
American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014
ISSN: 1941-7020
© 2014 P. Ponce et al., This open access article is distributed under a Creative Commons Attribution
(CC-BY) 3.0 license
doi:10.3844/ajeassp.2014.194.240 Published Online 7 (2) 2014 (http://www.thescipub.com/ajeas.toc)

Corresponding Author: Pedro Ponce, Department of Engineering, Tecnologico de Monterrey, Mexico City, Mexico

194 Science Publications AJEAS

A REVIEW OF INTELLIGENT CONTROL SYSTEMS
APPLIED TO THE INVERTED-PENDULUM PROBLEM

Pedro Ponce, Arturo Molina and Eugenio Alvarez

Department of Engineering, Tecnologico de Monterrey, Mexico City, Mexico

Received 2014-03-08; Revised 2014-03-14; Accepted 2014-04-07

ABSTRACT

This study shows the latest advances in the application of intelligent control to the inverted-pendulum
problem. A complete review regarding intelligent control design is presented in this study in order to show
the most important artificial intelligence methods used for controlling an Inverted-Pendulum. Also this
study proposed the use of a neural-fuzzy-with-genetic-algorithms controller for the inverted pendulum
problem which gives good results. Conventional controllers are presented in order to observe
implementation problems. The study goes deeply in the details that have to take into account in order to
understand design problems and limitations.

Keywords: Inverted Pendulum, Intelligent Control, Fuzzy Logic, Neural Networks, Genetic Algorithms,

ANFIS, Unstable Nonlinear Systems

1. INTRODUCTION

The inverted pendulum is a classical example of an
instable, nonlinear system that has been solved in many
ways but remain a prototypical case study for optimization
and the testing of new control techniques. The inverted
pendulum system is made of a rigid rod and a car to which
the rod is joined by a bolt providing it with rotational
freedom. The bar involves a frictionless union with one
degree of freedom. The car can move rightwards or
leftwards over tracks according to the force exerted upon it.
The control objective is to keep the bar on balance,
beginning from nonzero initial conditions, in such a way
that the bar remains oriented upwards despite possible
perturbations and the system’s intrinsic unstability (Jang,
1992; Lundeberg, 1994; Williams and Matsuoka, 1991;
Jacobs and Jordan, 1993; Kitamulra and Saitoh, 1990;
Kouda et al., 2002; Sazonov et al., 2003; Mohanlal and
Kaimal, 2002; Inoue et al., 2002; Harrison, 2003; Chen and
Chen, 2003; Pal and Pal, 2003; Lam et al., 2003; Cho and
Jung, 2003; Gao and Er, 2003; Olguín, 2000; Jang, 1992;
Ji et al., 1997; DECE, 2003; Omatu and Ide, 1994;
Ravn and Poulsen, 2001; Jang-Sun-Mizutani, 1997;
Riedmiller, 1993; Omatu et al., 2000; Jang, 1993;

Nørgaard, 2000a; 2000b; Omatu et al., 1995; Storn and
Price, 1997; Mirza and Hussain, 2000; Messner and
Tilbury, 1999; Bishop and Dorf, 1999; Takagi and
Sugeno, 1985; Olguín, 2003; Yang et al., 2000; Jung and
Yim, 2000). This dynamical system can be characterized
by four state variables, namely Equation 1:

()T

sx x x= θ θ& & (1)

Where:
θ = The angle that the bar makes with the vertical (or

horizontal) axis
θ& = The angular speed of the bar
x = The position of the car relative to the tracks and
x&& = The linear speed of the car

As mentioned before, the control objective is to set
the car in its central position (x = 0) in such a way that
the pendulum remains in its vertical position, with its
bob pointing upwards.

For our purposes, this means Equation 2:

x x 0θ = θ = = =&& && (2)

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

195 Science Publications AJEAS

Fig. 1. Schematics of the inverted pendulum system

Table 1. Parameters for the simulated inverted pendulum
M Mass of the car 0.455 kg
m Mass of the pendulum 0.21 kg
l Distance from the 0.305 m
 pendulum’s center of mass
I Moment of inertia of the pendulum 0.006 kg*m2

Fig. 1 shows the system that is assumed for this

project. The parameters used in the simulation are
used in Table 1.

The inverted pendulum has a great importance for its
application in practical systems. In the military arena, it
provides a framework for understanding the remote
control of rockets, as they undergo sizable perturbations
at launching due to fuel explosion that make it necessary
to guarantee the desired orientation. There has been
considerable work in other aero-spatial applications as
well. The inverted pendulum is also a relevant model for
understanding the way in which structures with two feet
(such as human being and some robots) may walk while
keeping balance (Lundeberg, 1994). Several solutions to
the inverted-pendulum problem are known, so that
research has increasingly emphasized the more complex
cases of pendulum with two, three or more bars, as well
as deformable pendulum (non-rigid bars) and
multidimensional pendulum. These systems have more
inputs and outputs in need of control, which makes them
rather more unstable and nonlinear.

The control law based on a conventional PID control
is quite complex for one-input, two-output (SIMO)
systems, such as the inverted pendulum case. Because of
that, modern control theories are generally used in the

control design of these systems. These techniques
include state feedback, adaptive-control strategies,
neural-network modeling to simulate possible
combinations of input/output control, adaptive or
intelligent neural-network controllers and, more recently,
the integrated application of neural networks and fuzzy-
logic. This is so because fuzzy control requires an expert
control law for the inverted pendulum formulated in
terms of if-then rules. A recently designed controller,
described in an IEEE publication, uses genetic
algorithms, neural networks and fuzzy logic to tune a
PID controller. Many neural-network architectures have
proposed to control an inverted pendulum (Williams and
Matsuoka, 1991). For example, Jacobs and Jordan (1993)
considered a forward-modelling control where the
system learns about a model relating the current state of
the plant and the current controlling signal by a
prediction of a future failure. The control learning of an
inverted pendulum by means of a neuro-controller was
proposed by Kitamulra and Saitoh (1990), who
provided their system with a desired-output generator
and an evaluator in addition to the neural controller. In
the desired-output generator, the angle and angular
speed of the car are generated from two equations that
provide previous knowledge about the pendulum’s
behavior, given the position and speed of the car. The
evaluator is used to decide if the controller’s output is
right or wrong and, depending on the current situation,
generate a master signal to train the neuro-controller.
This signal is based on the difference between the
desired value and the control’s output. As remarked
above, there is an increasing number of control
methods, most of which are tested with the inverted-
pendulum problem, which has become more complex
as free flexible bars over multiple axes are
incorporated. Intelligent control has been given a new
twist by applying fuzzy-logic, neural-network and
optimization-algorithm techniques. New methods arise
from improving the individual techniques and from
their integration into schemes that make the best
possible use of their advantages and capabilities. In the
last few years, the state of the art has been defined by
some of the following research areas:

• Control for swing-up of an inverted pendulum using
artificial neural network (Kouda et al., 2002)

• Hybrid LQG-neural controller for inverted
pendulum system (Sazonov et al., 2003)

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

196 Science Publications AJEAS

• Exact fuzzy modeling and optimal control of the
inverted pendulum on cart (Mohanlal and Kaimal,
2002)

• A fuzzy classifier system using hyper-cone
membership functions and its application to
inverted pendulum control (Inoue et al., 2002)

• Asymptotically optimal stabilizing quadratic
control of an inverted pendulum (Harrison, 2003)

• Output regulation of nonlinear uncertain system
with non-minimum phase via enhanced RBFN
controller (Chen and Chen, 2003)

• SOGARG: A self-organized genetic algorithm-
based rule generation scheme for fuzzy controllers
(Pal and Pal, 2003)

• Design and stability analysis of fuzzy model-based
nonlinear controller for nonlinear systems using
genetic algorithm (Lam et al., 2003)

• Balancing and position tracking control of an
inverted pendulum on an x-y plane using
decentralized neural networks (Cho and Jung, 2003)

• Online adaptive fuzzy neural identification and
control of a class of MIMO nonlinear systems
(Gao and Er, 2003)

• techniques such as fuzzy logic, genetic algorithms,
neural networks and ANFIS controllers

• To apply a state-of-the-art ANFIS-genetic control to
the inverted pendulum problem

2. SYSTEM MODEL

The description will begin by modelling the system
with the free-body diagrams shown in Fig. 2.

From the Euler-Lagrange method Equation 3:

d L L

dt q q

 ∂ ∂− = τ ∂ ∂ &
 (3)

where, the Lagrangian:

TOTAL TOTALL k U= −

It is the difference between the kinetic and potential
energies Equation 4:

1 1

2 2
1 1 1 1

2 2

2 2
2 2 2

T
Tot

U m gl

1 1
k m v m x

2 2
U m g(l lsin)

1 1
k m v I

2 2
1

k q H(q)q
2

=

= =

= + θ

= + ω

=

&

& &

 (4)

Where:

TH(q) H(q) 0= 〉
It is getting Equation 5:

2

2 2

2 1 2

I m l m lsin
H(q)

m lsin m m

 + − θ
= − θ +

 (5)

Thus, the Euler-Lagrange equation may be written as

(Olguín, 2000) Equation 6:

k U
H(q)q H(q)q

q q

 ∂ ∂+ − + = τ ∂ ∂
& &&& & (6)

The general procedure is presented. Assuming that

there is no friction and considering only the pendulum
model without the engine control implications
concerning the balancing forces, it can be defined the
system with the following second-order differential
equations Equation 7 and 8:

2

2

u ml sin
gsin cos

M m

4 mcos
l

3 M m

 − − θ θθ + θ + θ =
 θ− +

&

&& (7)

()2u ml sin cos
x

M m

+ θ θ − θ θ
=

+

& &&

&& (8)

This system has been validated in several papers

(Jang, 1992; Ji et al., 1997). From the above equations, a
Simulink/Matlab model was constructed as shown in
Fig. 5. It was found that the system has a unit-step
response as shown in Fig. 3.

In the following sections, several control strategies
for the nonlinear model are presented. After designing
the inverted-pendulum simulator, its graphical stage was
implemented (Fig. 4). Using the model proposed by
(Olguín, 2003), the graphical part was specifically
adapted to this model.

2.1. PID Controller

Although it is very difficult to control this system, a
good idea is to use a simple control (PID) as starting
point for the development and validation of more
complex controllers. With this intention, the gains of the
PID controller were found by trial and error in order to
control both the angle and position.

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

197 Science Publications AJEAS

Fig. 2. Free-body diagrams of the inverted-pendulum system

Fig. 3. Step response of the inverted pendulum

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

198 Science Publications AJEAS

Fig. 4. MATLAB graphic simulator of the inverted pendulum

Fig. 5. Simulink/Matlab model of the inverted pendulum

The simplest form to achieve this objective is to use
two PID controllers, one for angle and the other for
position and to add the corresponding control signals.
The gain in the error signal was used to prioritize the
control signals.

Figure 6 and 7 show a pretty good response to
impulse-type perturbations (the disturbance is

limited). It must be noticed that it is rather
difficult to tune this type of controllers if the
designer does not want to linearize the system and
the controllers work outside of the operation point.
On the other hand if the pendulum is under a
strong disturbance, the PID controllers could not
control the system.

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

199 Science Publications AJEAS

Fig. 6. Block diagram of the PID controller

Fig. 7. Results from perturbations in the PID controller simulation

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

200 Science Publications AJEAS

3. ROBUST CONTROLLER (LQR)

Another way to use a non-intelligent controller, as
suggested by an application in Matlab’s “Robust
Control Toolbox”, involves in using a PID for position
control and an Linear Quadratic Regression (LQR)
discrete state estimator to stabilize the pendulum, as
shown in Fig. 8.

Once again, it is very hard to tune the PID and LQR
gains. For this system, it was necessary to linearize the
model to find the gains.

To calculate the values of K, it was assumed all-state
feedback (four states) (DECE, 2003) and look for the K
vector determining the control law u = Kx. This has
been done by means of the lqr function, which returns
the optimal controller and allows us to choose two
parameters, R and Q, which prioritize inputs and the
state-cost function to optimize.

 In this case, the choice was made of using R = 1 and
Q in the form:

=

0000

010000

0000

0005000

Q

A vector of the form K = [0-18-166.5-15.2]T was
obtained. It was simulated with the previously-shown block
diagram using 0.1 rad and 0.1 m as initial conditions. The
response thus obtained is shown in Fig. 9.

Later on it will be used this method in neural-network
training.

4. FUZZY LOGIC CONTROLLER

The Mamdani inference system was used as its
graphical user-friendliness makes it easier to understand
the controller’s logic. The previous knowledge that is
required to control the system is formed by the following
rules (Williams and Matsuoka, 1991):

• When the pendulum is falling away from the vertical
and the angular speed is changing in the direction
opposite to the fall, the pendulum will be forced
to move in the same direction suggested by the
angular speed

• When the car is moving at a certain distance from
the center of the tracks and the pendulum is
vertically oriented, the pendulum will tend to fall
towards the center of the tracks

For simplicity, it will be considered here the
stabilization of the pendulum, regardless of the
position of the car. There were defined the following
membership functions:

It were also determined seven rules as follows
(Omatu and Ide, 1994):

• Rule 1: If θ = PM and ∆θ = ZO, then u = PM
• Rule 2: If θ = PS and ∆θ = PS, then u = PS
• Rule 3: If θ = PS and ∆θ = NS, then u = ZO
• Rule 4: If θ = NM and ∆θ = ZO, then u = NM
• Rule 5: If θ = NS and ∆θ = NS, then u = NS
• Rule 6: If θ = NS and ∆θ = PS, then u = ZO
• Rule 7: If θ = ZO and ∆θ = ZO, then u = ZO

These rules can be summarized in the following
table, called the fuzzy association matrix or
knowledge matrix. The mambership functions are
shown in Fig. 10.

The Fuzzy Inference System (FIS) was created as
shown in Fig. 11.

The fuzzy control surface, presented in Fig. 12, was
determined as follows:

To make use of the fuzzy controller, the block diagram
in Fig. 13 was constructed with initial contions of 0.1 rad
and 0.1 rad/s. The response is shown in Fig. 14.

It was obtained a good response as the pendulum is
well-stabilized, slowly but without overshoot. Thus it is
proved that the fuzzy controller has a correct behavior.

5. NEURAL NETWORK AS SYSTEM
IDENTIFIER

To show one of the applications of Neural Networks
(NN) in the inverted pendulum problem. Now it was
applied to the system under consideration. In first place,
one must make some experiments and acquire
representative points from the system. To obtain data
from the stabilization area (vertical position), the robust
open-loop controller described in the previous section.
The system was excited in the desired region using
perturbations to extend the data range, as shown in the
block diagram in Fig. 15.

The training data consist of the state variables and the
control signal, as shown in Fig. 16.

The next step involves choosing the best neural
network architecture. This architecture depends mainly
on the system complexity, including the number of
inputs and outputs.

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

201 Science Publications AJEAS

Fig. 8. Block diagram of the robust control with LQR

Fig. 9. Response of the robust controller

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

202 Science Publications AJEAS

Fig. 10. Membership functions of the fuzzy controller

Fig. 11. Fuzzy inference system

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

203 Science Publications AJEAS

Fig. 12. Surface generated by the fuzzy controller

Fig. 13. Block diagram of the fuzzy controller

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

204 Science Publications AJEAS

Fig. 14. Response of the fuzzy controller

Fig. 15. Block diagram of the perturbed fuzzy con-troller

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

205 Science Publications AJEAS

Fig. 16. Training data

Fig. 17. Neural network architecture

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

206 Science Publications AJEAS

Fig. 18. Neural-network learning

Fig. 19. Data estimation and error

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

207 Science Publications AJEAS

Fig. 20. Untrained data

Thus it was chosen to use a Multilayer Perceptron (MLP)
with 20 hidden nodes with hyperbolic tangent functions
and two linear nodes as output (Fig. 17).

Our MLP will estimate the following angle and position
from the previous state and the control signal according to
the function (Ravn and Poulsen, 2001) Equation 9:

y(t 1) g[y(t), y(t 1),

y(t 2),u(t),...,u(t 1)]

+ = −
− −

 (9)

Where:

() (t)
y t

x(t)

θ
=

 Levenberg-Marquardt training quickly (Hagan and

Menhaj, 1994) reaches the error goal of 10-8, as shown
in Fig. 18. Training data are well estimated (Fig. 19).

Neural networks are good learners of the training
data, sometimes even too good as they only learn those
data. To be certain that the NN really understood the
system and not just the training data, additional data
(called validation data) were generated as shown in Fig.

20 and the NN estimation achieved an error of less than
10-4, as shown in Fig. 21.

This is an excellent estimation, showing that neural
networks are very good plant identifiers. Figure 22
shows a schematics of the Neural Network controller.

6. ANFIS CONTROLLER

It was attempted to train an ANFIS controller (Jang,
1993) to correctly stabilize the system in the least
possible time and in the simplest possible way for
nonzero initial conditions (both positive and negative), in
such a way that genetic algorithms (Hassanzadeh et al.,
2008) could later be used to optimized it. Several types
of controllers were tested following the inverse
controller concept (that learns from the model
(Nørgaard, 2000a; 2000b), in which training is
performed with the process’ output data but execution
is performed with the previous output used as current
input and the resulting output used for process control.
It was tested this way because the training features of
the network may be different. Several ANFIS
(Saifizul et al., 2006) controllers were created, trained
with different data sets and tested with the simulator.

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

208 Science Publications AJEAS

Fig. 21. Response to untrained data and its error

Fig. 22. Schematics of the controller with neural net-work

The organization used is described as follows:

• Control with angle and position training in a time
sequence with 8 inputs

The controller learns and operates in response to the
previous system outputs and the previous signal from the
controller itself. In this case, it will have seven inputs
encompassing angles, positions and earlier control
signals. The signal r(t+1) will consist exclusively of
zeros, as the system’s reference signal.

Three different cases were considered: Random
training, sub-clustering and grid partition. Each of them
will now be described:

6.1. Random Training

Training data were created by exciting the inverted
pendulum system with random values, with no tuning of
PID controllers, with the only purpose of finding the
system response for different input types. A Simulink
inverted-pendulum model with graphical interface
presented by (Olguín, 2003) and represented in Fig. 23.

The Editor for the anfis system is presented in Fig.
24 which shows the training process when a cluster
partition is used.

The code needed to generate time-sequenced data
(current state, previous state and reference signal) is
given as follows:

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

209 Science Publications AJEAS

• C = length(entrenaCTRL)
• entrenaU = [entrenaCTRL(3:C,1:2),

entrenaCTRL(2:(C-1),1:2), entrenaCTRL(1:(C-
2),1:3), entrenaCTRL(2:(C-1),3)]

• TrainU = [entrenaU(2:(C-2)/2,:)]
• TestU = [entrenaU((C-2)/2:3*(C-2)/4,:)]
• CheckU = [entrenaU(3*(C-2)/4:(C-2),:)]
• anfisedit
• plot(entrenaU)

A grid-partition ANFIS controller was trained with
2 Gaussian-type membership functions per input, with
a total of 7 inputs, a constant output and 50 training
operations.

The error obtained, 0.56205, is acceptable because
the control signal reaches ±200, an error of about 0.28%.
Such error is compared with the reference value as
shown in Fig. 25.

Fig. 23. Simulator of the inverted pendulum to obtain random data

Fig. 24. ANFIS editor for the grid-partition method

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

210 Science Publications AJEAS

Fig. 25. ANFIS editor showing trained data

Fig. 26. Block diagram of the ANFIS-controlled simu-lator

There are gaps in the training data, so it does not
cover all possible values. Nevertheless, the network
learns reasonably well from the system. To simulate the
ANFIS controller, a block diagram was designed to feed
the time-sequenced signals Fig. 26.

Results were rather unsatisfactory. Figure 27 shows
that the system keeps within the desired zone for tenths
of second, but remains unstable.

The topology of the ANFIS system is presented in
Fig. 28-33 shows the control signal. One can infer that
the ANFIS controller is capable of controlling the
system, but more training in the stabilization zone is
required. As the random signals do not cover specifically
well this area, a controller that keeps them in the desired
zone is required.

6.2. Sub-Clustering

This approach to creating a fuzzy network consists of
dividing training data among different zones and creates
membership rules between them. With the standard
parameters:

• Influence range: 0.5
• Compression factor: 1.5
• Acceptance rate: 0.5
• Rejection rate: 1.5

A network as shown in the following figure was created:
Evidently, it is much simpler than the one in the

previous case. The results were calculated with the robust
control system and initial conditions of 0.5 rad and 0.3 m

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

211 Science Publications AJEAS

for angle and position, respectively. In addition, impulse
perturbations were introduced that provide the change of
reference for the car’s position. The control signal was
saturated at ±20 and the following result was obtained:

The signal was prepared using the EntrenaU program,
using the following expresión Equation 11:

1 y(t 1), y(t),..., y
û(t) g

(t n 1),u(t 1),...,u(t m)
− +

= − + − −
 (11)

And the following code:

• entrenaCTRL = Ucontrollim
• C = length(entrenaCTRL)
• entrenaU = [entrenaCTRL(3:C,1:2),

entrenaCTRL(2:(C-1),1:2), entrenaCTRL(1:(C-
2),1:3), entrenaCTRL(2:(C-1),3)]

• TrainU = [entrenaU(2:(C-2)/2,:)]
• TestU = [entrenaU((C-2)/2:3*(C-2)/4,:)]
• CheckU = [entrenaU(3*(C-2)/4:(C-2),:)]

Training was made with half of the available data,
with testing and cheking made with the remaining half.
Sub-clustering training was made with the ANFISEDIT
routine using the following parameters:

• Influence range: 0.5
• Compression factor: 1.5
• Acceptance rate: 0.5
• Rejection rate: 1.2

A 7-input network was generated with two
membership functions per input and a linear output of
the form:

Training was performed in 50 iterations with a hybrid
optimization approach.

Once the ANFIS was trained, it was simulated with
the following block diagram:

The system was capable of controlling initial
conditions of 0.1 rad and 0.1 m, even for initial conditions
of 0.3 rad and 0.1 m. However, it never reaches total
stabilization as it oscillates, although it manages to keep
the pendulum in the desired, vertical region. It was also
tested changing the output condition to constant, but that
means only two rules and becomes nonfunctional.

6.3. Grid Partition

Training data were determined by the robust
controller previously obtained. Care was taken to ensure
that the control would not only find the stabilization data,
but also that it would become momentarily unstable to

determine a larger response range. Then a system with
two Gaussian-type membership functions was created for
the 7 inputs and a constant output. The network creates
many rules by itself, as shown in Fig. 34.

It was trained with an error of 0.7335, as shown in
Fig. 35. Nevertheless, the simulation response is
unstable, as shown in Fig. 36. The output is made of 128
parameters (128 constant-type rules).

Trying to improve this type of controllers, a new test
was performed for a more complex system. The same
parameters of the previous case were used with a linear
output. The resulting training had an error of 0.59917,
but the result is still unsatisfactory, as shown in Fig. 37
and the control topology is presented in Fig. 38.

6.4. Control with 8-Input Time-Sequence State
Training

This control is trained with the desired signal and the
previous system output; the desired signal when using the
controller is the zero matrix. Learning is simplified but
there are fewer conditions showing the state of the system.

The training data were obtained with the same robust
controller. These data were reordered in such a way that
the current (theta, dtheta, x, dx) and future states were
considered in the training of the controller. The
following code was used:

• %8 ENTRADAS, ESTADO +1 (THETA,
DTHETA, X, DX) Y ESTADO ACTUAL

• entrenaXref = UcontrollimX
• D = length(entrenaXref)
• entrenaUXref =

[entrenaX(3:D,1),entrenaX(3:D,2),entrenaX(3:D,3),
entrenaX(3:D,4),entrenaX(2:(D-
1),1),entrenaX(2:(D-1),2),entrenaX(2:(D-
1),3),entrenaX(1:(D-2),4),entrenaX(2:(D-1),5)]

• TrainUXref = [entrenaUXref(2:(D-2)/2,:)]
• TestUXref = [entrenaUXref((D-2)/2:3*(D-2)/4,:)]
• CheckUXref = [entrenaUXref(3*(D-2)/4:(D-2),:)]

Training data are shown in Fig. 39. A grid-partition
ANFIS was also built of the form shown in Fig. 40.

It was sought to simplify the grid-partitioned network
by reducing each input’s membership functions in such a
way that it only had a single membership function for the
future state (which would later be changed by zeros
when used as controller) and 3 functions for theta, 2 for
dtheta and x and 1 for dx. The corresponding training,
with only 3 iterations, is shown in Fig. 41 and some

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

212 Science Publications AJEAS

other examples Fig 42-44. As expected, it did not work
(but it was worthwhile to try it!).

6.4. Control with 4-Input State Training

This control is the simplest of its type. It is trained
and executed with only the state of the system. It can be
used because the reference does not change in time. It is
the simplest method, so its implementation may help in
the next stage using genetic algorithms.

Table 2. Represents the fuzzy association matrix in
which the negative values of the consequences are
concentrated in the upper zone of the table (NS and

NM), positive values are in the lower zone of the table
(PS and PM) and Zero in the diagonal line (ZO). Those
consequences are the representative values for the inputs
signals (Θ and ∆Θ).

Table 2. Fuzzy association matrix of the fuzzy controller
θ\∆θ NS ZO PS
NM NM
NS NS ZO
ZO ZO
PS ZO PS
PM PM

Fig. 27. Grid-partition ANFIS simulation results

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

213 Science Publications AJEAS

Fig. 28. ANFIS architecture

Fig. 29. ANFIS control signal

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

214 Science Publications AJEAS

Fig. 30. ANFIS network architecture

Fig. 31. ANFIS editor training sub-clustering system

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

215 Science Publications AJEAS

Fig. 32. Block diagram of the system with ANFIS controller with time-dependent state

Fig. 33. Simulation results with sub-clustering

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

216 Science Publications AJEAS

Fig. 34. ANFIS architecture with grid partition

Fig. 35. ANFIS editor for grid partition

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

217 Science Publications AJEAS

Fig. 36. ANFIS results for grid partition

Fig. 36. Grid-partition ANFIS editor

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

218 Science Publications AJEAS

Fig. 37. Grid-partition ANFIS simulation results

Fig. 38. Schematics of the controller

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

219 Science Publications AJEAS

Fig. 29. Training data for the controller

Fig. 40. ANFIS architecture

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

220 Science Publications AJEAS

Fig. 41. Grid-partition ANFIS editor

Fig. 42. Unsatisfactory response of the ANFIS con-troller

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

221 Science Publications AJEAS

Fig. 43. Schematics of the ANFIS controller

Fig. 44. Training data

Fig. 45. Block diagram of the ANSIS controller

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

222 Science Publications AJEAS

Fig. 46. Sub-clustering ANFIS editor

Fig. 47. Results of the ANFIS controller’s simulation

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

223 Science Publications AJEAS

Fig. 48. Training data

Three different forms were implemented: Differential

control as a function of k, continuous control with a
small number of training data and continuous control
with a larger number of training data. Only the best
example of each form will be analyzed here.

Differential control as a function of k Given that this
control works with the state data in time K, the
discretization of the training data was considered in such
a way that the derivative would be the diference between
k and k+1. This was done with the following code:

• entrenaX = Ucontrollim
• D = length(entrenaX)
• entrenaUX = [entrenaX(2:(D-1),1),-entrenaX(2:(D-

1),1)+entrenaX(1:(D-2),1),entrenaX(2:(D-1),2),-
entrenaX(2:(D-1),2)+entrenaX(1:(D-
2),2),entrenaX(2:(D-1),3)]

• TrainUX = [entrenaUX(2:(D-2)/2,:)]
• TestUX = [entrenaUX((D-2)/2:3*(D-2)/4,:)]
• CheckUX = [entrenaUX(3*(D-2)/4:(D-2),:)]

The training data were generated. Training was
performed in several forms and was simulated with the
block diagram shown in Fig. 45, with is simplified as the

derivative must be equal to the change between the
previous and current states and the current value is the
desired (zero) value. Thus, the derivative is simply the
negative value of the previous output.

Now it will be analyzed several tests from the
configuration and training of the ANFIS.

6.5. Sub-Clustering

The following parameters were used:

• Influence range: 0.3
• Compression factor: 1.5
• Acceptance rate: 0.5
• Rejection rate: 1.5

Training error has the value 2.0805. The result
becomes unstable after a few seconds.

The training of the ANFIS was done by sub-clustering , the
editor is presented in Fig. 46 and the results of the ANFIS
controller’s simulation are shown in Fig. 47.

6.6. Continuous With Few Training Data

The fact that the system model provides knowledge
of the derivatives was used to directly obtain the current

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

224 Science Publications AJEAS

state. Once again, the robust controller data were
obtained and are shown in Fig. 48.

The training data were generated according to:

• % 4 ENTRADAS, ESTADO THETA, DTHETA, X,
DX

• entrenaX = UcontrollimX
• D = length(entrenaX)
• entrenaUX = [entrenaX(2:(D-1),1),entrenaX(2:(D-

1),2),entrenaX(2:(D-1),3),entrenaX(1:(D-
2),4),entrenaX(2:(D-1),5)]

• TrainUX = [entrenaUX(2:(D-2)/2,:)]
• TestUX = [entrenaUX((D-2)/2:3*(D-2)/4,:)]
• CheckUX = [entrenaUX(3*(D-2)/4:(D-2),:)]

The ANFIS controller with grid partition was trained
with 2 membership functions for each of the four inputs,
with 1 linear output. Fig. 49. Presets the ANFIS editor for
grid partition

The rules are shown as follows (Fig. 50):
Direct simulation was performed, with the current

state provided as feedback. Notice that the controller
does not depend on the system error, but on its current
conditions and from that information it chooses the
new signal to stabilize the plant; Fig. 51. shows the
ANFIS simulator’s block diagram. Fig. 52 exemplifies
the ANFIS simulation results in which smooth
merging responses are reached.

A test was made for 0.1 rad and 0.1 m initial
conditions. The result is shown as follows. It totally
stabilizes in 6 sec.

On the other hand, with different initial conditions,
like 0.3 rad and 0.1 m, the system becomes unstable, as
shown in Fig. 53.

The Fig 53 and 54 gives the results when the initial
conditions are postive and negative and how those
conditions affects the whole system Fig. 55-72.

Finally, direct state feedback of the system was again
tested, but now with more training data. The same data
of the robust controller were used, divided in two groups.
The first half was used for training and the second half
was further divided in two, with one quarter of the total
data to test and the last quarter to check. The same logic
was used as with the earlier controllers, but now data
were created for both initial and positive initial
conditions. Training was performed first with the
response to positive initial conditions and then to
negative initial conditions. The same was done for the
test and evaluation of the controller.

The data provided are:

With sub-clustering, 30 iterations and the following
parameters:

• Influence range: 0.2
• Acceptance rate: 0.2
• Rejection rate: 0.1
• A network with the following structure was obtained

It was simulated for initial conditions of 0.3 rad and
0.3 m, obtaining the following result.

6.7. Then, with -0.3 rad and -0.3 m

Upon detailed analysis, the stable-state error for theta
is 0 and for x is 5e-3.

This last controller is the one which worked best in
accordance to the established requirements and was
prepared for optimization with genetic algorithms.

For each control type, different parameters were
tested about the network build-up, with different training
data. This means that the search for an efficient
controller may be very complex, aside from the fact that
no established story was made up except for the
observation of the results while varying the results.

7. ANFIS CONTROLLER OPTIMIZED BY
GENETIC ALGORITHMS

Genetic algorithms are used to optimize a system
without the use of derivatives, by a defined criterion,
with parameters such as the mutation and crossing rate
and choices such as the coding, selection and
evaluation methods for each member of the population
(Omatu et al., 1995). For a more detailed description
of genetic algorithms, the reader is direct to
(Hassanzadeh et al., 2008)

It with the ANFIS controller previously defined. Only
the parameters of the two linear output functions (5
parameters for each output). The controller is described
in the following block diagram.

The inverted pendulum model provides the initial
conditions.

As the genetic algorithms involve population
members that are mutations, i.e., random values, it may
happen that the system becomes unstable and the
simulation goes to infinity, leading to a slower time for
optimization. Thus, saturation blocks were added to
avoid that both the controller and the system state get out
from the permissible zone. This does not affect the
results, as only the operation of the controller under high
error conditions is limited.

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

225 Science Publications AJEAS

Fig. 49. ANFIS editor for grid partition

Fig. 50. Fuzzy-rule evaluation with ANFIS

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

226 Science Publications AJEAS

Fig. 51. ANFIS simulator’s block diagram

Fig. 52. ANFIS simulation results

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

227 Science Publications AJEAS

Fig. 53. Results of the ANFIS simulation with other inicial conditions

(a)

(b)

Fig. 54. Response to new initial conditions (a) positive initial conditions and (b) negative initial conditions (Blue signal represents

angle, green signal represents position)

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

228 Science Publications AJEAS

Fig. 55. ANFIS editor for sub-clustering

Fig. 56. ANFIS architecture with sub-clustering

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

229 Science Publications AJEAS

Fig. 57. Response of the system to positive initial con-ditions

Fig. 58. Response of the system to negative initial conditions

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

230 Science Publications AJEAS

Fig. 59. Block diagramo of the system optimized with a genetic algorithm

Fig. 60. Optimization with genetic algorithm in 100 iterations (Error vs generations)

Fig. 61. Optimized-system response with negative conditions

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

231 Science Publications AJEAS

Fig. 62. System response to positive initial conditions

Fig. 63. Optimization of the system in 2000 genera-tions (Error vs generations)

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

232 Science Publications AJEAS

Fig. 64. System response to negative initial conditions

Fig. 65. Optimization of the system in 200 generations (Error vs generations)

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

233 Science Publications AJEAS

(a)

(b)

Fig. 66. System response to two different initial conditions (a) After GA with positive initial conditions and (b) After GA with

Negative initial conditions Time in [ms]

Fig. 67. System optimization with 2000 generations (Error vs generations)

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

234 Science Publications AJEAS

Fig. 68. System response to positive initial conditions

Fig. 69. Lineal variation of the weight variation vs time [ms]

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

235 Science Publications AJEAS

Fig. 70. System error from the new weighted quadratic criterion

Fig. 71. System optimization with 1000 generations. (The error is in base x 10e4)

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

236 Science Publications AJEAS

(a)

(b)

Fig. 72. System response for two different initial conditions (a) positive and (b) negative

The base code of the genetic algorithm used in this

paper is presented in (Storn and Price, 1997). The genetic
algorithm was worked in all the simulations with the
following parameters:

• VTR-Value To Reach, it is a condition for stopping
which, in our case, the error criterion establishes to
be of 1×10-3, under the assumption that such value
would never be reached

• Maximum number of iterations-Number of
generations, this was the main stopping condition of
the algorithm

• D-Number of parameters to modify by the system; in
our case there were 10 such parameters

• XVmin-Inferior-limit vector for the initial
population; it was-10% the value of each output
parameter for the initial ANFIS

• XVmax-Superior limit vector for the initial
population; it was +10% the value of each output
parameter for the initial ANFIS

• NP-Number of members of the population. There were
used 15*D, i.e., 150 members for each population

• F-Step value between iterations; a value between 0
and 2 is suggested-it was chosen 1

• CR-probability of crossing, should be between 0 and
1, for which it was chosen 0.4

Strategy-The algorithm allows one to choose among
many strategies, but the one that served us best was an
exponential (non-binary) value coding with a rand-to-
best logic, which reinforces from the random values
those that gave a better response.

Refresh-It measures the number of generations that
are counted before presenting results. This was an
unimportant parameter from the optimization point of
view, but it helped us to observe the process. It was used
it to generate optimization graphs.

Several genetic-algorithm programs were created with
different systems and different iteration numbers, namely:

• System with initial conditions -0.3 rad and -0.3 m,
up to 100 iterations

• System with initial conditions 0.3 rad and 0.3 m, up
to 2000 iterations

• System with initial conditions both positive and
negative (±0.3 rad and ±0.3 m), up to 200 iterations

• System with initial conditions both positive and
negative (±0.5 rad and ±0.5 m), up to 2000 iterations

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

237 Science Publications AJEAS

• System with initial conditions both positive and
negative (±0.5 rad and ±0.5 m), up to 1000 iterations
with a weighted stopping criterion

6.8. Now, it will be Analyzed

System with initial conditions -0.3 rad and -0.3 m, up
to 100 iterations.

With the system having initial conditions of -0.3 rad
and -0.3 m, the following function is to be optimized
Equation 12:

2 2error 20* theta 10* x= +∑ ∑ (12)

where, theta and x are the output values in each
simulation time. A weight of twice the error is given for
the angle considered with respect to position to enhance
the controller’s operation over this variable. The
simulation was executed with Simulink and the values of
theta and x were exported in matrix form. The
optimization was made for 100 iterations:

The optimized parameters, which are the constants in
the linear output equations of the Sugeno controller, are
given by:

• best(1) = 34.995418
• best(2) = 3.882741
• best(3) = 3.441896
• best(4) = 4.816650
• best(5) = 0.074609
• best(6) = 18.771968
• best(7) = 5.367916
• best(8) = 21.764996
• best(9) = 10.569450
• best(10) = -0.256071

After running the simulation with initial conditions of
-0.3 rad and -0.3 m, it was obtained:

With positive initial conditions of 0.3 rad and 0.3 m,
we obtained:

System with initial conditions 0.3 rad and 0.3 m, up
to 2000 iterations

It is handled in the same way as the previous
iteration, but now with positive initial conditions (0.3 rad
and 0.3 m), up to 2000 iterations (generations), as
follows:

It took the algorithm 19 h to finish, executing some
300,000 evaluations in the simulator (block diagram).
The parameters thus obtained were:

• best(1) = 46.415248
• best(2) = 0.443056

• best(3) = 24.635170
• best(4) = -1.163018
• best(5) = -7.951112
• best(6) = 7975.784165
• best(7) = 297.404686
• best(8) = 3420.556959
• best(9) = 364.341177
• best(10) = -1.014442

6.9. It is Obtained

System with initial conditions both positive and
negative (±0.3 rad and ±0.3 m), up to 200 iterations.

It was handled in a similar way as the previous one,
but taking care that the optimization has at the same time
an evaluation with positive and negative initial
conditions. This was achieved by running two 5-sec
simulations for positive and negative initial conditions.
Both were executed every time that the optimization
criterion was evaluated and both arrays were exported to
satisfy the criterion Equation 13:

2
pos neg

2
pos neg

error 20* (theta theta)

10* (x x)

= + +

+
∑

∑
 (13)

This case was executed with 200 iterations

(generations).
The optimized parameters are:

• best(1) = 38.348628
• best(2) = 4.352005
• best(3) = 6.595191
• best(4) = 6.084092
• best(5) = 0.315752
• best(6) = 21.473104
• best(7) = 6.225609
• best(8) = 20.732177
• best(9) = 10.852273
• best(10) = -0.450915

6.10. It is Obtained

System with initial conditions both positive and
negative (±0.5 rad and ±0.5 m), up to 2000 iterations.

With more critical positive and negative initial
conditions (±0.5 rad and ±0.5 m), it was trained for 2000
iterations.

The system was evaluated 600,000 times; the
following values were obtained:

• best(1) = 838.174723
• best(2) = 77.954881

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

238 Science Publications AJEAS

• best(3) = 31.878815
• best(4) = 69.917063
• best(5) = 0.114835
• best(6) = 402.254374
• best(7) = 5.614562
• best(8) = 190.474634
• best(9) = 33.375531
• best(10) = 30.360559

6.11. Upon Execution, it Turns out to be
Unsatisfactory

System with initial conditions both positive and
negative (±0.5 rad and ±0.5 m), up to 1000 iterations
with a weighted stopping criterion.

The optimization technique that worked best was the
fifth one, which was optimized with both positive and
negative initial conditions (±0.5 rad and ±0.5 m), with
1000 iterations. A weighted stopping criterion was
especially used.

Trying to get out from the transient as soon as
possible and eliminate any steady-state error, the
evaluation criterion was changed for another that
weighted error with respect to time, that is, weighting
incremented linearly with time at a rate of 0.1 per
millisecond, beginning with a y-intercept of 1 so as not
to neglect initial conditions:

This is achieved with the command:

• ponderacion=1:.1:length(simout)/10
• where simout are the output values of the simulation

For example, for the ANFIS controller without
optimization with GA’s, the error in theta will be:

• errorcuadradoponderado=power(simout(:,1).*ponder
ac’,2)

• plot(ponderac,errorcuadradoponderado)

Summarizing, the minimization criterion that is
satisfied is Equation 14:

2
pos neg

2
pos neg

error 20* pond * ()

10* pond * (x x)

= θ + θ

+ +
∑

∑
 (14)

With the given initial conditions (±0.5 rad and ±0.5

m) and 1000 iterations (generations), one gets:
This optimization results gave:

• best(1) = 41.116217
• best(2) = 6.484782
• best(3) = 11.042188

• best(4) = 8.654519
• best(5) = -0.795826
• best(6) = 340.727888
• best(7) = 79.851994
• best(8) = 53.532277
• best(9) = 31.549543
• best(10) = 1.838144

This is an excellent optimization of critical initial
conditions.

7. CONTRIBUTIONS TO THE STATE OF
THE ART

An adequate integration of the intelligent control
methods allows to design simpler and optimal control for
complex systems. A correct integration of the ANFIS
method with genetic algorithms is presented.

This study proposes the application to the inverted-
pendulum problem of an existing control method (called
the “genetic-ANFIS controller” or “neural-fuzzy-with-
genetic-algorithms controller), which relies in some of
the latest advances of intelligent control. Also this study
shows the complete methodology for finding the correct
design of the controller.

8. CONCLUSION

Intelligent control provides a new area for solving
control problems. Its advantages are due to the
integration of computers to generate intelligent and
adaptive algorithms, or by a more human-like logic than
that attained with traditional control. Its efficacy has
been proved by simulation, implementing in an inverted
pendulum its main components, such as fuzzy
controllers, neural networks and genetic algorithms, as
well as the interaction between all of them with the
genetic-ANFIS controller.

This study reached many of its objectives, providing
a good training ground for intelligent control, but it also
presented a remarkable challenge given the evolution of
tools and methodologies.

Intelligent control implementation has a wide area
for development, as there are more and more fuzzy-
logic microcontrollers and neural-network research
projects. Work is currently being done in the
interrelation of these methodologies to better exploit
their individual capabilities and to develop real-time-
optimizable controllers that do not depend on a full
knowledge of a system and are adaptable to changing
conditions. A totally-adaptable intelligent-controller

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

239 Science Publications AJEAS

methodology will be found that may be used in any
plant regardless of its characteristics. It will be
possible to learn from the plant as time goes on,
eliminating the need for mathematical models.

9. REFERENCES

Chen, S.C. and W.L. Chen, 2003. Output regulation of
nonlinear uncertain system with nonminimum phase
via enhanced RBFN controller. IEEE Trans. Syst.
Man Cybernet., 33: 265-270. DOI:
10.1109/TSMCA.2003.810907

Cho, H.T. and S. Jung, 2003. Balancing and position
tracking control of an inverted pendulum on a x-y
plane using decentralized neural networks.
Proceedings of the IEEE/ASME International
Conference on Advanced Intelligent Mechatronics,
Jul. 20-24, IEEE Xplore Press, pp: 181-186. DOI:
10.1109/AIM.2003.1225092

DECE, 2003. Control Tutorials for MATLAB and
Simulink. Department of Electrical and Computer
Engineering, Utah State University.

Bishop, R.H.C. and R.C. Dorf, 1999. Teaching modern
control system design. Proceedings of the 38th IEEE
Conference on Decision and Control, Dec. 7-10,
IEEE Xplore Press, Phoenix, AZ., pp: 364-369.
DOI: 10.1109/CDC.1999.832803

Gao, Y. and M.J. Er, 2003. Online adaptive fuzzy neural
identification and control of a class of MIMO
nonlinear systems. Fuzzy Syst. IEEE Trans., 11:
462-477. DOI: 10.1109/TFUZZ.2003.814830033

Hassanzadeh, I., S. Mobayen and A. Harifi, 2008. Input-
Output Feedback Linearization Cascade Controller
Using Genetic Algorithm for Rotary Inverted
Pendulum System. Am. J. Applied Sci., 5: 1322-
1328. DOI: 10.3844/ajassp.2008.1322.1328

Hagan, M.T. and M.B. Menhaj, 1994. Training
feedforward networks with the marquardt algorithm.
IEEE Trans. Neural Netw., 5: 989-993. DOI:
10.1109/72.329697

Harrison, R.F., 2003. Asymptotically optimal stabilising
quadratic control of an inverted pendulum. IEE
Proc. Control Theory Applic., 150: 7-16. DOI:
10.1049/ip-cta:20030014

Inoue, H., K. Matsuo, K. Hatase, K. Kamei and M.
Tsukamoto et al., 2002. A fuzzy classifier system
using hyper-cone membership functions and its
application to inverted pendulum control.
Proceedings of the IEEE International Conference
on Systems, Man and Cybernetics, Oct. 6-9, IEEE
Xplore Press. DOI: 10.1109/ICSMC.2002.1175598

Jang, J.S.R., 1992. Self-learning fuzzy controllers
based on temporal backpropagation. IEEE Trans.
Neural Netw., 3: 714-723. DOI:
10.1109/72.159060

Jang, J., 1993. ANFIS: Adaptive-network-based fuzzy
inference system. IEEE Trans. Man Cybernet.
Syst., 23: 665-685. DOI: 10.1109/21.256541

Jang-Sun-Mizutani, 1997. Neuro-Fuzzy and Soft
Computing. 1st Edn., Prentice-Hall, Upper Saddle
River, ISBN-10: 0132610663, pp: 614.

Ji, C.W., F. Lei and L.K. Kin, 1997. Fuzzy logic
controller for an inverted pendulum system. IEEE
proceedings of the International Conference on
Intelligent Processing Systems, Oct. 28-31, IEEE
Xplore Press, Beijing, pp: 28-31. DOI:
10.1109/ICIPS.1997.672762

Jacobs, R.A. and M.I. Jordan, 1993. Learning
piecewise control strategies in a modular neural
network architecture. IEEE Trans. Syst. Man
Cybernet., 23: 337-345. DOI: 10.1109/21.229447

Jung, S. and S.B. Yim, 2000. Reference compensation
technique using neural network for controlling
large x-y table robot. Proceedings of the
International Symposium Robotics and
Automation., (SRA’ 00), pp: 461-466.

Kitamulra, S. and M. Saitoh, 1990. Stability of
inverted pendulum by neuro-PID control with
genetic algorithm. Proceedings of the IEEE
International Joint Conference on Neural
Networks, May 4-9, IEEE Xplore Press,
Anchorage, AK., pp: 61-61. DOI:
10.1109/IJCNN.1998.687191

Kouda, N., N. Matsui and H. Nishimura, 2002.
Control for swing-up of an inverted pendulum
using qubit neural network. Proceedings of the
41th SICE Annual Conference, Aug. 5-7, IEEE
Xplore Press, pp: 765-770. DOI:
10.1109/SICE.2002.1195253

Lam, H.K., F.H. Leung and P.K.S. Tam, 2003. Design
and stability analysis of fuzzy model-based
nonlinear controller for nonlinear systems using
genetic algorithm. IEEE Trans. Syst. Man
Cybernet., 33: 250-257. DOI:
10.1109/TSMCB.2003.810440

Lundeberg, K., 1994. The inverted pendulum system.
1994-2002.

Messner, B. and D. Tilbury, 1999. Control Tutorials
for Matlab and Simulink. 1st Edn., Addison-
Wesley, ISBN-10: 0201477009, pp: 32.

Mirza, A. and S. Hussain, 2000. Inverted pendulum. J.
AMSE France, 55: 3-4.

Pedro Ponce et al. / American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

240 Science Publications AJEAS

Mohanlal, P.P. and M.R. Kaimal, 2002. Exact fuzzy
modeling and optimal control of the inverted
pendulum on cart. Proceedings of the 41th IEEE
Conference on Decision and Control, Dec. 10-13,
IEEE Xplore Press, pp: 3255-3260. DOI:
10.1109/CDC.2002.1184373

Nørgaard, M., 2000a. Neural network based control
system design toolkit. ver. 2” Tech. Report. 00-E-
892, Department of Automation, Technical
University of Denmark.

Nørgaard, M., 2000b. Neural network based system
identification toolbox. Tech. Report. 00-E-891,
Department of Automation, Technical University of
Denmark.

Olguín, E., 2003. Simulación en MATLAB de péndulo
invertido, con etapa gráfica. Abril.

Olguín, E., 2000. Modelado matemático del péndulo
invertido.

Omatu, S. and T. Ide, 1994. Stabilization of inverted
pendulum by neuro-control. Proceedings of the
IEEE International Conference on Neural Networks,
IEEE World Congress on Computational
Intelligence, Jun. 27- Jul. 2, IEEE Xpore Press,
Orlando, FL., pp: 2367-3272. DOI:
10.1109/ICNN.1994.374589

Omatu, S., S. Deris and K. Kitagawa,1995.
Stabilization of inverted pendulum by the genetic
algorithm. Proceedings of the IEEE International
Conference on Intelligent Systems for the 21st
Century Systems, Man and Cybernetics, Oct. 22-
25, IEEE Xplore Press, Vancouver, BC., pp:
4372-4377. DOI: 10.1109/ICSMC.1995.538481

Omatu, S., T. Fujinaka and M. Yoshioka, 2000.
Neuro-PID control for inverted single and double
pendulums. Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics,
Oct. 8-11, IEEE Xplore Press, Nashville, TN., pp:
3685-2690. DOI: 10.1109/ICSMC.2000.884401

Pal, T. and N.R. Pal, 2003. SOGARG: A self-organized
genetic algorithm-based rule generation scheme for
fuzzy controllers. IEEE Trans. Evolut. Comput., 7:
397-415. DOI: 10.1109/TEVC.2003.815377

Storn, R. and K. Price, 1997. Differential evolution-a
simple and efficient heuristic for global optimization
over continuous spaces. J. Global Optimiz., 11: 341-
359. 10.1023/A:1008202821328

Ravn, N. and H. Poulsen, 2001. Neural Networks for
Modelling and Control of Dynamic Systems. 1st
Edn., Springer.

Riedmiller, M., 1993. Controlling an inverted pendulum
by neural plant identification. Proceeding of the
International Conference on Systems, Man and
Cybernetics, Systems Engineering in the Service of
Humans, Conference, Oct. 17-20, IEEE Xplore
Press, Le Touquet, pp: 473-478. DOI:
10.1109/ICSMC.1993.390758

Saifizul, A.A., Z. Zainon, N.A.A. Osman, C.A. Azlan
and U.F.S.U. Ibrahim, 2006. Intelligent Control for
Self-erecting Inverted Pendulum Via Adaptive
Neuro-fuzzy Inference System. Am. J. Applied Sci.,
3:1795-1802. DOI: 10.3844/ajassp.2006.1795.1802

Sazonov, E.S., P. Klinkhachorn and R.L. Klein, 2003.
Hybrid LQG-neural controller for inverted pendulum
system. Proceedings of the 35th Southeastern
Symposium on, Mar. 16-18, IEEE Xplore Press, pp:
206-210. DOI: 10.1109/SSST.2003.1194559

Takagi, T. and M. Sugeno, 1985. Fuzzy identification of
systems and its applications to modeling and
control. IEEE Trans. Syst. Man Cybernet., 15: 116-
132. DOI: 10.1109/TSMC.1985.6313399

Williams, V. and K. Matsuoka, 1991a. Learning to
balance the inverted pendulum using neural
networks. IEEE Int. Joint Conf., 1: 214 -219.

Yang, R., Y.Y. Kuen and Z. Li, 2000. Stabilization of a
2-DOF spherical pendulum on x-y table. Proc. IEEE
Conf. Control Appl., 1: 724-729.

