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Abstract: We present a fragment-based tracking algorithm that considers 

appearance information characterized by a non-parametric distribution and 

spatial information described by a parametric representation. We segment 

an input object into several fragments based on the appearance similarity 

and spatial distribution. Spatial distribution and appearance are important 

for distinguishing different fragments. We employee such information for 

separating an object from its background: Appearance information is 

described by nonparametric representation such as kernels; spatial 

information is characterized by Gaussians with spatial distribution of 

fragments. We integrate appearance and spatial information for target 

localization in images. The overall motion is estimated by the mean shift 

algorithm. This motion can deviate from the true position in the overall 

motion estimation because of the mean-shift drifting. We refine the estimated 

position based on the foreground probabilities. The proposed tracker gives 

better target localization results and better foreground probability images. Our 

experimental results demonstrate that the integration of appearance and 

spatial information by combining parametric and non-parametric 

representation is effective for tracking targets in difficult sequences. 

 

Keywords: Visual Tracking, Fragment-Based Tracking, Parametric and 

Non-Parametric Representation, Appearance and Spatial Information 

 

Introduction 

Visual tracking is still a hard problem after the 

intensive investigation over the years. Adaptive tracking 

(Collins et al., 2005; Han and Davis, 2004; Wang and 

Yagi, 2013) is effective for improving the tracking 

accuracy of a tracking algorithm by choosing good 

features that distinguish the object against its 

background. Unfortunately, model drifts bring 

difficulties for adaptive tracking (Jepson et al., 2003; 

Collins et al., 2005). To make the target model adaptive 

to the appearance variations, the tracker has to classify 

the pixels in the region into foreground and background. 

The classification process can mistakenly classified 

background pixels as foreground. Such pixels are 

incorporated into the object model. Thus the model 

updating makes the object representation drift from the 

true representation. The misclassification of the pixels 

can lead to the failure of the trackers for adaptive model 

updating. This problem can be partially solved by using 

an effective representation of targets and their 

background. The objective of this work is to improve the 

pixel classification by explicitly considering spatial 

distribution and appearance representation. We also 

investigate on how to use effective representation in the 

localization process for a visual tracker. 

Different trackers try to find good target and 

background description approaches and target 

localization methods. Object characterization and 

position estimation are the two important issues that 

need to be addressed in developing an effective tracker. 

A good object representation can describe the essence of 

the object that is representative for the object and 

sufficiently discriminative for distinguishing the object 

from the background. Moreover, the characterization 

needs adaptive ability for handling object changes due to 

illumination variations or viewpoints changes. 

Histograms are simple and effective nonparametric 

representations. Other nonparametric forms such as 

kernel density estimation are proposed for better 

performance. A target can be described by a kernel 
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density distribution or histograms. Histograms robust 

against variations in pose and shape have found wide 

applications in various tracking algorithms. The 

advantage is not gotten without any cost. Actually, we 

lost the spatial information that is useful for segmenting 

foreground and background.  

We find inspirations for designing a good tracking 

algorithm in human intelligence. Multiple cues acts an 

important role in human perception. One set of features 

is not sufficient for describing an object. A few different 

features can represent different aspects of an object and 

its background. The complementary features are adopted 

for object tracking and recognition. Color features are 

widely used in different systems due to its simplicity. 

However, color features are not always effective, 

especially when the illumination conditions are changed. 

Other features such are shape and texture features are 

more stable in such situations (Toyama and Blake, 

2001). Color cue can be misleading when the 

background has similar colors with the foreground 

target. In addition, color information changes when the 

illumination condition of the scene is not constant. Shape 

cue might have difficulties in the variations due to 

viewpoint changes. Shape and texture features can 

overcome the difficulties faced by color features 

(Birchfield, 1998; Wang and Yagi, 2013). 

We present a mechanism for choosing good features. 

We make a feature pool by representing an object by color 

and shape texture cues. Color cue are characterized by 

histograms that are nonparametric representations. Shape 

and texture cues are represented by gradient orientation 

histograms. We compute an object and its background 

histograms different color spaces. Three color spaces are 

used for the color histogram computation: The HSV 

spaces, in the RGB space and the normalized r-g space. 

We select the most distinctive features by measuring the 

distinguishing ability of different features. Wang et al. 

(2011) propose another superpixel-based tracking method. 

Their tracker is relatively slow due to the application of 

the clustering method with many iterations. 

We combine multiple cues for describing the targets 

and background. Appearance information can be 

strengthened by spatial information. To integrate different 

features, we segment an object into a few fragments. In 

the segmentation process, we consider the appearance 

similarity and spatial distribution simultaneously. The 

proposed tracking algorithm describes appearance 

information by nonparametric representation (kernels). 

Our algorithm characterizes object spatial information by 

Gaussians distributions with spatial information. We 

estimate the object motion by using the mean shift 

algorithm. We calculate foreground probability images 

based on pixel classification using the fragment-based 

characterization. We refine the motion parameters by 

searching in the foreground probability images. 

Related Work 

Spatial information has been considered by 

Birchfield and Rangarajan (2005) in their tracking 

algorithm. They represent spatial information using 

spatiogram that consists of many bins. Each bin in a 

spatiogram contains the position value of pixel 

weighted by the mean and covariance. Since the target 

is presented by one histogram, the tracking is not 

reliable when occlusion exist. 

A joint spatial-color space was proposed by Wang et al. 

(2006) for characterizing the appearance of objects based 

on mixture of Gaussians. The tracking is initialized by an 

Expectation and Maximization (EM) step. The 

initialization is computationally expensive. To conquer 

the difficulty brought by illumination variations, they use 

the normalized color space r-g and intensity for 

characterizing the appearance of the object. Although r-g 

is robust against illumination changes, they are not stable 

and effective due to the insufficient discriminative 

abilities. In addition to the above problem, they do not 

explicitly represent the object as a part collection. In 

contrast, we use parametric and nonparametric 

representations in different situations. We select good 

features from a feature pool. The selected feature should 

be discriminative against the background. 

Adam et al. (2006) proposed a fragment-based 

tracking algorithm in which the target is manually 

segmented into many fragments. The segmentation is 

fixed as grid separation. The tracker provides higher 

localization accuracy compared to the basic mean shift 

tracker (Comaniciu et al., 2003). However, their approach 

has several drawbacks. First, it is difficult to track 

articulated objects because the integral histogram only can 

be computed in rectangular regions. Second, the model 

updating is also relatively difficult. Model updating is 

important for tracking a target in a dynamic scene   

(Jepson et al., 2003; Wang and Yagi, 2008). We try to 

improve the separation results of the foreground target and 

its background, which is useful for better model updating. 

Wang and Yagi (2008) select discriminative features 

to achieve better tracking performance. However, the 

feature selection is performed by considering the whole 

target and its background. This approach works well 

when the foreground target does not have complicated 

appearance distributions. Sudden motion is handled by 

auxiliary particles in Wang and Yagi (2009). The sudden 

motion detection is important for the initialization of the 

auxiliary particles. The appearance of the foreground 

target should be relatively distinctive against the 

background. Similar to Wang and Yagi (2009; Kim and 

Jeon, 2013) propose a spatio-temporal auxiliary particle 

filtering method for robust visual tracking. The target 

template is matched with the candidates by l1 

minimization, which has been used in Mei et al. (2011). 

Wang and Yagi (2013) match multiple correspondences 
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based on super-pixel's appearance information. The 

spatial information is employed for localization. 

However, the spatial information is not considered in the 

pixel discrimination against the background. 

Avidan (2007) presents classification for tracking 

method. To classify pixels into foreground and 

background, he presents an ensemble of simple weak 

classifiers for separating foreground and background. 

Each weak classifier is trained online from a specific 

frame and the ensemble is collected from a predefined 

range of recent frames. Our work also relates with his 

work. The classification in Avidan (2007 is performed by 

learning a classifier for the whole target. It does not 

consider the separation of the target. Our work combines 

the discriminative ability of the fragments segmented by a 

clustering algorithm that makes the representation more 

effective. Bai et al. (2013) extend the ensemble learning 

method by introducing a randomized ensemble. Their 

work is more efficient than the original ensemble. 

However, the learning process depends on the classifiers 

that can be drift during the tracking process. Yin and 

Collins (2006) segment object foreground and background 

into several regions. The discriminative ability of different 

features are evaluated and the good features are selected. 

The segmentation process is arbitrary, which brings errors 

that can lead to tracking failures. 

The paper is organized as follows. In section 3, we 

introduce the segmentation process, we also describe how 

to represent a target and its background in this section. 

Section 4 discusses the feature selection method. The 

adaptive tracking method of the target is described in 

section 5. We evaluate the performance of the proposed 

method in section 6. We summarize this work in section 7. 

Generation and Representation of Object 

Fragment 

We perform tracking initialization detecting and 

automatic segmentation. The detection algorithm provides a 

bounding box for the target. The GrabCut (Rother et al., 

2004). is used for the automatic segmentation. 

Fragment Generation 

The target to be tracked is segmented using the 

GrabCut. We need a collection of fragments for better 

object representation. We use the k-means algorithm for 

separating the object into multiple fragments. The k-

means algorithm has been applied in different color 

spaces such as HSV, RGB, r-g. The separation 

performances of the k-means using different color spaces 

are compared accordingly. We found that color 

information is not sufficient for the separation. To 

improve the segmentation, we embed spatial information 

into the k-means. We achieve the best separation results 

by using the HS-XY space. The HS-XY representation 

consists of H and S channels in the HSV color space; 

and the coordinates of the pixels as spatial information. 

This results prove that spatial information is important. 

The fragment generation is illustrated in Fig. 1. 

 

 
 
Fig. 1. (a) The input image of a woman. (b) Segmentation result using the GrabCut algorithm (Rother et al., 2004); Target separation 

using different spaces: (c) RGB; (d) HSV and (e) HS-XY. (f) Parametric representation of spatial information 
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The number of the fragments has to be defined before 
the decomposition. Different object might have different 
numbers of distinguish fragments. To handle this problem, 
we give a relatively large number setting in the beginning 
of the object fragment separation (e.g., 8 fragments). We 
run the k-means algorithm on an image and a few 
fragments are calculated. We evaluate the fragments based 
on their sizes. The small fragments are not discriminative. 
They are discarded in the separation process. 

The results of object separation are a set of fragments. 
The pixels in each fragment have similar appearance and 
spatial adherence. We use G to denote a set of fragments 
sampled from the object region; and g indicate a single 
fragment in the fragment set. We describe the object using 
kernels that are nonparametric (Comaniciu et al., 2003). 
Moreover, each fragment is characterized by both 
appearance and spatial information. 

Object Representation 

An object and each fragment is represented by their 
spatial and appearance information. We use nonparametric 
representation such as kernels (Comaniciu et al. (2003)). 
to describe object appearance information. Since spatial 
information can be better dealt with by parametric 
representations. We use spatial Gaussian of fragment g. 
Each spatial Gaussian is composed of its mean value µg 
and its covariance Σg. We show the spatial information of 
each fragment in Fig. 1. 

Discriminative Selection for Good Features 

Good features are helpful for tracking and 
recognition tasks. Here, we use feature selection aims 
find the best subset from the feature pool available. It 
has been proved useful in other tracking algorithms 
(Collins et al., 2005). We can define criteria for our 
feature selection. Different criteria have been applied in 
feature selection, e.g., class separability measure   
(Nguyen and Smeulders, 2006), principal component 
analysis (Han and Davis, 2004), or variance ratio ranking. 
We found that variance ratio (Wang and Yagi, 2008) is a 
good measure for choosing discriminative features. 

Probability Ratio Image Calculation 

Variance ratio (Collins et al., 2005) indicates the 

distinctiveness of an object with respect to its 

background. It is calculated based on probability ratios. 

Probability ratios project raw feature values
 
nonlinearly 

into a new space. The pixels with certain appearance are 

found more on the object are transformed into positive 

values; and pixels with certain appearance that are 

frequently found in the
 
background are transformed into 

negative values. We calculate log-likelihood ratios 

according to the histograms of an object and its 

background for a each
 
feature. The values in different 

bins of a histogram represent the frequency of a certain 

feature. They are calculated by: 
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Where: 

 nF = The pixel number of the object region 

nB = The pixel number of the background 

region 
( )

F
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F
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We calculate the log-likelihood ratio for a certain 

feature by Equation 3: 
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where, δL is a very tiny real number. 

Discriminative Feature Selection 

Variance ratio indicates the discriminative ability 

of a feature. A feature is discriminative when it is 

abundant in the target region but rare in the 

background region. We measure discriminative ability 

according to the log likelihood image calculated by 

histogram projection. We calculate the likelihood 

function of variance ratio by Equation 4: 
 

var( ) var( ;( ) / 2)

var( ) var( ) var( ; ) var( ; )

F B

F B

B F L p p
v

F B L p L p

∪ +
= =

+ +
 (4) 

 

We select 2 features from a feature set that consists 

of 6 color features and a shape-texture feature. The color 

features include R, G and B in RGB color space; H and 

S in HSV space; r and g in r-g space. The shape feature 

is described by the gradient orientation histogram of the 

target and its background. We calculate all the variance 

ratios for these features. The discriminative abilities of 

the features are ranked according to the variance ratios. 

The first two features with large variance ratio are 

considered as discriminative features. 

Target Localization 

We use the mean-shift algorithm to estimate the 

global motion of an object. The mean-shift searches for 

the mode in an efficient way. The searching steps are 

changed adaptively according to the distance to the mode. 

Large steps are taken when the searching is far from the 
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mode. The steps are adjusted to smaller ones when the 

searching is near to the mode. This strategy makes an 

efficient approach for mode seeking. The global motion 

estimation is estimated based on the good features with 

high discriminative ability from the feature pool. 
Although the mean-shift algorithm is fast, the mode 

seeking result might not be the true position. For 
example, the mode seeking process can deviate from 
the true position when the probability distribution of 
the background is similar to the object. This happens 
especially when the pixel classification is not accurate. 
Since we have nonparametric representation for the 
appearance and parametric representation for the spatial 
information, we use these representations to give 
foreground or background labels to each pixels in the 
bounding box. The probabilities calculated based on 
these representations are integrated as the results for 
pixel classification. The position of the object is 
estimated based on the probabilistic image. 

Probabilistic Formulation for Pixel Labeling  

We make use of the following notation for the 
probabilistic formulation of pixel classification: Let R 
denote the ratio between the probability of the 
foreground and the background; S denote spatial 
information; A denote appearance information; and F 
and B denote foreground and background; x denote the 
position of the pixel. We use subscripts t to denote time. 
The tracking process can be represented by calculating 
the ratio between the foreground probability and the 
background probability given the spatial and appearance 
information Equation 5: 
 

( | , ) ( , | ) ( )

( | , ) ( , | ) ( )

F

B

p F S A p S A p F
r

p B S A p S A p B

θ

θ
= ≈x x x

x

x x x

 (5) 

 
where, θF and θB denote the representation of the 

foreground target and the background, respectively. 

We decompose the probability by Equation 6 and 7: 
 

( , | ) ( | , ) ( | ) ( )F F F Fp S A p A S p S pθ θ θ θ=x x x x
 (6) 

 
And: 
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We calculate the probability based on nonparametric 

appearance representation. The histograms are back-

projected and the probability is achieved (Swain and 

Ballard, 1991; Wang and Yagi, 2008). We calculate the 

probability based the parameterized spatial information 

using a spatial Gaussian distribution: 
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where, µS 
is the mean of the spatial distribution and ΣS 

denotes the covariance. 

We calculate a probabilistic image for each fragment. 

We combine the probabilistic images to obtain the 

foreground probability image. 

Likelihood Ratios Integration
 

We select discriminative features for each fragment. 

The discriminative ability is selected according to the 

measure of certain areas characterized by the spatial 

Gaussians. Therefore, the contributions of the
 
likelihood 

ratios obtained in different fragment are influenced by 

the discriminative abilities. The integration of different 

likelihood ratio images
 

aims at including the 

discriminative abilities into the final results. The results 

are calculated by an interpolation Equation 9: 

 
( )g g g g

g

r v r x p=∑x x x  (9) 

 

Where: 
gv
x

 = The variance ration score of fragment g 
gp
x

 = Calculated using the method in Equation 8
 

 

Target Location Refinement 

The position estimated by the mean-shift algorithm 

can be refined based on the integrated log-likelihood 

images. The position refinement can provide a more 

accurate location estimation result of the object. In 

practice, we run another mean shift on the integrated 

likelihood ratio image (Bradski, 1998). 

Experimental Results 

We implemented the proposed approach. We run our 

algorithm on a few image sequences. We show the test 

results of three image sequences. These image sequences 

are captured by non-stationary cameras. The motion of the 

cameras brings difficulty to the tracking. The frames in the 

first two sequences have a size of 360×240 pixels. 

Likelihood images computation is not easy due to the low 

resolution of the frames. The articulated target structure, 

the dynamic background, the deformable property of the 

object are also the source of the difficulty. The images in 

the last sequence have a size of 640×480 pixels. This 

sequence has a dynamic background. We use this 

sequence to demonstrate the possibility for segmenting the 

target by using our tracking results. 

We show the results of the image three sequences in 

Fig. 2a, b and Fig. 4, respectively. We show the likelihood 

ratio images obtained based on the global description in 

the middle columns of Fig. 2. The distinctive color of the 

upper body makes appearance information sufficient to 

calculate the likelihood ratio image. However, other 
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fragments of the person are not as distinctive as the upper 

body. They are not well addressed in the likelihood ratio 

image. In addition, the position indicated by the bounding 

box is not accurate. To solve this problem, the 

nonparametric and parametric representations of each 

fragment are used for likelihood ratio images estimation. 

Then, we integrate these likelihood ratios according to their 

discriminative abilities. We illustrate the integrated 

likelihood ratio image on the right in Fig. 2. The position of 

the bounding box is estimated according to the integrated 

likelihood ratio image. The position of bounding boxes are 

more accurate than the position by running a mean-shift 

algorithm in the middle column in Fig. 2. 

We use several image sequences with ground truths 

to quantitatively evaluate the performance of the 

proposed algorithm. We label the images manually and 

get the ground truths of the sequences. The integrated the 

likelihood ratio images are converted into binary images 

by giving a threshold. We compare the results with the 

ground truth. We show the comparison results in Fig. 3. 

The integrated likelihood images give lower error rates 

than that of the direct back-projection of the single 

histogram representation in most cases. However, the 

integrated likelihood images are not as good as the direct 

back-projection in a few frames. We found that the bad 

performance is due to the drifting problem in the 

integration process. One feature can be discriminative 

in one frame. But it is not consistent in relatively long 

period. The target model is not updated accordingly. 

Therefore, this problem can be solved by considering 

the discriminative ability of a feature through a 

relatively stable period. 

 

 
 
Fig. 2. The original image sequences and the foreground. The images in the first column are two frames in the input sequences. The 

second column shows the likelihood ratio images computed using the global description of the target. The original image 

sequences and the foreground. The images in the first column are two frames in the input sequences. The second column 

shows the likelihood ratio images computed using the global description of the target 

 

 
 (a) (b) 

 
Fig. 3. The probabilistic images of different methods. The merged probabilistic image is better than the image gotten by direct 

projection 
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Fig. 4. The segmentation results of a video sequence. The images on the left are the input images; and the images on the right are the 

segmentation results by converting the likelihood image 

 
In the experiments of the last sequence (Fig. 4), we 

employ appearance, spatial and motion information for 
the segmentation of the images. The segmentation results 
are gotten by converting the likelihood images by adding 
motion information. The results are useful for effectively 
updating the model. 

Conclusion 

We devised a fragment-based adaptive tracking 

algorithm. The target decomposition is effective for 

improving the performance of the tracking. The 

proposed method provides better target localization 

results. The foreground target is more distinctive in the 

likelihood images than the results calculated using the 

traditional methods. These results can be helpful for the 

segmentation in video sequences. It is also important in 

target model updating for avoiding the drifts.  
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