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Abstract: The analysis of a practical problem using numerical methods 

such as Finite Element Method (FEM) or Boundary Element Method 

(BEM) involves the subdivision of the space occupied by a physical system 

(named domain) or its boundary into sub-domains or sub-boundaries called 

elements. This task, known as mesh generation or domain-discretization, is 

no more trivial if domains of real or industrial problems involving shape 

irregularities, various different materials which may be non-linear or an-

isotropic; are to be taken into account. In this paper an easy mesh technique 

considering even domains, which are tiresome handlebar by Computer 

Aided Design (CAD) Software, has been proposed to achieve efficient and 

suitable meshes to minimize the computer storage requirements, the 

computation time; and to improve the accuracy of the results during 

numerical Analyses. The basic elements adopted in mesh are d-Simplexes. 

 

Keywords: Mesh-Generation, View-Point, Optimal-Point, d-Simplex, 

Shape- Regulation 
 

Introduction 

Any numerical analysis relying on methods such as 
Finite Difference Method (FDM), Finite Element Method 
(FEM) and Boundary Element Method (BEM), involves the 
subdivision of the space occupied by a physical system into 
appropriate elements. This task known as mesh generation 
or domain-discretization is the first and the most important 
part in any numerical method process, because the manner 
in which the domain is meshed will affect the computer 
storage requirements, the computation time, and accuracy 
of the numerical results (Burnett, 1987; Jin, 1993). In this 
process of partitioning a domain into a mesh of elements, 
the question of the optimum way of connecting n points in a 
d-dimensional space to form elements of acceptable shape 
arises (CGAL, 2015). In fact the problem raised here is a 
technique of subdividing a domain Ω (assuming it has 
polyhedral boundaries) into a set Ω  of triangles or 
rectangles (two-dimensional space), tetrahedrons, triangular 
prisms or rectangular bricks (three-dimensional space) 
which have to respond to the following conditions: 
 

C1) The sum of all elements of Ω  is equal to Ω 

C2) The intersection of two elements of Ω is a point, an 

edge, a facet or empty (non-overlapping condition) 

C3) All the elements should be made close to equilateral 

as possible or avoid generating elements having a 

small inner angle; the reason is they increase the 

solution error. It can be read in (Jin, 1993) that the 

error of the finite element solution is inversely 

proportional to the sine of the smallest inner angle  

C4) A greater degree of freedom density (number 

elements) in areas of interest and lesser degree of 

freedom density elsewhere in the region Ω  
 

The main aim of the technique proposed in this 
paper was to achieve a mesh for real objects which are 
tiresome to be reproduced by CAD Software 
(AutoCAD and COMSOL for examples) and create 
their Geometries for numerical analysis purposes: In 
fact without any knowledge of CAD Software, just 
through mathematical real body modelling, object 
boundary structuring, d-Simplex Shape Regulation 
and the philosophy of object oriented approach, mesh 
can be obtained by a given list of points describing the 
considered domain. This objective has been obviously 
reached by using structured boundary approaches, and as 
examples, models and their meshes have been proposed for 
practical FEM and BEM analyses in (Komla and Kost, 
2003; De Castro, 2010; Korman et al., 2014). 
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Method 

Modelling of Real Body 

In numerical methods (FDM, BEM, FEM) a space 
occupied by a physical system is considered as finite and 
closed. It’s most of the time complex and composed of 
several sub-regions according to the physical properties 
of the system in question. Say Ω such a d-dimensional real 
body, it’s approximated to a sum of closed d-dimensional 
sub-regions (polyhedrons in 3-dimensional –, polygons in 
two-dimensional – and segments of line in 1-dimensional 
space) Ωj, j = 1, 2,..., M, so that: 
 

,
M

j ij i jj
j 1

 i, j, 1 M,     
=

Ω ≈ ∪ ∀ ≤ = ∩Ω Γ Ω Ω   (1)  

 
Where: 

For i ≠ j, 

Ωi and Ωj =  sub-regions 

Γij, = interface or external-face of Ωi and Ωj: May be 

empty, a   point, a segment of line or a polygon. 

 
The structure of the closed boundary Γ = ∂Ω of the 

region Ω depends on boundary loads and the behaviour 
of the physical properties in this area. After approximation 
(1) Γ is consequently equal to a sum of sub-boundaries 
(polygons in three-dimensional –, segments of line in two-
dimensional – and points in 1-dimensional case) Γj, j = 1, 
2,..., N, so that: 
 

,
N

j ij i j
j 1

 i, j, 1 N, E
=

Γ ≈ ∪ ∀ ≤ = ∩Γ Γ Γ   (2) 

 
Where:  

For i ≠ j,  

Γi and Γj = sub-boundaries  

Eij = intersection of two sub-boundaries: may be empty, a 

point or segment of line  
 

The border ∂Γ of any Γi, is assumed to be a sum of 
entities (segments of line in three-dimensional – and 
points in two-dimensional case) Ei, i = 1, 2, ..., K, so that: 
 

,
K

i
i 1

 i, j, i jE
=

∂Γ ≈ ∪ ∀ ≠   (3) 

 

],
∅= =∩

= ≠

ij i j

i m, n

 or point, and P E E

P P  m nE
  (4) 

 

Where:  

For i  ≠ j, 

Pij = the intersection of two elements Ei and Ej of ∂Γ 

Pm and Pn = Border points of the entities Ei. 

 

Object Oriented Approach 

During the analysis of the problem through 

approximations ((1) - (4)), the following geometrical 

objects have been mathematically identified to fit the 

modeling concepts of real body adopted in this paper:  
 
• d-Point: A d-dimensional space point characterised 

by its coordinates, representing nodes or vertices of 
elements in mesh of the region Ω 

• d-Edge: A portion of d-dimensional space straight 
line bordered by two d-Point objects, representing 
edges of elements in mesh of the region Ω 

• p-Face: A portion of d-dimensional planar surface 
bordered by sets of  interconnected d-Edge objects, 
which are indeed closed lines and will be referred to 
as c-Line objects in the rest of this paper. In fact a p-
Face object is considered as a face of a polyhedron 
as defined in equation (1) and represents entities 
defined in equation (2) in three-dimensional case. A 
c-Line object in this case denotes the entity ∂Γ as 
defined in equation (3)  

• p-Volume: A closed polyhedral three-dimensional 
sub-region bordered by a set of interconnected p-
Face objects, forming a closed three-dimensional 
surface which will be referred to as c-Surface object 
in the rest of this paper. A p-Volume object 
represents the closed sub-region as defined in 
equation (1), and its closed boundary is a c-Surface 
object, formed by interconnected p-Face objects 

 
In addition to these objects some types of mesh 

elements have been defined as follows:  
 
• d-Simplex: An envelope of  d+1 d-Point objects in 

d-dimensional space (Fig. 1(a) and (b)), building 
mathematically a system of (d+1) points with a non-
zero determinant. A d-Simplex object is actually a 
known geometrical object (a tetrahedron in three-
dimensional –, a triangle in two-dimensional – and a 
segment of line in one-dimensional case), which d+1 
facets are (d-1)-Simplexes named 

• s-Facet objects (triangles in three-dimensional –, d-
Edges in two-dimensional – and d-Points in one-
dimensional case): 

• d-Element: Denotes a type of elements in which the 
d-dimensional region Ω is meshed. A d-Element 
object is actually a known geometrical object which 
can be obtained by merging d-Simplexes 

 

 
 (a) (b) 
 

Fig. 1. (a) 2-Simplex (b) 3-Simplex 
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The determinant of the d-simplex = {P1, P2,..., Pd+1} 

may be written as: 
 

1 1 1 1 1 1

2 1 i 1 d 1 1

2 2 2 2 2 2

2 1 i 1 d 1 1

d d d d d d

2 1 i 1 d 1 1

... ...p p p p p p

... ...p p p p p p

. . .
det(d-Simplex)

. . .

. . .

... ....p p p p p p

+

+

+

− − −

− − −

=

− − −

 (5) 

 
Where:  

For i = 1, ..., d+1 and n = 1, ..., d 

pi = The d-simplex vertices 
n

i
p = The Cartesian co-ordinates of the i

th
 point 

 

Algorithm 

Through objects identification and mesh elements 
definition above a practical approach of mesh generation 
has led to define a d-Edge, a p-Face and p-Volume objects 
as one-dimensional, two-dimensional and three-
dimensional fundamental meshing objects respectively.  
Consequently a d-dimensional mesh is defined in this paper 
as interconnected d-dimensional fundamental meshing 
objects discretized in d-Elements. And a d-dimensional 
mesh generation is fully an automatic object to object 
meshing technique which must be imagined as a mason 
who is assigned to build a house without a drawn plan by an 
architect. The only physical orientation given to him is a 
piece of land (Ω) with its border (Γ) description and a 
number of conditions to observe during the construction. 
Fortunately, he was also given the number floors 
(dimension d) and the form which each room (d-Element) 

must have. Well, with the help of his intelligence, he starts 
from the first floor (with any one of the fundamental 
meshing objects) builds room by room, observing the 
conditions required and setting properties for the next room 
till the entire house is completed on the last floor. The 
whole process is step by step job realised in three stages:  
 

• Object boundary structuring 

• Object meshing into d-simplexes and d-simplexes 

merging to d-Elements  

• Objects connecting  

 

For simplicity and commodity p-Face - and p-

Volume objects are called later d-Polyhedrons; and c-

Lines - and c-Surface objects are named d-Surfaces in 

two- and three-dimensional cases. 

Object Boundary Structuring 

In fact the connected p-Face objects of a c-Surface 

are orientated according to their normal vectors 
r
n  and 

the connected d-Edges objects of a c-Line are 
transformed in coplanar vectors as is shown in Fig. 2. 

Object Meshing into d-Simplexes 

It is a fully stepwise Object Oriented Mesh generation 

consisting principally of three steps in two-dimensional and 

five steps in three-dimensional cases as is shown in Fig. 3: 

The first step is indeed a d-Edge object refining (Face 

borders regulation); the second and third stages denote a p-

Face objects meshing (Face mesh generation and Face 

elements regulation); and the fourth and fifth stages 

represent a p-Volume objects meshing (Volume mesh 

generation and Volume elements regulation).  

 

 
 

Fig. 2. Model of a p-Face defined by a circle with an inner hole 
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Fig. 3. Mesh object into d-Simplexes 
 

The construction of a d-Simplex object adopted here 

depends on two fundamental criterions named view-

point of s-Facet object and s-Facet object regularity: 
 

• For a given s-Facet F lying inside a d-Polyhedron, 

any d-Point P element of this d-Polyhedron building 

a non-degenerated virtual d-Simplex S = {F, P} 

lying inside the d-Polyhedron and satisfying the 

condition C2) above, is labelled a view-point of F  

• A s-Facet object F is regular if its circumscribed (d-

1)-Sphere Br (Fig. 4) doesn’t contain any of its 

probable view-points 

 

If an s-Facet object is not regular, it’s resized to fit 

the regularity condition (for example in Fig. 4, the two-

dimensional s-Facet F1 = [P5, P6] is regular, and s-Facet 

F2 = [P3, P4] on the other hand is not). 
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Fig. 4.  Face Border Regularity check 
 

 
 

Fig. 5.  3-simplex 

 

Among the view-points of an s-Facet object, the 

one with the best condition C3) is called the optimal 

point of the element. 

The optimal point is determined by evaluating the 

following quantities at each vertex of a d-Simplex (Fig. 5): 

 

I

IJ IK

2
sin( ) = ,     for a triangle

l l

∆
α   (6) 

 

II

IJ IK IL

3V
sin( )sin( ) =  ,     for a tetrahedron

l l l
β α  (7) 

 
Where: 

lIJ, lIK and lIL = The lengths of edges starting from the vertex 

I  

∆ = The area of the triangle (I, J, K) 

V = The volume of the tetrahedron (I, J, K, L)  

αI and βI  = The inner angles at the vertex I 
 

The basic idea of the concept of meshing a d-

Polyhedron D into interconnected d-Simplexes 

satisfying the condition C2) above may be summarised 

as follows: Find progressively optimal points Popt to 

cover all uncovered s-Facet objects (Fig. 6) F k, k = 

1,…,n Facet, lying inside the d-Polyhedron D, so that a 

mesh of d-Simplexes Sk = {Fk, Popt} is generated for D. 
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Fig. 6. p-Face Meshing in 2-Simplexes F 

 
At beginning of the process it is supposed that the 

d-Surface B of the d-Polyhedron is covered with 
regular s-Facet objects (Fig. 6). These elements are 
automatically the initial uncovered s-Facets objects F 
lying inside the d-Polyhedron. This process of 
meshing a given d-dimensional domain in d-
Simplexes is generally called triangulation of the 
domain. The triangulation approach of a given d-
Polyhedron D in this paper is summarised in Fig. 7. 

Simplex Shape Regulation 

The final triangulation of D is obtained by 

controlling all the d-simplexes through regulations to 

satisfy the condition C3). Furthermore the aim is to bring 

the final mesh to a quality near the one of Delaunay 

Tessellation (Watson, 2006; François, 2008; Boissonnat., 

2008; Geuzaine and Remacle, 2009; Brévilliers, 2008; 

Aichholzer et al., 2015) to ensure the regularity of the 

elements:  Exceptions however are made only in cases of 

four co-cyclical - in two-dimensional and five co-

spherical points in three-dimensional meshes as 

presented in Fig. 8 and Fig. 9. 

In this paper a concept of neighbour nodes position 

check is additionally introduced through the idea of d-

Simplex-face neighbour point zone. The concept is that, 

there is for every facet of a d-simplex a special zone, 

which is properly defined by the structure of it to contain 

a neighbour point and ensure the regularity in the region. 
The neighbour point of a face of a d-Simplex e is the 

n
th

 vertex of the neighbour element en which doesn’t 
belong to e. For example N is the neighbour point of the 
face named face-k in (Fig. 10). In general a k-zone of a 
face-k of a d-simplex is a half opened region k-zone 
bounded by the d-1 dimensional subspaces supporting 
the faces of the d-simplex.  

In fact it is easy to see, that any point N in this k-zone 
forms together with the face-k of the d-simplex e a non-
degenerated  d-simplex en = {face-k, N} if the distance 
between face-k and the point N is kept reasonable. In 
other words the point N must not be too far from and 
also too closed to the face-k. To be able to get an optimal 
k-zone for the face-k two delimiter spheres are 
introduced. The first one is the circumscribed d-sphere 
Br of the d-simplex e and the second a sphere BR which 
has the same centre as the d-sphere but with radius R 
greater than the radius r of the first one (Fig. 11). The 
face neighbour point zone is defined as: 
 

k r RFNPZ   =  k-Zone B B∩ ∩  (8) 

 
for a k-face of an element.   

The centre C and the radius r of the circumscribed d-

sphere Br of each d-simplex in triangulation are 

determined by equations (9) and (10): 
 

( ) ( )

( ) ( )

d
2 2

i i
1

1 21 1 1 d d

i = 11 2 1 2

d 1 1 d d d
2 2

i i1 d+1 1 d+1

1 d+1

i = 1

p p
C p p p p

2

C p p p p
p p

−
 

−    − −       
=    

    − −     −
  

∑

∑

K

M M M M M

K

 (9) 

 

( )
d

2
2 i i

1

i = 1

r p C= −∑  (10) 

 
Where: 

For i = 1,..., d+1 and n = 1, ..., d: 

pi = The vertices of the d-simplex 
n

i
P  = The Cartesian co-ordinates of the vertices  

C
n
 = The Cartesian co-ordinates of the centre C 
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The choice of the radius R of the sphere depends 
on the optimal size of the transition elements one 
wants to have approximately in the region of interest. 
Here R = αr, α>1, α .∈  

Now a k-face of an element is admissible if the 

neighbour point N belongs to FNPZk. In case the 

condition is not satisfied then we have to check if N ∈ 

Br or not. If N ∈ Br then the ‘swapping rule’ is used to 

rearrange the elements see (Watson, 2006; Jänicke and 

Kost, 1992) otherwise a new point is generated in the 

FNPZk for the face-k.  

 

 
 

Fig. 7.  Triangulation of a d-Polyhedron D 



Komla Kpogli et al. / American Journal of Engineering and Applied Sciences 2017, 10 (4): 835.846 

DOI: 10.3844/ajeassp.2017.835.846 

 

842 

 

 
Fig. 8. Triangular mesh 

 

 

 
Fig. 9. Triangular mesh with four co-cyclical points 
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Fig. 10. Definition of acceptable region for neighbour points 

 

 

 
Fig. 11. Definition of acceptable region for neighbour points 

 

Results 

FEM Problem Introduced in (Webb and Forghani, 

1995) 

3-dimensional Mesh proposed for the FEM 
problem introduced by Webb and Forghani to assess 

the relative performance of their hierarchical 
tetrahedron reconsidered in (Komla and Kost, 2003): 
The model consists of magnetic circuit driven by a 
coil carrying uniform current density with a total 
current of 1A. A copper block is placed in the air gap 
of the magnetic circuit (Fig. 12). 

TEAM-Workshops Problem No.7 (Turner, 1988) 

Mesh proposed for the TEAM-Workshops problem 

No.7 made of Asymmetrical Conductor with Hole 

(ACH) and a coil reconsidered in (Komla and Kost, 

2003): It consists of a square conducting plate (σ = 

3.526×10
7
 Sm

−1
) with a square hole in one corner and 

a coil carrying sinusoidal source current density which 

is constant over the cross section of the coil, placed 

asymmetrically over the plate (Mesh: Fig. 13a, created 

Geometry: Fig 13b). 
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Fig. 12. 3-dimensional FEM model 

 

 

(a) 

 

 
(b) 

 
Fig. 13. (a) Conducting plate with a hole driven by a coil (b) Geometry created from mesh in Fig. 11a 
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Fig. 14a.  Measured thorax of a person (FEM Model) 
 

 

 

Fig. 14b. Geometry created from Mesh 

 

 

 
Fig. 15. Measured head of a person 

Measured Data from Siemens AG Berlin, Germany 

Mesh proposed for measured data from Siemens AG, 

Berlin (Mesh: Fig. 14a and. 15, created Geometry Fig. 14b). 

Conclusion 

The mesh generation, the first and the most important 

part in any numerical method process, has been chosen 

as basis of investigation in this paper. The aim was to 

reach a flexible and optimal mesh generator which must 

be able to generate a mesh containing only regular 

elements for any given space occupied by a physical 

system, if it can be approximated, according to its 

physical properties, as segregated sub-regions as 

presented in sections ”Modelling of real body” and 

”Object oriented approach”. The main goal in this paper 

was to provide efficient and suitable mesh for numerical 

analyses even where Computer Aided Design software 

may have difficulties to achieve a result.  Through 

structured boundary input data successful meshes have 

been achieved and real objet models are created which 

can be used by CAD software. Practical examples have 

been considered to test the new mesh generator 

developed and some of the results have been used in 

(Komla and Kost, 2003) to analyze successfully 

Magneto-Thermal problems in Electrical Engineering on 

Finite Element Method (FEM) basis. 
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