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ABSTRACT 

This study shows the latest advances in the application of intelligent control to the inverted-pendulum 
problem. A complete review regarding intelligent control design is presented in this study in order to show 
the most important artificial intelligence methods used for controlling an Inverted-Pendulum. Also this 
study proposed the use of a neural-fuzzy-with-genetic-algorithms controller for the inverted pendulum 
problem which gives good results. Conventional controllers are presented in order to observe 
implementation problems. The study goes deeply in the details that have to take into account in order to 
understand design problems and limitations. 
 
Keywords: Inverted Pendulum, Intelligent Control, Fuzzy Logic, Neural Networks, Genetic Algorithms, 

ANFIS, Unstable Nonlinear Systems 

1. INTRODUCTION 

The inverted pendulum is a classical example of an 
instable, nonlinear system that has been solved in many 
ways but remain a prototypical case study for optimization 
and the testing of new control techniques. The inverted 
pendulum system is made of a rigid rod and a car to which 
the rod is joined by a bolt providing it with rotational 
freedom. The bar involves a frictionless union with one 
degree of freedom. The car can move rightwards or 
leftwards over tracks according to the force exerted upon it. 
The control objective is to keep the bar on balance, 
beginning from nonzero initial conditions, in such a way 
that the bar remains oriented upwards despite possible 
perturbations and the system’s intrinsic unstability (Jang, 
1992; Lundeberg, 1994; Williams and Matsuoka, 1991; 
Jacobs and Jordan, 1993; Kitamulra and Saitoh, 1990; 
Kouda et al., 2002; Sazonov et al., 2003; Mohanlal and 
Kaimal, 2002; Inoue et al., 2002; Harrison, 2003; Chen and 
Chen, 2003; Pal and Pal, 2003; Lam et al., 2003; Cho and 
Jung, 2003; Gao and Er,  2003;  Olguín, 2000; Jang, 1992; 
Ji et al., 1997;  DECE,  2003;  Omatu   and  Ide,  1994; 
Ravn and Poulsen, 2001; Jang-Sun-Mizutani, 1997; 
Riedmiller, 1993; Omatu et al., 2000; Jang, 1993; 

Nørgaard, 2000a; 2000b; Omatu et al., 1995; Storn and 
Price, 1997; Mirza and Hussain, 2000; Messner and 
Tilbury, 1999; Bishop and Dorf, 1999; Takagi and 
Sugeno, 1985; Olguín, 2003; Yang et al., 2000; Jung and 
Yim, 2000). This dynamical system can be characterized 
by four state variables, namely Equation 1: 
 

( )T

sx x x= θ θ& &  (1) 

 
Where: 
θ = The angle that the bar makes with the vertical (or 

horizontal) axis 
θ&  = The angular speed of the bar 
x = The position of the car relative to the tracks and 
x&&  = The linear speed of the car 
 

As mentioned before, the control objective is to set 
the car in its central position (x = 0) in such a way that 
the pendulum remains in its vertical position, with its 
bob pointing upwards. 

For our purposes, this means Equation 2: 
 

x x 0θ = θ = = =&& &&  (2) 
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Fig. 1. Schematics of the inverted pendulum system 
 
Table 1. Parameters for the simulated inverted pendulum 
M  Mass of the car 0.455 kg 
m  Mass of the pendulum 0.21 kg 
l  Distance from the  0.305 m 
 pendulum’s center of mass 
I  Moment of inertia of the pendulum 0.006 kg*m2 

 
Fig. 1 shows the system that is assumed for this 

project. The parameters used in the simulation are 
used in Table 1. 

The inverted pendulum has a great importance for its 
application in practical systems. In the military arena, it 
provides a framework for understanding the remote 
control of rockets, as they undergo sizable perturbations 
at launching due to fuel explosion that make it necessary 
to guarantee the desired orientation. There has been 
considerable work in other aero-spatial applications as 
well. The inverted pendulum is also a relevant model for 
understanding the way in which structures with two feet 
(such as human being and some robots) may walk while 
keeping balance (Lundeberg, 1994). Several solutions to 
the inverted-pendulum problem are known, so that 
research has increasingly emphasized the more complex 
cases of pendulum with two, three or more bars, as well 
as deformable pendulum (non-rigid bars) and 
multidimensional pendulum. These systems have more 
inputs and outputs in need of control, which makes them 
rather more unstable and nonlinear. 

The control law based on a conventional PID control 
is quite complex for one-input, two-output (SIMO) 
systems, such as the inverted pendulum case. Because of 
that, modern control theories are generally used in the 

control design of these systems. These techniques 
include state feedback, adaptive-control strategies, 
neural-network modeling to simulate possible 
combinations of input/output control, adaptive or 
intelligent neural-network controllers and, more recently, 
the integrated application of neural networks and fuzzy-
logic. This is so because fuzzy control requires an expert 
control law for the inverted pendulum formulated in 
terms of if-then rules. A recently designed controller, 
described in an IEEE publication, uses genetic 
algorithms, neural networks and fuzzy logic to tune a 
PID controller. Many neural-network architectures have 
proposed to control an inverted pendulum (Williams and 
Matsuoka, 1991). For example, Jacobs and Jordan (1993) 
considered a forward-modelling control where the 
system learns about a model relating the current state of 
the plant and the current controlling signal by a 
prediction of a future failure. The control learning of an 
inverted pendulum by means of a neuro-controller was 
proposed by Kitamulra and Saitoh (1990), who 
provided their system with a desired-output generator 
and an evaluator in addition to the neural controller. In 
the desired-output generator, the angle and angular 
speed of the car are generated from two equations that 
provide previous knowledge about the pendulum’s 
behavior, given the position and speed of the car. The 
evaluator is used to decide if the controller’s output is 
right or wrong and, depending on the current situation, 
generate a master signal to train the neuro-controller. 
This signal is based on the difference between the 
desired value and the control’s output. As remarked 
above, there is an increasing number of control 
methods, most of which are tested with the inverted-
pendulum problem, which has become more complex 
as free flexible bars over multiple axes are 
incorporated. Intelligent control has been given a new 
twist by applying fuzzy-logic, neural-network and 
optimization-algorithm techniques. New methods arise 
from improving the individual techniques and from 
their integration into schemes that make the best 
possible use of their advantages and capabilities. In the 
last few years, the state of the art has been defined by 
some of the following research areas: 

• Control for swing-up of an inverted pendulum using 
artificial neural network (Kouda et al., 2002) 

• Hybrid LQG-neural controller for inverted 
pendulum system (Sazonov et al., 2003) 
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• Exact fuzzy modeling and optimal control of the 
inverted pendulum on cart (Mohanlal and Kaimal, 
2002) 

• A fuzzy classifier system using hyper-cone 
membership functions and its application to 
inverted pendulum control (Inoue et al., 2002) 

• Asymptotically optimal stabilizing quadratic 
control of an inverted pendulum (Harrison, 2003) 

• Output regulation of nonlinear uncertain system 
with non-minimum phase via enhanced RBFN 
controller (Chen and Chen, 2003) 

• SOGARG: A self-organized genetic algorithm-
based rule generation scheme for fuzzy controllers 
(Pal and Pal, 2003) 

• Design and stability analysis of fuzzy model-based 
nonlinear controller for nonlinear systems using 
genetic algorithm (Lam et al., 2003) 

• Balancing and position tracking control of an 
inverted pendulum on an x-y plane using 
decentralized neural networks (Cho and Jung, 2003) 

• Online adaptive fuzzy neural identification and 
control of a class of MIMO nonlinear systems 
(Gao and Er, 2003)  

• techniques such as fuzzy logic, genetic algorithms, 
neural networks and ANFIS controllers 

• To apply a state-of-the-art ANFIS-genetic control to 
the inverted pendulum problem 

2. SYSTEM MODEL 

The description will begin by modelling the system 
with the free-body diagrams shown in Fig. 2. 

From the Euler-Lagrange method Equation 3: 
 
d L L

dt q q

 ∂ ∂− = τ ∂ ∂ &
 (3) 

 
where, the Lagrangian: 
 

TOTAL TOTALL k U= −  
 

It is the difference between the kinetic and potential 
energies Equation 4: 
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Where: 
 

TH(q) H(q) 0= 〉  
It is getting Equation 5: 

 
2

2 2
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 + − θ
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 (5) 

 
Thus, the Euler-Lagrange equation may be written as 

(Olguín, 2000) Equation 6: 
 

k U
H(q)q H(q)q

q q

 ∂ ∂+ − + = τ ∂ ∂ 
& &&& &  (6) 

 
The general procedure is presented. Assuming that 

there is no friction and considering only the pendulum 
model without the engine control implications 
concerning the balancing forces, it can be defined the 
system with the following second-order differential 
equations Equation 7 and 8: 
 

 

2

2
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gsin cos
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( )2u ml sin cos
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+ θ θ − θ θ
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+

& &&

&&  (8) 

 
This system has been validated in several papers 

(Jang, 1992; Ji et al., 1997). From the above equations, a 
Simulink/Matlab model was constructed as shown in 
Fig. 5. It was found that the system has a unit-step 
response as shown in Fig. 3. 

In the following sections, several control strategies 
for the nonlinear model are presented. After designing 
the inverted-pendulum simulator, its graphical stage was 
implemented (Fig. 4). Using the model proposed by 
(Olguín, 2003), the graphical part was specifically 
adapted to this model.  

2.1. PID Controller 

Although it is very difficult to control this system, a 
good idea is to use a simple control (PID) as starting 
point for the development and validation of more 
complex controllers. With this intention, the gains of the 
PID controller were found by trial and error in order to 
control both the angle and position.  
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Fig. 2. Free-body diagrams of the inverted-pendulum system 
 

 
 

Fig. 3. Step response of the inverted pendulum 
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Fig. 4. MATLAB graphic simulator of the inverted pendulum 

 

 
 

Fig. 5. Simulink/Matlab model of the inverted pendulum 

 
The simplest form to achieve this objective is to use 
two PID controllers, one for angle and the other for 
position and to add the corresponding control signals. 
The gain in the error signal was used to prioritize the 
control signals. 

Figure 6 and 7 show a pretty good response to 
impulse-type perturbations (the disturbance is 

limited).  It must  be  noticed  that  it  is rather 
difficult to  tune  this type of controllers if the 
designer does  not  want to linearize the system and 
the controllers  work  outside  of the operation point. 
On the other  hand  if  the  pendulum  is under a 
strong disturbance, the PID controllers could not 
control the system. 
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Fig. 6. Block diagram of the PID controller 

 

 
 

Fig. 7. Results from perturbations in the PID controller simulation 
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3. ROBUST CONTROLLER (LQR) 

Another way to use a non-intelligent controller, as 
suggested by an application in Matlab’s “Robust 
Control Toolbox”, involves in using a PID for position 
control and an Linear Quadratic Regression (LQR) 
discrete state estimator to stabilize the pendulum, as 
shown in Fig. 8. 

Once again, it is very hard to tune the PID and LQR 
gains. For this system, it was necessary to linearize the 
model to find the gains. 

To calculate the values of K, it was assumed all-state 
feedback (four states) (DECE, 2003) and look for the K 
vector determining the control law u = Kx. This has 
been done by means of the lqr function, which returns 
the optimal controller and allows us to choose two 
parameters, R and Q, which prioritize inputs and the 
state-cost function to optimize. 

 In this case, the choice was made of using R = 1 and 
Q in the form: 
 



















=

0000

010000

0000

0005000

Q

 
 

A vector of the form K = [0-18-166.5-15.2]T was 
obtained. It was simulated with the previously-shown block 
diagram using 0.1 rad and 0.1 m as initial conditions. The 
response thus obtained is shown in Fig. 9. 

Later on it will be used this method in neural-network 
training. 

4. FUZZY LOGIC CONTROLLER 

The Mamdani inference system was used as its 
graphical user-friendliness makes it easier to understand 
the controller’s logic. The previous knowledge that is 
required to control the system is formed by the following 
rules (Williams and Matsuoka, 1991): 

• When the pendulum is falling away from the vertical 
and the angular speed is changing in the direction 
opposite to the fall, the pendulum will be forced 
to move in the same direction suggested by the 
angular speed 

• When the car is moving at a certain distance from 
the center of the tracks and the pendulum is 
vertically oriented, the pendulum will tend to fall 
towards the center of the tracks 

For simplicity, it will be considered here the 
stabilization of the pendulum, regardless of the 
position of the car. There were defined the following 
membership functions: 

It were also determined seven rules as follows 
(Omatu and Ide, 1994): 

• Rule 1: If θ = PM and ∆θ = ZO, then u = PM 
• Rule 2: If θ = PS and ∆θ = PS, then u = PS 
• Rule 3: If θ = PS and ∆θ = NS, then u = ZO 
• Rule 4: If θ = NM and ∆θ = ZO, then u = NM 
• Rule 5: If θ = NS and ∆θ = NS, then u = NS 
• Rule 6: If θ = NS and ∆θ = PS, then u = ZO 
• Rule 7: If θ = ZO and ∆θ = ZO, then u = ZO 

These rules can be summarized in the following 
table, called the fuzzy association matrix or 
knowledge matrix. The mambership functions are 
shown in Fig. 10. 

The Fuzzy Inference System (FIS) was created as 
shown in Fig. 11. 

The fuzzy control surface, presented in Fig. 12, was 
determined as follows: 

To make use of the fuzzy controller, the block diagram 
in Fig. 13 was constructed with initial contions of 0.1 rad 
and 0.1 rad/s. The response is shown in Fig. 14. 

It was obtained a good response as the pendulum is 
well-stabilized, slowly but without overshoot. Thus it is 
proved that the fuzzy controller has a correct behavior.  

5. NEURAL NETWORK AS SYSTEM 
IDENTIFIER 

To show one of the applications of Neural Networks 
(NN) in the inverted pendulum problem. Now it was 
applied to the system under consideration. In first place, 
one must make some experiments and acquire 
representative points from the system. To obtain data 
from the stabilization area (vertical position), the robust 
open-loop controller described in the previous section. 
The system was excited in the desired region using 
perturbations to extend the data range, as shown in the 
block diagram in Fig. 15. 

The training data consist of the state variables and the 
control signal, as shown in Fig. 16. 

The next step involves choosing the best neural 
network architecture. This architecture depends mainly 
on the system complexity, including the number of 
inputs and outputs.  
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Fig. 8. Block diagram of the robust control with LQR 
 

 
 

Fig. 9. Response of the robust controller 
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Fig. 10. Membership functions of the fuzzy controller 
 

 
 

Fig. 11. Fuzzy inference system 
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Fig. 12. Surface generated by the fuzzy controller 
 

 
 

Fig. 13. Block diagram of the fuzzy controller 
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Fig. 14. Response of the fuzzy controller 
 

 
 

Fig. 15. Block diagram of the perturbed fuzzy con-troller 
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Fig. 16. Training data 
 

 
 

Fig. 17. Neural network architecture 
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Fig. 18. Neural-network learning 
 

 
 

Fig. 19. Data estimation and error 



Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014 

 
207 Science Publications  AJEAS 

 
 

Fig. 20. Untrained data 
 
Thus it was chosen to use a Multilayer Perceptron (MLP) 
with 20 hidden nodes with hyperbolic tangent functions 
and two linear nodes as output (Fig. 17). 

Our MLP will estimate the following angle and position 
from the previous state and the control signal according to 
the function (Ravn and Poulsen, 2001) Equation 9: 
 
y(t 1) g[y(t), y(t 1),

y(t 2),u(t),...,u(t 1)]

+ = −
− −

 (9) 

 
Where: 
 

( ) (t)
y t

x(t)

θ 
=  
 

 

 
 Levenberg-Marquardt training quickly (Hagan and 

Menhaj, 1994) reaches the error goal of 10-8, as shown 
in Fig. 18. Training data are well estimated (Fig. 19). 

Neural networks are good learners of the training 
data, sometimes even too good as they only learn those 
data. To be certain that the NN really understood the 
system and not just the training data, additional data 
(called validation data) were generated as shown in Fig. 

20 and the NN estimation achieved an error of less than 
10-4, as shown in Fig. 21. 

This is an excellent estimation, showing that neural 
networks are very good plant identifiers. Figure 22 
shows a schematics of the Neural Network  controller. 

6. ANFIS CONTROLLER 

It was attempted to train an ANFIS controller (Jang, 
1993) to correctly stabilize the system in the least 
possible time and in the simplest possible way for 
nonzero initial conditions (both positive and negative), in 
such a way that genetic algorithms (Hassanzadeh et al., 
2008) could later be used to optimized it. Several types 
of controllers were tested following the inverse 
controller concept (that learns from the model 
(Nørgaard, 2000a; 2000b), in which training is 
performed with the process’ output data but execution 
is performed with the previous output used as current 
input and the resulting output used for process control. 
It was tested this way because the training features of 
the  network may be different. Several ANFIS 
(Saifizul et al., 2006) controllers were created, trained 
with different data sets and tested with the simulator. 
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Fig. 21. Response to untrained data and its error 
 

 
 

Fig. 22. Schematics of the controller with neural net-work 
 

The organization used is described as follows: 

• Control with angle and position training in a time 
sequence with 8 inputs 

The controller learns and operates in response to the 
previous system outputs and the previous signal from the 
controller itself. In this case, it will have seven inputs 
encompassing angles, positions and earlier control 
signals. The signal r(t+1) will consist exclusively of 
zeros, as the system’s reference signal.  

Three different cases were considered: Random 
training, sub-clustering and grid partition. Each of them 
will now be described: 

6.1. Random Training 

Training data were created by exciting the inverted 
pendulum system with random values, with no tuning of 
PID controllers, with the only purpose of finding the 
system response for different input types. A Simulink 
inverted-pendulum model with graphical interface 
presented by (Olguín, 2003) and represented in Fig. 23. 

The Editor for   the anfis   system is presented in Fig. 
24 which  shows the training process when a cluster 
partition is used. 

The code needed to generate time-sequenced data 
(current state, previous state and reference signal) is 
given as follows: 
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• C = length(entrenaCTRL) 
• entrenaU = [entrenaCTRL(3:C,1:2), 

entrenaCTRL(2:(C-1),1:2), entrenaCTRL(1:(C-
2),1:3), entrenaCTRL(2:(C-1),3)] 

• TrainU = [entrenaU(2:(C-2)/2,:)] 
• TestU = [entrenaU((C-2)/2:3*(C-2)/4,:)] 
• CheckU = [entrenaU(3*(C-2)/4:(C-2),:)] 
• anfisedit 
• plot(entrenaU) 

A grid-partition ANFIS controller was trained with 
2 Gaussian-type membership functions per input, with 
a total of 7 inputs, a constant output and 50 training 
operations. 

The error obtained, 0.56205, is acceptable because 
the control signal reaches ±200, an error of about 0.28%. 
Such error is compared with the reference value as 
shown in Fig. 25. 

 

 
 

Fig. 23. Simulator of the inverted pendulum to obtain random data 

 

 
 

Fig. 24. ANFIS editor for the grid-partition method 
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Fig. 25. ANFIS editor showing trained data 
 

 
 

Fig. 26. Block diagram of the ANFIS-controlled simu-lator 
 

There are gaps in the training data, so it does not 
cover all possible values. Nevertheless, the network 
learns reasonably well from the system. To simulate the 
ANFIS controller, a block diagram was designed to feed 
the time-sequenced signals Fig. 26. 

Results were rather unsatisfactory. Figure 27 shows 
that the system keeps within the desired zone for tenths 
of second, but remains unstable.  

The topology of the ANFIS system is presented in 
Fig. 28-33 shows the control signal.  One can infer that 
the ANFIS controller is capable of controlling the 
system, but more training in the stabilization zone is 
required. As the random signals do not cover specifically 
well this area, a controller that keeps them in the desired 
zone is required. 

6.2. Sub-Clustering 

This approach to creating a fuzzy network consists of 
dividing training data among different zones and creates 
membership rules between them. With the standard 
parameters:  

• Influence range: 0.5 
• Compression factor: 1.5 
• Acceptance rate: 0.5 
• Rejection rate: 1.5 

A network as shown in the following figure was created: 
Evidently, it is much simpler than the one in the 

previous case. The results were calculated with the robust 
control system and initial conditions of 0.5 rad and 0.3 m 
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for angle and position, respectively. In addition, impulse 
perturbations were introduced that provide the change of 
reference for the car’s position. The control signal was 
saturated at ±20 and the following result was obtained: 

The signal was prepared using the EntrenaU program, 
using the following expresión Equation 11: 
 

1 y(t 1), y(t),..., y
û(t) g

(t n 1),u(t 1),...,u(t m)
− + 

=  − + − − 
 (11) 

 
And the following code: 

• entrenaCTRL = Ucontrollim 
• C = length(entrenaCTRL) 
• entrenaU = [entrenaCTRL(3:C,1:2), 

entrenaCTRL(2:(C-1),1:2), entrenaCTRL(1:(C-
2),1:3), entrenaCTRL(2:(C-1),3)] 

• TrainU = [entrenaU(2:(C-2)/2,:)] 
• TestU = [entrenaU((C-2)/2:3*(C-2)/4,:)] 
• CheckU = [entrenaU(3*(C-2)/4:(C-2),:)] 

Training was made with half of the available data, 
with testing and cheking made with the remaining half. 
Sub-clustering training was made with the ANFISEDIT 
routine using the following parameters: 

• Influence range: 0.5 
• Compression factor: 1.5 
• Acceptance rate: 0.5 
• Rejection rate: 1.2 

A 7-input network was generated with two 
membership functions per input and a linear output of 
the form: 

Training was performed in 50 iterations with a hybrid 
optimization approach. 

Once the ANFIS was trained, it was simulated with 
the following block diagram: 

The system was capable of controlling initial 
conditions of 0.1 rad and 0.1 m, even for initial conditions 
of 0.3 rad and 0.1 m. However, it never reaches total 
stabilization as it oscillates, although it manages to keep 
the pendulum in the desired, vertical region. It was also 
tested changing the output condition to constant, but that 
means only two rules and becomes nonfunctional. 

6.3. Grid Partition 

Training data were determined by the robust 
controller previously obtained. Care was taken to ensure 
that the control would not only find the stabilization data, 
but also that it would become momentarily unstable to 

determine a larger response range. Then a system with 
two Gaussian-type membership functions was created for 
the 7 inputs and a constant output. The network creates 
many rules by itself, as shown in Fig. 34. 

It was trained with an error of 0.7335, as shown in 
Fig. 35. Nevertheless, the simulation response is 
unstable, as shown in Fig. 36. The output is made of 128 
parameters (128 constant-type rules). 

Trying to improve this type of controllers, a new test 
was performed for a more complex system. The same 
parameters of the previous case were used with a linear 
output. The resulting training had an error of 0.59917, 
but the result is still unsatisfactory, as shown in Fig. 37 
and the control topology is presented in Fig. 38. 

6.4. Control with 8-Input Time-Sequence State 
Training 

This control is trained with the desired signal and the 
previous system output; the desired signal when using the 
controller is the zero matrix. Learning is simplified but 
there are fewer conditions showing the state of the system.  

The training data were obtained with the same robust 
controller. These data were reordered in such a way that 
the current (theta, dtheta, x, dx) and future states were 
considered in the training of the controller. The 
following code was used: 

• %8 ENTRADAS, ESTADO +1 (THETA, 
DTHETA, X, DX) Y ESTADO ACTUAL 

• entrenaXref = UcontrollimX 
• D = length(entrenaXref) 
• entrenaUXref = 

[entrenaX(3:D,1),entrenaX(3:D,2),entrenaX(3:D,3),
entrenaX(3:D,4),entrenaX(2:(D-
1),1),entrenaX(2:(D-1),2),entrenaX(2:(D-
1),3),entrenaX(1:(D-2),4),entrenaX(2:(D-1),5)] 

• TrainUXref = [entrenaUXref(2:(D-2)/2,:)] 
• TestUXref = [entrenaUXref((D-2)/2:3*(D-2)/4,:)] 
• CheckUXref = [entrenaUXref(3*(D-2)/4:(D-2),:)] 

Training data are shown in Fig. 39. A grid-partition 
ANFIS was also built of the form shown in Fig. 40.  

It was sought to simplify the grid-partitioned network 
by reducing each input’s membership functions in such a 
way that it only had a single membership function for the 
future state (which would later be changed by zeros 
when used as controller) and 3 functions for theta, 2 for 
dtheta and x and 1 for dx. The corresponding training, 
with only 3 iterations, is shown in Fig. 41 and some 
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other examples Fig 42-44. As expected, it did not work 
(but it was worthwhile to try it!). 

6.4. Control with 4-Input State Training  

This control is the simplest of its type. It is trained 
and executed with only the state of the system. It can be 
used because the reference does not change in time. It is 
the simplest method, so its implementation may help in 
the next stage using genetic algorithms. 

Table 2. Represents the fuzzy association matrix in 
which the negative values of the consequences are 
concentrated in the upper zone of the table (NS and 

NM), positive values are in the lower zone of the table 
(PS and PM) and Zero in the diagonal line (ZO). Those 
consequences are the representative values for the inputs 
signals (Θ and ∆Θ). 
 
Table 2. Fuzzy association matrix of the fuzzy controller 
θ\∆θ NS ZO PS 
NM  NM 
NS NS  ZO 
ZO  ZO 
PS ZO  PS 
PM  PM 

 

 
 

Fig. 27. Grid-partition ANFIS simulation results 
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Fig. 28. ANFIS architecture 
 

 
 

Fig. 29. ANFIS control signal 
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Fig. 30. ANFIS network architecture 

 

 
 

Fig. 31. ANFIS editor training sub-clustering system 
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Fig. 32. Block diagram of the system with ANFIS controller with time-dependent state 
 

 
 

Fig. 33. Simulation results with sub-clustering 
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Fig. 34. ANFIS architecture with grid partition 
 

 
 

Fig. 35. ANFIS editor for grid partition 



Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014 

 
217 Science Publications  AJEAS 

 
 

Fig. 36. ANFIS results for grid partition 
 

 
 

Fig. 36. Grid-partition ANFIS editor 
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Fig. 37. Grid-partition ANFIS simulation results 
 

 
 

Fig. 38. Schematics of the controller 
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Fig. 29. Training data for the controller 
 

 
 

Fig. 40. ANFIS architecture 
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Fig. 41. Grid-partition ANFIS editor 
 

 
 

Fig. 42. Unsatisfactory response of the ANFIS con-troller 
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Fig. 43. Schematics of the ANFIS controller 
 

 
 

Fig. 44. Training data 
 

  
Fig. 45. Block diagram of the ANSIS controller 
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Fig. 46. Sub-clustering ANFIS editor 

 

 
 

Fig. 47. Results of the ANFIS controller’s simulation 
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Fig. 48. Training data 

 
Three different forms were implemented: Differential 

control as a function of k, continuous control with a 
small number of training data and continuous control 
with a larger number of training data. Only the best 
example of each form will be analyzed here.  

Differential control as a function of k Given that this 
control works with the state data in time K, the 
discretization of the training data was considered in such 
a way that the derivative would be the diference between 
k and k+1. This was done with the following code: 

• entrenaX = Ucontrollim 
• D = length(entrenaX) 
• entrenaUX = [entrenaX(2:(D-1),1),-entrenaX(2:(D-

1),1)+entrenaX(1:(D-2),1),entrenaX(2:(D-1),2),-
entrenaX(2:(D-1),2)+entrenaX(1:(D-
2),2),entrenaX(2:(D-1),3)] 

• TrainUX = [entrenaUX(2:(D-2)/2,:)] 
• TestUX = [entrenaUX((D-2)/2:3*(D-2)/4,:)] 
• CheckUX = [entrenaUX(3*(D-2)/4:(D-2),:)] 

The training data were generated. Training was 
performed in several forms and was simulated with the 
block diagram shown in Fig. 45, with is simplified as the 

derivative must be equal to the change between the 
previous and current states and the current value is the 
desired (zero) value. Thus, the derivative is simply the 
negative value of the previous output. 

Now it will be analyzed several tests from the 
configuration and training of the ANFIS. 

6.5. Sub-Clustering  

The following parameters were used: 

• Influence range: 0.3 
• Compression factor: 1.5 
• Acceptance rate: 0.5 
• Rejection rate: 1.5 

Training error has the value 2.0805. The result 
becomes unstable after a few seconds. 

The training of the ANFIS was done by sub-clustering , the 
editor is presented in Fig. 46 and the results of the ANFIS 
controller’s simulation are shown in Fig. 47. 

6.6. Continuous With Few Training Data 

The fact that the system model provides knowledge 
of the derivatives was used to directly obtain the current 



Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014 

 
224 Science Publications  AJEAS 

state. Once again, the robust controller data were 
obtained and are shown in Fig. 48. 

The training data were generated according to: 

• % 4 ENTRADAS, ESTADO THETA, DTHETA, X, 
DX 

• entrenaX = UcontrollimX 
• D = length(entrenaX) 
• entrenaUX = [entrenaX(2:(D-1),1),entrenaX(2:(D-

1),2),entrenaX(2:(D-1),3),entrenaX(1:(D-
2),4),entrenaX(2:(D-1),5)] 

• TrainUX = [entrenaUX(2:(D-2)/2,:)] 
• TestUX = [entrenaUX((D-2)/2:3*(D-2)/4,:)] 
• CheckUX = [entrenaUX(3*(D-2)/4:(D-2),:)] 

The ANFIS controller with grid partition was trained 
with 2 membership functions for each of the four inputs, 
with 1 linear output. Fig. 49. Presets the ANFIS editor for 
grid partition 

The rules are shown as follows (Fig. 50): 
Direct simulation was performed, with the current 

state provided as feedback. Notice that the controller 
does not depend on the system error, but on its current 
conditions and from that information it chooses the 
new signal to stabilize the plant; Fig. 51.  shows the 
ANFIS simulator’s block diagram. Fig. 52 exemplifies 
the ANFIS simulation results in which  smooth 
merging responses are reached. 

A test was made for 0.1 rad and 0.1 m initial 
conditions. The result is shown as follows. It totally 
stabilizes in 6 sec. 

On the other hand, with different initial conditions, 
like 0.3 rad and 0.1 m, the system becomes unstable, as 
shown in Fig. 53.  

The Fig 53 and 54 gives the results when the initial 
conditions are postive and negative and how those 
conditions affects the whole system Fig. 55-72. 

Finally, direct state feedback of the system was again 
tested, but now with more training data. The same data 
of the robust controller were used, divided in two groups. 
The first half was used for training and the second half 
was further divided in two, with one quarter of the total 
data to test and the last quarter to check.  The same logic 
was used as with the earlier controllers, but now data 
were created for both initial and positive initial 
conditions. Training was performed first with the 
response to positive initial conditions and then to 
negative initial conditions. The same was done for the 
test and evaluation of the controller.  

The data provided are: 

With sub-clustering, 30 iterations and the following 
parameters: 

• Influence range: 0.2 
• Acceptance rate: 0.2 
• Rejection rate: 0.1 
• A network with the following structure was obtained 

It was simulated for initial conditions of 0.3 rad and 
0.3 m, obtaining the following result. 

6.7. Then, with -0.3 rad and -0.3 m 

Upon detailed analysis, the stable-state error for theta 
is 0 and for x is 5e-3. 

This last controller is the one which worked best in 
accordance to the established requirements and was 
prepared for optimization with genetic algorithms. 

For each control type, different parameters were 
tested about the network build-up, with different training 
data. This means that the search for an efficient 
controller may be very complex, aside from the fact that 
no established story was made up except for the 
observation of the results while varying the results. 

7. ANFIS CONTROLLER OPTIMIZED BY 
GENETIC ALGORITHMS 

Genetic algorithms are used to optimize a system 
without the use of derivatives, by a defined criterion, 
with parameters such as the mutation and crossing rate 
and choices such as the coding, selection and 
evaluation methods for each member of the population 
(Omatu et al., 1995). For a more detailed description 
of genetic algorithms, the reader is direct to 
(Hassanzadeh et al., 2008) 

It with the ANFIS controller previously defined. Only 
the parameters of the two linear output functions (5 
parameters for each output). The controller is described 
in the following block diagram. 

The inverted pendulum model provides the initial 
conditions. 

As the genetic algorithms involve population 
members that are mutations, i.e., random values, it may 
happen that the system becomes unstable and the 
simulation goes to infinity, leading to a slower time for 
optimization. Thus, saturation blocks were added to 
avoid that both the controller and the system state get out 
from the permissible zone. This does not affect the 
results, as only the operation of the controller under high 
error conditions is limited.  
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Fig. 49. ANFIS editor for grid partition 
 

 
 

Fig. 50. Fuzzy-rule evaluation with ANFIS 
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Fig. 51. ANFIS simulator’s block diagram 
 

 
 

Fig. 52. ANFIS simulation results 
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Fig. 53. Results of the ANFIS simulation with other inicial conditions 
 

 
(a) 

 

 
(b) 

 
Fig. 54. Response to new initial conditions (a) positive initial conditions and (b) negative initial conditions (Blue signal represents 

angle, green signal represents position) 
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Fig. 55. ANFIS editor for sub-clustering 

 

 
 

Fig. 56. ANFIS architecture with sub-clustering 
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Fig. 57. Response of the system to positive initial con-ditions 
 

 
 

Fig. 58. Response of the system to negative initial conditions 
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Fig. 59. Block diagramo of the system optimized with a genetic algorithm 

 

 
 

Fig. 60. Optimization with genetic algorithm in 100 iterations (Error vs generations) 
 

 
 

Fig. 61. Optimized-system response with negative conditions 
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Fig. 62. System response to positive initial conditions 
 

 
 

Fig. 63. Optimization of the system in 2000 genera-tions (Error vs generations) 
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Fig. 64. System response to negative initial conditions 

 

 
 

Fig. 65. Optimization of the system in 200 generations (Error vs generations) 
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(a) 

 

 
(b) 

 
Fig. 66. System response to two different initial conditions (a) After GA with positive initial conditions and (b) After GA with 

Negative initial conditions Time in [ms] 
 

 
 

Fig. 67. System optimization with 2000 generations (Error vs generations) 
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Fig. 68. System response to positive initial conditions 
 

 

 
Fig. 69. Lineal variation of the weight variation vs time [ms] 
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Fig. 70. System error from the new weighted quadratic criterion 

 

 
 

Fig. 71. System optimization with 1000 generations. (The error is in base x 10e4) 
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(a) 

 

 
(b) 

 
Fig. 72. System response for two different initial conditions (a) positive and (b) negative 

 
The base code of the genetic algorithm used in this 

paper is presented  in (Storn and Price, 1997). The genetic 
algorithm was worked in all the simulations with the 
following parameters: 

• VTR-Value To Reach, it is a condition for stopping 
which, in our case, the error criterion establishes to 
be of 1×10-3, under the assumption that such value 
would never be reached 

• Maximum number of iterations-Number of 
generations, this was the main stopping condition of 
the algorithm 

• D-Number of parameters to modify by the system; in 
our case there were 10 such parameters 

• XVmin-Inferior-limit vector for the initial 
population; it was-10% the value of each output 
parameter for the initial ANFIS 

• XVmax-Superior limit vector for the initial 
population; it was +10% the value of each output 
parameter for the initial ANFIS 

• NP-Number of members of the population. There were 
used 15*D, i.e., 150 members for each population 

• F-Step value between iterations; a value between 0 
and 2 is suggested-it was chosen 1 

• CR-probability of crossing, should be between 0 and 
1, for which it was chosen 0.4 

Strategy-The algorithm allows one to choose among 
many strategies, but the one that served us best was an 
exponential (non-binary) value coding with a rand-to-
best logic, which reinforces from the random values 
those that gave a better response. 

Refresh-It measures the number of generations that 
are counted before presenting results. This was an 
unimportant parameter from the optimization point of 
view, but it helped us to observe the process. It was used 
it to generate optimization graphs. 

Several genetic-algorithm programs were created with 
different systems and different iteration numbers, namely: 

• System with initial conditions -0.3 rad and -0.3 m, 
up to 100 iterations 

• System with initial conditions 0.3 rad and 0.3 m, up 
to 2000 iterations 

• System with initial conditions both positive and 
negative (±0.3 rad and ±0.3 m), up to 200 iterations 

• System with initial conditions both positive and 
negative (±0.5 rad and ±0.5 m), up to 2000 iterations 
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• System with initial conditions both positive and 
negative (±0.5 rad and ±0.5 m), up to 1000 iterations 
with a weighted stopping criterion 

6.8. Now, it will be Analyzed 

System with initial conditions -0.3 rad and -0.3 m, up 
to 100 iterations. 

With the system having initial conditions of -0.3 rad 
and -0.3 m, the following function is to be optimized 
Equation 12: 
 

2 2error 20* theta 10* x= +∑ ∑  (12) 

 
where, theta and x are the output values in each 
simulation time. A weight of twice the error is given for 
the angle considered with respect to position to enhance 
the controller’s operation over this variable. The 
simulation was executed with Simulink and the values of 
theta and x were exported in matrix form. The 
optimization was made for 100 iterations: 

The optimized parameters, which are the constants in 
the linear output equations of the Sugeno controller, are 
given by: 

• best(1) = 34.995418 
• best(2) = 3.882741 
• best(3) = 3.441896 
• best(4) = 4.816650 
• best(5) = 0.074609 
• best(6) = 18.771968 
• best(7) = 5.367916 
• best(8) = 21.764996 
• best(9) = 10.569450 
• best(10) = -0.256071 

After running the simulation with initial conditions of 
-0.3 rad and -0.3 m, it was obtained: 

With positive initial conditions of 0.3 rad and 0.3 m, 
we obtained: 

System with initial conditions 0.3 rad and 0.3 m, up 
to 2000 iterations 

It is handled in the same way as the previous 
iteration, but now with positive initial conditions (0.3 rad 
and 0.3 m), up to 2000 iterations (generations), as 
follows: 

It took the algorithm 19 h to finish, executing some 
300,000 evaluations in the simulator (block diagram). 
The parameters thus obtained were:  

• best(1) = 46.415248 
• best(2) = 0.443056 

• best(3) = 24.635170 
• best(4) = -1.163018 
• best(5) = -7.951112 
• best(6) = 7975.784165 
• best(7) = 297.404686 
• best(8) = 3420.556959 
• best(9) = 364.341177 
• best(10) = -1.014442 

6.9. It is Obtained 

System with initial conditions both positive and 
negative (±0.3 rad and ±0.3 m), up to 200 iterations. 

It was handled in a similar way as the previous one, 
but taking care that the optimization has at the same time 
an evaluation with positive and negative initial 
conditions. This was achieved by running two 5-sec 
simulations for positive and negative initial conditions. 
Both were executed every time that the optimization 
criterion was evaluated and both arrays were exported to 
satisfy the criterion Equation 13: 
 

2
pos neg

2
pos neg

error 20* (theta theta )

10* (x x )

= + +

+
∑

∑
 (13) 

 
This case was executed with 200 iterations 

(generations). 
The optimized parameters are: 

• best(1) = 38.348628 
• best(2) = 4.352005 
• best(3) = 6.595191 
• best(4) = 6.084092 
• best(5) = 0.315752 
• best(6) = 21.473104 
• best(7) = 6.225609 
• best(8) = 20.732177 
• best(9) = 10.852273 
• best(10) = -0.450915 

6.10. It is Obtained 

System with initial conditions both positive and 
negative (±0.5 rad and ±0.5 m), up to 2000 iterations. 

With more critical positive and negative initial 
conditions (±0.5 rad and ±0.5 m), it was trained for 2000 
iterations. 

The system was evaluated 600,000 times; the 
following values were obtained: 

• best(1) = 838.174723 
• best(2) = 77.954881 
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• best(3) = 31.878815 
• best(4) = 69.917063 
• best(5) = 0.114835 
• best(6) = 402.254374 
• best(7) = 5.614562 
• best(8) = 190.474634 
• best(9) = 33.375531 
• best(10) = 30.360559 

6.11. Upon Execution, it Turns out to be 
Unsatisfactory 

System with initial conditions both positive and 
negative (±0.5 rad and ±0.5 m), up to 1000 iterations 
with a weighted stopping criterion. 

The optimization technique that worked best was the 
fifth one, which was optimized with both positive and 
negative initial conditions (±0.5 rad and ±0.5 m), with 
1000 iterations. A weighted stopping criterion was 
especially used. 

Trying to get out from the transient as soon as 
possible and eliminate any steady-state error, the 
evaluation criterion was changed for another that 
weighted error with respect to time, that is, weighting 
incremented linearly with time at a rate of 0.1 per 
millisecond, beginning with a y-intercept of 1 so as not 
to neglect initial conditions: 

This is achieved with the command: 

• ponderacion=1:.1:length(simout)/10 
• where simout are the output values of the simulation 

For example, for the ANFIS controller without 
optimization with GA’s, the error in theta will be: 

• errorcuadradoponderado=power(simout(:,1).*ponder
ac’,2) 

• plot(ponderac,errorcuadradoponderado) 

Summarizing, the minimization criterion that is 
satisfied is Equation 14: 
 

2
pos neg

2
pos neg

error 20* pond * ( )

10* pond * (x x )

= θ + θ

+ +
∑

∑
 (14) 

 
With the given initial conditions (±0.5 rad and ±0.5 

m) and 1000 iterations (generations), one gets: 
This optimization results gave: 

• best(1) = 41.116217 
• best(2) = 6.484782 
• best(3) = 11.042188 

• best(4) = 8.654519 
• best(5) = -0.795826 
• best(6) = 340.727888 
• best(7) = 79.851994 
• best(8) = 53.532277 
• best(9) = 31.549543 
• best(10) = 1.838144 

This is an excellent optimization of critical initial 
conditions. 

7. CONTRIBUTIONS TO THE STATE OF 
THE ART 

An adequate integration of the intelligent control 
methods allows to design simpler and optimal control for 
complex systems. A correct integration of the ANFIS 
method with genetic algorithms is presented. 

This study proposes the application to the inverted-
pendulum problem of an existing control method (called 
the “genetic-ANFIS controller” or “neural-fuzzy-with-
genetic-algorithms controller), which relies in some of 
the latest advances of intelligent control. Also this study 
shows the complete methodology for finding the correct 
design of the controller. 

8. CONCLUSION 

Intelligent control provides a new area for solving 
control problems. Its advantages are due to the 
integration of computers to generate intelligent and 
adaptive algorithms, or by a more human-like logic than 
that attained with traditional control. Its efficacy has 
been proved by simulation, implementing in an inverted 
pendulum its main components, such as fuzzy 
controllers, neural networks and genetic algorithms, as 
well as the interaction between all of them with the 
genetic-ANFIS controller. 

This study reached many of its objectives, providing 
a good training ground for intelligent control, but it also 
presented a remarkable challenge given the evolution of 
tools and methodologies. 

Intelligent control implementation has a wide area 
for development, as there are more and more fuzzy-
logic microcontrollers and neural-network research 
projects. Work is currently being done in the 
interrelation of these methodologies to better exploit 
their individual capabilities and to develop real-time-
optimizable controllers that do not depend on a full 
knowledge of a system and are adaptable to changing 
conditions. A totally-adaptable intelligent-controller 
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methodology will be found that may be used in any 
plant regardless of its characteristics. It will be 
possible to learn from the plant as time goes on, 
eliminating the need for mathematical models. 
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