrained by a lower (Ljp ) and upper 

( U
jp ) bounds. Kayan and Akturk (2005) for a detailed 

description on how fj(pj) is formed and how L
jp and 

U
jp are determined. 

 
MATERIALS AND METHODS 

  
 We developed a mixed integer non-linear 
programming model and its linearised version for the 
scheduling problem. Also, we developed a genetic 

formulation via developing a new genome 
representation that evolved by a genetic algorithm.  
 
The mixed integer non-linear math programming 
model: The problem can be formulated as a mixed 
Integer Non-Linear Math Programming (NLIP) model, 
which considered an extension of the standard single 
machine scheduling problem that use completion time 
variables Cj and the binary variables yjk to model the 
problem as the work done by Balas (1984); Queyranne 
and Wang (1991); Queyranne (1993); Queyranne and 
Schulz (1994); Pinedo (2002) and Khowala et al. 
(2005), as follows: 
 

j

n
e

j j j j o j j j
j 1

Minimize T E c p  m p
=

β + α + +∑  (2) 

 
Subject to: 
 

j jC p 0 j N− ≥ ∀ ∈  (3) 
 

( )j k k jkC p C M 1 y for j,k N and j k+ ≤ + − ∈ p  (4) 
 

k j j jkC p C My for j,k N and j k+ ≤ + ∈ p  (5) 
 

L
j jp p j N≥ ∀ ∈  (6) 

 
U

j jp p j N≥ ∀ ∈  (7) 

 
j j jC T d j N− ≤ ∀ ∈  (8) 

 

j j jC E d j N+ ≥ ∀ ∈  (9) 

 
jC 0 j N≥ ∀ ∈  (10) 

 
{ }jky 0,1 for j,k N and j k∈ ∈ p  (11) 

 
 The nonlinear objective of the mathematical model 
is to minimize the sum of earliness and tardiness 
penalties, the manufacturing and tooling costs of n jobs 
as indicated by Eq. 2. Equation set (3) ensures that the 
completion time for each job is greater than or equal to 
its processing time. The disjunctive constraints are 
defined in constraints set (4) and (5) that define if the 
job j is preceded by job k or not. The big M is taken to 
equal to the sum of upper processing times for all jobs 
in this article. Equation 6 and 7 define the lower,L

jp  and 

upper bounds, U
jp for each job. The calculations of the 

tardiness and earliness penalties are given by satisfying 
Eq. 8 and 9 respectively. Variables domain is restricted 
by Eq. 10 and 11. 
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Fig. 1: The proposed genome representation 

 
The mixed integer linear programming model: The 
solution of the nonlinear model always trapped in a 
local optima point so it needs to be linearised to an 
equivalent math Linear Programming (LP) to find the 
global optimal solution. The NLIP could be linearised 
by redefining the term pj to the summation shown in 
Eq. 12 where ui is a binary variable define the pj’s 
value, pr is the precession of the data set that equals to 
0.01 in this article and k equals to the difference 
between upper and lower processing time divided by pr. 
Equation 12 represents all possible values of the 
processing time of job j and Eq. 13 restricts this value 
to be a unique in terms of the binary variable ui. The 
term je

jp could be linearised by Eq. 14. Equation 15 

defines the variable ui as a binary:   

 

( )
k

L
j i j r

i 1

p u p i p j N
=

= × + × ∀ ∈∑  (12) 

 
k

i
i 1

u 1
=

=∑  (13) 

 

( )
j

j

ek
e L
j j r i

i 1

p p i p u j N
=

= + × × ∀ ∈∑  (14) 

 
{ }iu 0,1 i k∈ ∀ ≤  (15) 

 
The developed GA: GAs have been widely used in 
optimization literature to solve the non-polynomial time 
and complex problems as the satellite daily image 
selection problem, jobshop scheduling, flexible 
manufacturing systems operational problems and the 
optimization of single batch processors of chemical 
plants. The GA begins by generating a number of 
genomes equal to a predefined population size and 
performs a number of evolution processes as crossover, 
selection, replacement, mutation until satisfying a 
predefined stopping criteria to define a near to optimal 
solution. We describe the genetic formulation for the 
single machine scheduling problem with controllable 
processing times as follows.  
 
The genome representation: The genome 
representation consists of n pairs of genes. Each pair 

defines the start time and the amount of processing 
required per job. The genes holds real alleles express 
time values. For example, consider a 5 jobs problem 
represented by 10 genes as shown in Fig. 1 where sj 
denotes the possible value for starting the 
corresponding job. The first pair consists of 2 
consecutive genes denoting the start and processing 
times for job 1. The first gene represents the staring 
time and includes a value ranges from 0 and max 

(
n U

j jj 1
p ,max(d )

=∑ ) in steps of 0.01. The second 

represents the processing time required to finish job 1 
and so on. For example consider a 5 jobs problem as 
shown in Fig. 1. Suppose that, the lowers for processing 
times are {0.81,1.13,1.24,0.98,0.54} and the uppers are 
{1.59,2.78,2.87,1.31,1.92} then the starting times for all 
jobs equals any digit ranges from 0 to 10.47 and the 
alleles for each job processing time are any value 
ranges from L

jp  for the job plus a value ranges from 0 

to the job corresponding processing difference of 
{0.78,1.65,1.63,0.33,1.38}.  

 
The initialization scheme and genetic operators: The 
initial population was randomly generated for start 
times genes by generating a discrete uniformly 
distributed random number between 

[0,max( n

j jj 1
p ,maxd

=∑ )] for job j. For initializing 

processing time genes, we construct a discrete empirical 
probability distribution for each job’s processing time by 
dividing the range of processing time to 10 equal intervals. 
  Let the probability of appearance of the first 
interval numbers equals 1, the probability equals 0.9 for 
the second interval numbers and so on. The roulette 
wheel selection method, two point crossover and swap 
mutation operators were used to generate new 
offspring’s. The experimental section provides the 
settings that were used for these operators in this article. 

 
The genome score: Our genome representation does 
not guarantee feasible genomes at the initialization and 
during the evolution process at each GA’s step. To 
penalize the infeasible genomes, we added a cost term 
to the objective score f. It consists of a genome 
feasibility, ffes and performance, fper measures. The 
genome feasibility part measures the conflict between 
all jobs and the genome performance part measures the 
genome total cost. The genome score is calculated as 
the following procedure: 
 
Step 1: Calculate the sum of processing times of all 

possible job pair’s combinations spij 
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Step 2: Calculate the genome total overlap, δg that can 
be defined as the sum of all possible overlaps 
between any two job pair’s combinations 
between 1 and n. The overlap, δij between jobs 
(i, j) can be defined as the difference between 
the sum of pi and pj minus the actual difference 
dij as in Eq. 16: 

 
 ij i j ijp p dδ = + −  (16) 
 

The actual difference, dij between two jobs (i, j) 
could be determined by Eq. 17. The symbols Fi 
and Si indicate the finish and start times for 
jobs i and j respectively: 

 
ij i j i jd max(F ,F ) min(S ,S )= −  (17) 

 
The value of δg is the sum of all δij calculated 
using Eq. 16 

Step 3: Calculate the genome feasibility measure, ffes as 
in Eq. 18: 

 
fes gf (M ) / M= − δ  (18) 

 
If f fes value equals to 1, go to step 4 otherwise 
go to step 5. 

Step 4: Calculate the genome’s score f = ffes/2.0 and 
end 

Step 5: Calculate the genome’s total cost, TC, that is 
equals to the sum of tardiness, earliness, 
operation and tooling costs of the feasible 
genome then calculate the genome performance 
measure as shown in Eq. 19: 

 
 perf (M TC) / M= −  (19) 
 
Step 6: Calculate the genome score using Eq. 20 and 

end: 
 

fes perf (f f ) / 2= +  (20) 
 
 The GA heuristic was coded using the MATLAB 
software and tested on a Fujitsu Siemens Laptop, Intel 
(R) Pentium (R) M with 240 MB RAM, 40 GB HDD, 
1.6 GHz speed computer system running Windows XP. 
The results section will investigate the applicability of 
using the developed algorithms for solving the 
scheduling problem under considerations. 
 

RESULTS AND DISCUSSION 
 

Data set: For generating the test problems, five levels 
for n are considered ranges from 10-50 in steps of 10. 

Co and mj factors take the values are generated from a 
discrete uniform distribution from (0.1,4.5]. The ej 
factor is generated from a discrete uniform distribution 
from (0.1,2.0]. The Tightness Factor (TF) has two 
levels of 0.2 and 0.6. The earliness and tardiness 
penalties (αj and βj) are generated from a continuous 
uniform distribution from (0, 100]. The values for 

L
jp and U

jp are generated from discrete uniform 

distribution from (0.4, 3.5] and (0.1, 1.7] respectively. 
We swap L

jp  and U
jp  values if L U

j jp pf  to maintain the 

solution feasibility. The dj values are generated form a 
discrete uniform distribution from (Y×(1-TF-
0.5×RDD), Y×(1-TF+0.5×RDD)], 

where ( )n nU L
j jj 1 j 1

Y 0.5 p p
= =

= × +∑ ∑  and RDD (range of 

due dates) equals 0.2 and 0.6. There are 50 instances for 
each combinations resulting in 3000 problem instances.  
 
Computations results: Table 1 shows the 
performance of the developed math programming 
models and the developed GA in terms of the 
solution quality,   CPU seconds and memory 
kilobytes consumed by each   algorithm.  
 Columns 1-4 depict problem number, n, TF and 
RDD values for each problem. Columns 5-8 shows the 
performance of the linearised version of the model in 
terms of values of best objective, Obest, objective bound, 
Obound, CT and Mem where an ‘*’ sign indicates that the 
optimal solution was identified. Also, columns 9 to 12 
listed the values of Obest, Obound, CT and Mem for the 
non-linear model. The Obest and Obound are expressed as 
rational measures with respect to the Obound of the 
linearised model.  
 

 
 
Fig. 2: Scaterplot of problem number and memory 

consumption 
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Table 1: The experimental results 
Problem characteristics LINGO LP solution   NLIP solution   GA solution 
--------------------------- ------------------------------------------------- --------------------------------------------- -----------------------------------------------------------------------------------  
n TF RDD Obest Obound CT Mem Obest Obound CT Mem Obest Oavg Oworst         CT Mem (Ps,Ng) 
10 0.2 0.2 1.000* 499.648* 52 665 1.054 1.054 4672 62 1.000* 1.105 1.402 24 1136 200,1000 
10 0.2 0.6 1.000* 188.141* 45 609 1.001 1.001 170 62 1.000* 1.110 1.414 23 1129 200,1000 
10 0.4 0.2 1.000* 194.434* 61 652 1.117 1.117 864 62 1.000* 1.121 1.341 25 1128 200,1000 
10 0.4 0.6 1.000* 141.743* 57 654 1.038 1.038 253 62 1.000* 1.131 1.313 26 1138 200,1000 
10 0.6 0.2 1.000* 327.038* 312 499 1.028 1.028 7895 62 1.000* 1.141 1.418 25 1201 200,1000 
10 0.6 0.6 1.000* 275.250* 55 642 1.005 1.005 731 62 1.000* 1.143 1.423 26 1207 200,1000 
20 0.2 0.2 -- 283.063 -- 1642 4.970 1.065 -- 191 1.325 2.435 5.021 521 1272 250,10000 
20 0.2 0.6 1.000* 367.293* 2298 1631 1.025 0.669 -- 191 1.000* 2.671 5.532 536 1297 250,10000 
20 0.4 0.2 2.429 710.984 -- 1641 -- 0.530 -- 191 1.423 3.812 5.731 552 1294 250,10000 
20 0.4 0.6 1.000* 276.516* 843 1696 1.112 1.112 15340 189 1.000* 2.641 5.372 512 1275 250,10000 
20 0.6 0.2 -- 372.834 -- 1695 5.710 0.711 -- 187 1.643 3.210 5.281 532 1293 250,10000 
20 0.6 0.6 1.756 293.529 -- 1654 2.523 0.570 -- 180 1.438 2.491 5.382 580 1282 250,10000 
30 0.2 0.2 -- 561.972 -- 2585 3.195 0.719 -- 408 2.435 3.001 5.985 2219 1444 300,20000 
30 0.2 0.6 5.005 415.231  2596 5.493 0.870 -- 408 2.651 2.998 5.875 2341 1453 300,20000 
30 0.4 0.2 22.023 370.823 -- 2566 -- 0.954 -- 408 2.672 2.987 5.829 2254 1483 300,20000 
30 0.4 0.6 1.000* 393.328* 15645 2545 -- 0.472 -- 406 1.000* 3.012 5.972 2301 1449 300,20000 
30 0.6 0.2 -- 477.303 -- 2539 -- 0.695 -- 401 2.715 3.042 5.871 2306 1473 300,20000 
30 0.6 0.6 1.519 514.003 -- 2589 -- 0.629 -- 400 1.072 2.985 5.957 2287 1494 300,20000 
40 0.2 0.2 -- 546.873 -- 3791 -- 0.662 -- 801 2.987 4.098 8.091 5167 1580 300,30000 
40 0.2 0.6 -- 266.715 -- 3738 -- 1.196 -- 801 3.009 4.872 7.983 5209 1584 300,30000 
40 0.4 0.2 -- 312.746 -- 3755 -- 1.573 -- 811 3.098 4.912 8.786 5198 1598 300,30000 
40 0.4 0.6 -- 285.688 -- 3750 13.188 0.960 -- 801 2.876 4.761 8.887 5108 1606 300,30000 
40 0.6 0.2 -- 469.948 -- 3705 -- 0.841 -- 801 2.998 4.981 7.998 5210 1598 300,30000 
40 0.6 0.6 -- 456.322 -- 3791 -- 0.610 -- 801 2.985 3.998 8.956 5187 1596 300,30000 
50 0.2 0.2 -- 387.342 -- 4362 -- 0.917 -- 1230 3.987 5.874 8.112 10690 1604 300,40000 
50 0.2 0.6 7.880 418.261 -- 4302 -- 1.003 -- 1230 4.076 5.762 8.098 10761 1687 300,40000 
50 0.4 0.2 -- 264.167 -- 4307 -- 1.130 -- 1230 3.981 4.564 7.982 10782 1685 300,40000 
50 0.4 0.6 102.192 267.856 -- 4301 -- 1.305 -- 1233 4.908 6.276 8.002 10921 1669 300,40000 
50 0.6 0.2 -- 463.310 -- 4300 -- 0.789 -- 1232 3.983 6.256 8.652 10342 1663 300,40000 
50 0.6 0.6 -- 358.095 -- 4298 -- 1.019 -- 1230 4.009 5.983 8.654 10981 1695 300,40000 
60 0.2 0.2 -- 208.849 -- 5258 -- 0.770 -- 1758 4.619 6.882 8.349 22903 3296 300,60000 
60 0.2 0.6 -- 373.296 -- 5281 -- 1.274 -- 1759 4.810 7.038 8.373 22741 3273 300,60000 
60 0.4 0.2 -- 734.016 -- 5224 -- 0.868 -- 1758 4.353 6.725 8.216 22961 3252 300,60000 
60 0.4 0.6 -- 224.102 -- 5245 -- 1.196 -- 1758 4.336 5.910 8.286 22987 3271 300,60000 
60 0.6 0.2 -- 720.396 -- 5239 -- 0.454 -- 1758 5.003 6.613 7.619 22978 3259 300,60000 
60 0.6 0.6 -- 250.182 -- 5229 -- 1.479 -- 1758 4.711 6.135 8.326 22988 3268 300,60000 
70 0.2 0.2 -- 433.696 -- 6583 -- 1.319 -- 2378 5.387 7.690 9.724 40744 4282 300/80000 
70 0.2 0.6 -- 408.991 -- 6580 -- 1.082 -- 2378 5.609 8.450 9.753 41833 4278 300/80000 
70 0.4 0.2 -- 380.833 -- 6573 -- 0.736 -- 2378 5.078 7.861 9.570 40987 4239 300/80000 
70 0.4 0.6 -- 284.415 -- 6579 -- 1.408 -- 2369 5.059 6.755 9.651 42810 4229 300/80000 
70 0.6 0.2 -- 535.399 -- 6569 -- 0.741 -- 2360 5.834 7.625 8.876 40834 4264 300/80000 
70 0.6 0.6 -- 266.939 -- 6559 -- 1.367 -- 2357 5.495 7.387 9.698 41083 4229 300/80000 
80 0.2 0.2 -- 552.957 -- 7323 -- 1.075 -- 2749 6.193 8.121 10.296 58957 5192 350/90000 
80 0.2 0.6 -- 298.201 -- 7336 -- 1.276 -- 2748 6.483 7.740 10.146 59173 5161 350/90000 
80 0.4 0.2 -- 449.499 -- 7339 -- 1.233 -- 2748 5.879 8.352 10.086 59094 5181 350/90000 
80 0.4 0.6 -- 218.366 -- 7384 -- 1.381 -- 2747 5.559 7.488 10.170 59018 5131 350/90000 
80 0.6 0.2 -- 712.547 -- 7306 -- 1.105 -- 2748 6.328 8.103 9.471 58947 5133 350/90000 
80 0.6 0.6 -- 313.981 -- 7342 -- 1.388 -- 2749 5.890 7.683 10.480 59820 5140 350/90000 
90 0.2 0.2 -- 363.982 -- 8839 -- 1.021 -- 3439 7.023 9.701 11.809 87155 6039 400/90000 
90 0.2 0.6 -- 281.718 -- 8859 -- 1.077 -- 3439 7.680 9.317 11.553 87349 6029 400/90000 
90 0.4 0.2 -- 645.658 -- 8855 -- 1.219 -- 3439 7.379 8.584 10.110 87201 6020 400/90000 
90 0.4 0.6 -- 378.623 -- 8851 -- 1.355 -- 3439 7.248 9.687 11.723 87903 6019 400/90000 
90 0.6 0.2 -- 445.356 -- 8849 -- 1.597 -- 3439 7.298 9.015 11.780 88003 6017 400/90000 
90 0.6 0.6 -- 670.440 -- 8819 -- 1.131 -- 3439 7.077 9.214 11.106 87635 6018 400/90000 
100 0.2 0.2 -- 530.933 -- 9664 -- 1.458 -- 3846 9.405 11.442 13.646 99543 7064 500/90000 
100 0.2 0.6 -- 539.364 -- 9659 -- 1.148 -- 3846 10.531 11.863 13.088 100651 7076 500/90000 
100 0.4 0.2 -- 388.135 -- 9660 -- 0.984 -- 3846 10.038 11.928 13.695 100876 7077 500/90000 
100 0.4 0.6 -- 184.792 -- 9651 -- 1.317 -- 3846 9.853 10.706 13.221 100899 7080 500/90000 
100 0.6 0.2 -- 662.755 -- 9650 -- 1.289 -- 3846 9.555 11.617 13.898 101935 7076 500/90000 
100 0.6 0.6 -- 787.968 -- 9645 -- 1.034 -- 3846 9.427 10.774 12.556 101893 7079 500/90000 
 Mean  -- -- -- 5058 -- 1.034 -- 1685       4.474        6.013       8.1933        33076 3295      -- 
 Min.  -- -- --  499 -- 0.454 -- 62 1.000        1.105        1.313 23         1128 -- 
 Max  -- -- -- 9664 -- 1.597 -- 3846      10.531      11.928      13.899     101935   7080 -- 

 
The minimum, mean and maximum GA’s performances 
as listed as Obest, Oavg, Oworst in columns 13, 14 and 15 
respectively. Columns 16 and 17 show the average 
computational time and memory consumption for the 
developed GA. Column 18 lists the Population size (Ps) 
and number of generation’s combinations (Ng) for each 
problem.The performance of various algorithms are 
measured by the ratio of the solution/lower bound 

found by the algorithm with regard to the lower bound 
found by the math linear programming model using 
LINGO software where a stopping criteria of 36,000 
seconds was adopted. Each design of Table 1 represents 
a total of 50 problems, each one solved by the non-
linear, linear and the developed GA.  
 The genetic algorithm parameters such as 
population size, number of generations, crossover 
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and mutation probabilities affect the algorithm 
efficiency. Population sizes and number of 
generations varied for each test problem as listed in 
Table 1. The population size was set to 200, 250, 
300, 300, 300, 300, 300, 350, 400 and 500 for 
problems with n of 10, 20, 30, 40, 50, 60, 70, 80, 90 
and 100 respectively. Also, the number of generations 
was determined based on experimentations for each 
problem set separately as shown in Table 1 column 18. 
 Extensive experimental work was done on a 
hypothetical problem with 40 jobs to find the best 
values for the crossover and mutation operators. From 
this test case, a 0.95 crossover and 0.05 mutation 
probabilities were adopted for all test problems in this 
article. For each test problem, the GA was run 100 
times, each time with a different initial random seed 
resulting in 300,000 runs for all models. 
 In general, the linearised version of the nonlinear 
model could find the global optimal solution of most 10 
and 20 jobs designs. Also, the developed GA could 
find the global optimal solution for these problems 
consuming lower computational time. Also, it is 
observed that the NILP model consumes less memory 
rather than LP model and GA as shown in Fig. 2. The 
memory consumed by the non-linear model is so 
lower that of the linearised model due to the large 
number of binary variables of the linearised model 
rather than the non-linear one. Also, the GA consumes 
larger memory than LP model for the first 6 problems 
of 10 jobs set and consumes moderate memory 
kilobytes for all problems. 
 We first evaluate the developed algorithms for 
small size problems (n = 10), which can be solved 
optimally by the math LP algorithm using the software 
package LINGO. Table 1 show that the LP on the 
average spent 97 seconds to find the optimal solutions 
while the GA spent less than 25 seconds to find optimal 
solutions. Also, the NLIP model could not find any 
optima’s and spent on the average 2431 seconds to 
converge to local optimal solutions. The developed GA 
could define optimal solutions with a mean average 
performance of 1.12 compared with the LP bounds.  
 For medium size problem instances (n = 20, 30, 40, 
50), the LP and GA heuristics found the optimal 
solution for problems 8,10 and 16, however the GA 
spent less time than the LP model to find the optimal 
solutions and the NLIP algorithm could not find any 
optimal solutions. Moreover, the LP and the GA could 
find solutions for 10 problems whereas the NLIP 
algorithm could find only a local optimal solution for 
only 8 problems and could not define any optimal 
solutions for this set of problems. For the other large 
size problems, none of the math models could define 

any candidate best solution but they could define a 
lower bound for each problem while the developed GA 
could define feasible and good solutions compared with 
the lower bounds found by the linear model. 
 Based on experimentations, we can observe that 
the GA formulation for the problem under 
consideration can be solved in less CPU seconds rather 
than the math formulations of the problem while it 
consumes moderate memory kilobytes.   
 

CONCLUSION 
 
 In this research, we have proposed a math NLIP 
model for solving the single machine scheduling 
problem with controllable processing time for 
minimizing the total earliness and tardiness penalties 
and the total manufacturing cost. The developed non-
linear model was linearised to obtain the global 
optimum solution for the scheduling problem. Also, we 
developed a GA for solving the problem via developing 
a new genome scheme evolved in a genetic evolution 
process. The new genome representation could be 
considered as a new addition to single machine 
scheduling literature. The developed GA could define 
the same solutions as the LP model for small size 
problems where the number of jobs reach to 10 and also 
outperforms the developed math programming 
algorithms for larger problems in addition to it 
consumes small CPU seconds and memory kilobytes. 
 The natural development in the future of this work 
is to find a trade-off between the four criteria and to 
further improve the solution quality and speed of the 
developed GA. Also, this research can be expanded to 
different configurations as parallel machines, job shops 
and flexible job shops.  
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