
 

 
 © 2020 Hessam Miri, S. and S. Behnam Miri. This open access article is distributed under a Creative Commons 

Attribution (CC-BY) 3.0 license. 

American Journal of Engineering and Applied Sciences 

 

 

 

Original Research Paper 

Investigating Commuting Time in a Metropolitan Statistical 

Area Using Spatial Autocorrelation Analysis 
 

1
Hessam Miri, S. and 

2
S. Behnam Miri 

 
1Master of Urban Design, University of Guilan, Rasht, Iran 
2Bachelor of Urban Planning, University of Guilan, Rasht, Iran 

 
Article history 

Received: 10-11-2019 
Revised: 17-12-2019 
Accepted: 10-01-2020 
 
Corresponding Author: 
S. Hessam Miri 
Master of Urban Design, 
University of Guilan, Rasht, 
Iran  
Email: hessam.miri@gmail.com 

Abstract: Commuting is an unavoidable issue as living and working are 

two spatially separated activities for most people. The most influence of 

commuting is on land uses and transportation systems and ultimately it 

poses its consequences to the society. Research on urban commuting is one 

of the most favorable approaches to lessening the impact and intensity of 

land use and transportation problems. As urban spatial structure affects 

commuting patterns, this study aims to understand the spatial distribution 

of mean commuting time at the block group level in Charlotte-Concord-

Gastonia Metropolitan Statistical Area (MSA) using spatial autocorrelation 

analysis method. The results show that the areas of recent housing boom 

have longer commuting time and the commuting time decreases as the 

areas’ age increase. Also, there is no significant difference in Moran’s I 

values for Rook and Queen methods as they are 0.45939 and 0.45265, 

respectively. The positive value of Moran’s I (p-values <0.05) shows that 

block groups with longer average commutes are adjacent to block groups 

with longer average commutes and shorter commutes next to shorter 

commutes. Furthermore, it is identified that clustering of low commuting 

time is in the central part of the cities with old houses and clustering of high 

commuting time is in suburbs with newer houses. 

 

Keywords: Commuting Time, Transportation, Land use, Spatial 

Autocorrelation, Moran’s I 

 

Introduction  

People commute because of the separation between 

their residency location and their workplaces. While 

the number of people who work at home is fairly 

small, commuting is an essential part of urban life in 

modern urbanized areas (Shirzadi Babakan and 

Alimohammadi, 2016; Yang, 2005). Commuting is 

defined as the journey from home to work and vice 

versa which is a basic activity undertaken by people 

and they may tend to plan other activities and meet 

their necessities in their home and work travel 

(Horner, 2004; Yang, 2005). Urban areas are 

expanding (Karimi et al., 2019a) and transportation 

infrastructures are developing continuously(Giuliano and 

Hanson, 2017). Urban growth and transportation 

development (Karimi et al., 2019b) impose an 

increase of travel demand across metropolitan regions 

and people make longer distance commutes to provide 

life needs, as a consequence commuting patterns are 

changing continuously (Horner, 2004). The most 

effect of commuting is on land uses and transportation 

systems and ultimately it poses its consequences to 

the society (Babakan and Taleai, 2015; Shirzadi et al., 

2013). Understanding these impacts makes the 

management of land uses and transportation system 

more convenient (Acker and Witlox, 2011; Azari and 

Shirzadi Babakan, 2016; Horner, 2004). Research on 

urban commuting is a favorable method to mitigating 

these land use and transportation problems (Shirzadi 

Babakan et al., 2015). 

An urban spatial structure where jobs and housings 

are located affects commuting patterns, hence 

commuting patterns can be identified by examining 

urban spatial structure (Horner, 2004; Sohn, 2005; 

Yang, 2005). Urban growth is one of the impacts of 

the predominance of work trips undertaken by car 

(Karimi et al., 2019a). In the United States, increased 

automobile ownership has tended toward 

suburbanization and urban areas’ periphery undergo 
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new housing development on previously undeveloped 

land (Karimi et al., 2019b) which leads to longer-

distance commutes to work (Horner, 2004). Therefore, 

decentralized urban growth and its impacts on the 

transportation system have prompted researchers to 

study widely the relationship between commuting and 

urban spatial structure (García-Palomares, 2009). 

Some studies considered commuting time and some 

studies considered commuting distance and some 

considered both. It is distinctive that shorter 

commuting distance does not guaranty shorter 

commuting time because of congestion (Acker and 

Witlox, 2011). 

Yang (2005) examined commuting time and 

distance increase in relation to concurrent 

decentralized development in two sizable but 

contracting cities, Atlanta and Boston. He realized 

spatially decentralization in Boston results in shorter 

commuting time and distance compared to the much 

more sprawling Atlanta. Sultana and Weber (2007) 

compared the commuting length of workers in sprawl 

areas with of workers in higher density areas, the 

results showed the longer time and distance of 

commuting from sprawl areas to urban areas. This 

study described that sprawl is not the only indicator 

on commuting length, but workers’ socioeconomic 

characteristics are important in such investigations. 

Sandow and Westin (2010) analyzed commuting in a 

relatively sparsely populated and peripheral area in 

northern Sweden, the results showed geographical 

structure, available infrastructure and socio-economic 

factors in restricting people’s (especially women’s) 

commuting behavior in sparsely populated areas. 

Furthermore, this study showed when commuting 

times exceed 45 min tendency to commute declines 

rapidly regardless of gender, transport mode and 

socio-economic factors. Sultana and Weber (2014) 

analyzed the mean commuting time of housing areas 

within the 50 largest US metropolitan areas for 1980, 

1990 and 2000. They described that new 

neighborhoods in most metropolitan areas show 

higher commuting time than old neighborhoods. In a 

recent study, Hu and Wang (2016) analyzed the 

temporal trends of commuting patterns in both time 

and distance based on the 1990-2010 Census 

Transportation Planning Package data of Baton Rouge, 

Louisiana. This research presented urban land use as a 

good predictor of commuting patterns over time.  

Spatial autocorrelation statistics have been broadly 

used to measure the correlation among neighboring 

observations and assess the levels of spatial clustering 

among neighboring regions. Moran’s Index (Moran’s 

I), in particular, has been used to study the crash 

frequencies in Mashhad, Iran (Matkan et al., 2013), 

the spatial pattern of heavy metals in Beijing 

agricultural soils (Huo et al., 2011), the heterogeneity 

of the cardiovascular drug prescribing pattern in 

Taiwan (Cheng et al., 2011), the racial differences in 

the built environment-body mass index relationship in 

Boston (Duncan et al., 2012), Spatial clustering and 

hotspots detection of HIV/AIDS prevalence in 

(Jeefoo, 2016), spatiotemporal clustering of road 

accidents (Prasannakumara et al., 2011) and 

spatiotemporal clustering of malaria in Hubei 

Province, China from 2004-2011 (Xia et al., 2015). 

The purpose of this study is to conduct a spatial 

cluster analysis and measure spatial autocorrelation to 

discover clustering patterns in mean commuting time 

between block groups in the Charlotte-Concord–

Gastonia Metropolitan Statistical Area (MSA) in 2015. 

Global Moran’s I and Local Indicators of Spatial 

Association (LISA) are utilized to identify the mean 

commuting time spatial cluster. Furthermore, the 

relationship between mean commuting time and the age 

of the houses of block groups is analyzed based on the 

idea that housing characteristics are the source of 

commuting patterns (Sultana and Weber, 2014). 

Study Area and Data  

The Charlotte-Concord-Gastonia MSA is including 

seven counties in North Carolina and three counties in 

South Carolina within and surrounding the city 

of Charlotte. Figure 1 shows the geographic location of 

Charlotte-Concord-Gastonia MSA. The population of the 

MSA was 2,379,177 according to 2015 Census estimates 

(DataUSA; United-States-Census-Breau). The major city 

in this MSA is Charlotte which is the 2nd largest city in 

the Southeast and 17th largest city and 22nd largest 

metro area in the United States. Between 2004 and 2014, 

Charlotte was ranked as the country's fastest-growing 

metro area, with 888,000 new residents (DataUSA; 

United-States-Census-Breau). Therefore, being a fast-

growing urban area is a motivation to examine 

commuting time for this MSA. In this paper, US census 

data of 2015 for this MSA are examined to explore the 

autocorrelation of mean commuting time. The 

socioeconomic data including median age of houses 

and aggregate commuting time come from (IPUMS) 

and the level of analysis is block groups as these are 

the smallest zones for which both housing and 

commuting data are available. The shapefile of block 

groups was downloaded from (Census Bureau, 2018), 

then these data were joined through GeoId using 

ArcGIS software. 
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Fig. 1: Geographic location of charlotte-concord-gastonia MSA 

 

Methodology 

To analyze the spatial distribution and capture the 

spatial autocorrelation of commuting time in the study area, 

the Global Moran’s I and Local Indicators of Spatial 

Association (LISA) were calculated for the year 2015. The 

global Moran’s I demonstrates the spatial association of 

data collected in space and measures the strength of the 
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spatial similarities and dissimilarities of neighboring 

districts (Anselin, 1995). However, in the presence of 

uneven spatial clustering, the LISA is utilized. It measures 

the contribution of individual spatial units to the global 

Moran’s I statistic (Anselin, 1995). The first step in the 

analysis of spatial autocorrelation is to construct a spatial 

weights matrix. In this study, the Rook’s and Queen’s 

weight methods are used. The study also generates Moran 

scatter plots to demonstrate the spatial distribution of mean 

commuting time of block groups across the study area. 

Spatial Weight Matrix 

The spatial weight matrix contains information on 

the neighborhood structure for each location. The 

weight matrix is based on using either distance or 

contiguity between spatial units (O'sullivan and Unwin, 

2010). Each (i, j) element of the matrix W, quantifies 

the spatial dependency between areal unit i and j. In 

adjacency approaches assigning values to each matrix 

element is based on sharing an edge or meeting at a 

corner vertex which are the Rook’s case and the 

Queen’s case, respectively. Each element of weight 

matrix equals to 1 if two areal units share a common 

boundary in rook’s case or share a vertex in Queen’s 

case; otherwise, it is 0 (O'sullivan and Unwin, 2010). 

Figure 2 shows the Rook’s case and the Queen’s case 

adjacency. In distance approaches, each matrix element 

may be the inverse distance between two units i and j. 

The spatial weight matrix is also zero along its diagonal 

implying that a unit cannot be a neighbor to itself. In 

adjacency approach, the matrix is symmetric and binary 

and the dimension of the matrix is equal to the number 

of areal units in the study area.  

Global Moran’s I Spatial Autocorrelation 

Spatial autocorrelation occurs when the spatial 

distribution of the variable of interest exhibits a 

clustering or dispersion pattern (Huo et al., 2011). 

Spatial autocorrelation measures spatial clustering based 

on feature locations and attribute values. The most 

widely used autocorrelation measure is Moran’s I, which 

is a spatial translation of a non-spatial correlation and is 

applied to numerical variables of areal units 

(O'sullivan and Unwin, 2010). Moran’s I test statistic is 

given by (O'sullivan and Unwin, 2010): 
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Where: 

wij = The element in the spatial weights 

matrix and it indicates the spatial 

relationship between location i and 

location j 

yi and yj = The observations of the variable in 

location i and j  
y  = The mean of observations across all 

locations 

1 1

n n

iji j

n

w
= =

∑ ∑
 = The scaling factor to normalize the 

weights 

 

The result of Moran’s I analysis is a number which 

ranges from -1 to +1 (Huo et al., 2011). A positive 

Moran’s I indicates the presence and degree of spatial 

autocorrelation and occurs when a unit is surrounded 

by neighbors with similar values of the variable of 

interest, also +1 means perfect spatial correlation. 

Negative spatial autocorrelation occurs when a unit is 

surrounded by neighbors with dissimilar values of the 

variable of interest and -1 means perfect spatial 

dispersion. Value 0 indicates a random spatial pattern 

and no autocorrelation across the study area (Huo et al., 

2011; O'sullivan and Unwin, 2010). The major 

limitation of Moran’s I as a global statistic is that it is 

based on simultaneous measurements from many 

locations, it only provides some broad spatial 

association measurements, ignores the specific details 

of the location and cannot identify which local spatial 

clusters contribute the most to the global statistic 

(Holt, 2007). Finally, the result of the Moran’s I is 

dependent on whether the matrix was based on 

adjacency or distance. However, a pattern of 

decreasing spatial autocorrelation with increasing 

orders of contiguity (distance decay) is commonly 

observed in most spatial processes regardless of the 

matrix definition (Oort and Frank, 2004). 

 

 
(a) (b) 

 
Fig. 2: (a) Rook’s case; (b) Queen’s case 
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Local Spatial Autocorrelation 

To overcome the limitation of Moran’s I, local statistics 
commonly referred to as Local Indicators of Spatial 
Association (LISA) used along with graphic visualization 
techniques of the spatial clustering using a Moran’s 
Scatterplot, have been developed. LISA (Anselin, 1995) 
allows us to decompose the study area into small units, thus 
enabling the assessment of significant local spatial 
clustering around an individual unit. The degree of spatial 
clustering, the detailed variations of clustering in the locally 
defined geo-space and the locations of the spatial clusters 
can be identified by LISA. The local version of Moran’s I at 
unit i is given by (Cheng et al., 2011): 
 

( )

( )
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Where: 

N = The total number of areal units 

yi = The value of the variable of interest 

yj = The observation at neighboring units 

y  = The average of y 

Wij = Spatial weights matrix  
 

In the LISA analysis, if the test statistic is not 
significant at any sensible level, no spatial pattern is 
present in the areas and all observations are spatially 
random. When it is significant, four possible patterns are 
likely to be exhibited (Anselin, 1995):  
 

• When yi is higher than the average of the entire 

study area ( y ) and so are its neighbors, a High-

High (HH) association, a known as hot spot, is 

indicated 

• When both yi and its neighbors are lower than the 

average, the spatial tendency is Low-Low (LL), or a 

cold spot 

• When yi is higher than the average of the entire 

study area ( y ) but its neighbors are not, a High-

Low (HL) association is exhibited 

• When yi is lower than the average of the entire study 

area ( y ) and its neighbors are higher than the 

average, a Low-High (LH) association is indicated 

 
To have a visually meaningful map for spatial 

autocorrelation, the local Moran I is represented by 
clusters, in which the locations of significant spatial 
correlations are highlighted to identify the patterns of 
associations and p-value < 0.05 was considered 
statistically significant. 

Scatter Plot 

The Moran scatterplot provides a more disaggregated 

view of the nature of the spatial autocorrelation. It not only 

provides information on the presence of clusters in the data 

but also the outliers contained in it. Moran's scatterplot 

demonstrates the z-value of the interested variable on the 

horizontal axis and the spatial lag, a weighted average of the 

z-value of that variable in the neighboring locations, on the 

vertical axis. The slope of the regression line in the 

scatterplots is equal to Moran's I value (Anselin et al., 

2006). This scatterplot is divided into four quadrants, each 

of which represents a different type of spatial association 

(Anselin, 2005; O'sullivan and Unwin, 2010): 
 
• The upper right quadrant represents spatial clustering 

of a district with a high value of the variable of 
interest around neighbors that also have a high value 
of that variable. This quadrant is also called the High-
High zone (HH) since z-value and spatial lag both 
have high values. In general, these are locations in 
which the local Moran’s I value is a positive 

• The upper left quadrant represents spatial clustering 
of a district with a low value of the variable of interest 
around neighbors that have a high value of that 
variable. This quadrant is also called the Low-High 
zone (LH) since z-value is low while spatial lag has 
high values indicating a low outlier among neighbors 
with high values. In general, these are locations in 
which the local Moran’s I value is negative 

• The lower left quadrant represents spatial clustering 
of a district with a low value of the variable of 
interest around neighbors that also have a low value 
of that variable. This quadrant is also called the 
Low-Low zone (LL) since z-value and spatial lag 
both have low values. In general, these are locations 
in which the local Moran’s I value is negative 

• The lower right quadrant represents spatial 
clustering of a high district with a high value of the 
variable of interest around neighbors that have a low 
value of that variable. This quadrant is also called 
the High-Low zone (HL) since the z-value is high 
while spatial lag has low values indicating a high 
outlier among neighbors with high values. In 
general, these are locations in which the local 
Moran’s I value is negative 

 
In short, the High-High and Low-Low locations 

suggest clustering of similar values of one variable, 

whereas the High-Low and Low-High locations indicate 

spatial outliers of the same variable. 

Explanation of the Software 

GeoDa, a free software program, is an introduction to 
spatial data analysis and is consist of visualization, 
exploration and explanation of interesting patterns in 
geographic data (Anselin et al., 2006). In terms of the 
range of spatial statistical techniques included, GeoDa is 
similar to the open-source R environment. Capabilities 
of GeoDa can be classified into six categories including 
(Anselin et al., 2006): 
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• Spatial data input, output and conversion 

• Data transformation and creation of new data 

• Choropleth maps, cartogram and map animation 

• Statistical graphics 

• Spatial autocorrelation including global and local 

spatial autocorrelation statistics 

• Linear spatial regression models 

 

These different practical functions of GeoDa helped 

to analyze the data and interpret the results. The software 

is user-friendly and easy to learn (Anselin, 2005). GeoDa 

is used to analysis mean commuting time autocorrelation 

in Charlotte-Concord-Gastonia MSA. By conducting 

univariate local Moran’s, I function, Moran’s I value and 

scatter plot, LISA map and significance map are 

exhibited simultaneity. Also, natural break mapping is 

used to show the classification of block groups based on 

the median year of housing construction. 

Results 

In order to identify the spatial distribution regularities 

and the extent to which neighboring mean commuting time 

values are correlated, the spatial autocorrelation analysis is 

applied based on the above calculations. For the first step 

urban spatial structure which affects commuting patterns is 

analyzed using the median age of housing in block groups. 

The median year of housing construction is utilized to 

determine the date at which the majority of housing in a 

census block group was developed. Each block group is 

then assigned to a decade representing a particular housing 

boom. If the date is before 1950, it is classified as the 1950s. 

Figure 3 shows the classification of block groups of 

Charlotte-Concord-Gastonia MSA based on median year of 

housing construction. Figure 4 presents the mean 

commuting time considering the age of houses of block 

groups for the year 2015. For creating mean commuting 

time, aggregate commuting time was divided by the number 

of workers who work outside the home. As Fig. 4 

illustrates, the areas of recent housing boom have longer 

commuting time and the commuting time decreases as the 

areas’ age increase. Figure 3 shows that older houses are in 

the urban core of charlotte city and other cities in this MSA, 

as well newly built houses are in outer suburbs. According 

to these two figure the mean commuting time for an area 

decreases as that area age.  

For the second step, the extent to which neighboring 

values are correlated was measured using the Global 

Moran’s I and LISA for the study area by GeoDa software 

(Anselin et al., 2006). Global Moran's I is calculated using 

Queen and Rook Contiguity weight method and Local 

Indicators of Spatial Association (LISA) cluster Map is 

generated. The results show no significant difference in 

Moran’s I values for Rook and Queen methods as they are 

0.45939 and 0.45265, respectively. The reason may be that 

there are enough areal units in the study area. The positive 

and non-zero value of Moran’s I (p-values <0.05) shows 

that block groups with longer average commutes are 

adjacent to block groups with longer average commutes and 

shorter commutes next to shorter commutes. The results 

obtained through implementing the Moran's I is consistent 

with Tobler's first law of geography that states that 

geographic features that are near each other are likely to be 

more similar than distant features (Tobler, 1970). 

LISA cluster map obtained from spatial 

autocorrelation analysis is shown in Fig. 5. It illustrates 

the distribution of mean commuting time in the study 

area. The results of the LISA identify the local spatial 

clustering of variables at the block group level. Red 

areas represent block groups with high aggregation 

(High-High), the blue for low aggregation (Low-Low) 

and the light red (High-Low) and light blue (Low-High) 

indicates spatial outliers. Red color for a block group 

means that the mean commuting time of that block group 

and its neighbors are higher than mean commuting time 

of the whole study area. Blue color for a block group 

shows less mean commuting time for that block group 

and its neighbors in compare to the mean commuting 

time of the whole study area. Light blue color for a block 

group means that the mean commuting time for that 

block group is less than the mean commuting time of the 

whole study area but its neighbors mean commuting time is 

higher than the mean of study area. As well, a block group 

with light red color shows that its mean commuting time is 

higher than the mean of the region but its neighbors are less 

than the mean of the region. Considering Fig. 3, it is 

identified that clustering of low commuting time is in urban 

cores and clustering of high commuting time is in suburbs. 

For the people who work locally mean commuting time is 

less than the people who travel longer distances from 

suburbs to work in urban cores.  

Figure 6 shows the Moran’s I scatter plot. Moran's 

scatterplot demonstrates the z-value of the mean 

commuting time on the horizontal axis and the spatial 

lag on the vertical axis. The slope of the regression line 

in the scatterplots is equal to Moran's I value which is 

0.45939. The upper right and lower left quadrants of the 

scatter plot represent block groups with positive spatial 

autocorrelation, which means clustering of like mean 

commuting time values while the lower right and upper 

left quadrants represent negative spatial autocorrelation 

or spatial outliers of mean commuting time. 

The significance map shows the locations with 

significant local Moran statistics for various p values. 

Figure 7 reveals that 937 block groups have no 

significant results for spatial autocorrelation, 53 block 

groups are significant at 99.99% confidence level, 150 

block groups’ results are significant at 99.9% confidence 

level and 227 block groups’ results are significant at 

99.5% confidence level. 
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Fig. 3: Classifying block groups by median year of housing construction 

 

 

 
Fig. 4: Mean commuting time by age of houses of block groups 

1950s (175)  
 

1960s (139)  
 

1970s (208)  
 

1980s (323)  
 

1990s (349)  
 

2000s (173) 

Mean commuting time for 2015 

28  
 

27  
 

26  
 

25  
 

24  
 

23  
 

22 

M
ea

n
 c

o
m

m
u
ti

n
g
 t

im
e 

15                          25                       35                       45                       55 65 and 

more 

Age of houses of block groups 



Hessam Miri, S. and S. Behnam Miri / American Journal of Engineering and Applied Sciences 2020, 13 (1): 27.36 

DOI: 10.3844/ajeassp.2020.27.36 

 

34 

 
 

Fig. 5: LISA cluster map of Charlotte-Concord-Gastonia MSA 
 

 
 

Fig. 6: Moran’I scatterplot for the mean commuting time in Charlotte-Concord-Gastonia MSA 
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Fig. 7: LISA significance map of Charlotte-Concord-Gastonia MSA 
 

Conclusion 

Considering the importance of commuting patterns in 

land use and transportation system problems, this study 

examined the spatial layout and distribution of mean 

commuting time at block group level in Charlotte-

Concord-Gastonia MSA using spatial autocorrelation 

analysis method. First, the relationship between mean 

commuting time and age of housings is analyzed. The 

analysis revealed that the mean commuting time for older 

neighborhoods is less than newer neighborhoods. Then, 

the mean commuting time for each block group is used to 

calculate spatial autocorrelation. The global measures of 

Moran’s I and Local Indicators of Spatial Association 

methods were utilized using Rook contiguity weight 

method. No significant difference between Rook’s case 

and Queen’s case was observed. While Moran’s I 

provides information on the overall spatial distribution of 

the data, LISA provides information on types of the spatial 

association at the local level. The calculated value of 

Moran’s I was 0.45939 using Rook’ case weight matrix, it 

indicated that nearby block groups tend to have similar 

mean commuting time. In other words, block groups with 

longer average commutes are next to block groups with 

longer average commutes and shorter commutes are near to 

shorter commutes. In addition, new neighborhoods in 

charlotte metropolitan area showed higher commuting time 

than old neighborhoods. This means that commuting 

times decline as neighborhoods age over the following 

decades and new growth areas move outward. 

Author’s Contributions 

All the authors contributed equally to this prepare, 

develop and carry out this manuscript. 

Ethics 

The authors declare that there are no ethical issues 

that could arise after the publication of this study. 

References 

Acker, V.V. and F. Witlox, 2011. Commuting trips 

within tours: how is commuting related to land use? 

Transportation, 38: 465-486. 

 DOI: 10.1007/s11116-010-9309-6  

Anselin, L., 1995. Local indicators of spatial association-

LISA. Geograph. Anal., 27: 93-115. 
 DOI: 10.1111/j.1538-4632.1995.tb00338.x  

Anselin, L., 2005. Exploring spatial data with 

GeoDaTM: A workbook. Center for Spatially 

Integrated Social Science.  

Anselin, L., I. Syabri and Y. Kho, 2006. GeoDa: An 

introduction to spatial data analysis. Geograph. Anal., 

38: 5-22. DOI: 10.1111/j.0016-7363.2005.00671.x  

Not significant (937)  
 

p = 0.05 (227)  
 

p = 0.01 (150)  
 

p = 0.001 (53) 

LISA significance Map: Charlotte 



Hessam Miri, S. and S. Behnam Miri / American Journal of Engineering and Applied Sciences 2020, 13 (1): 27.36 

DOI: 10.3844/ajeassp.2020.27.36 

 

36 

Azari, P. and A. Shirzadi Babakan, 2016. Evaluating the 

ecological capacity for urban development using a 

combination of AHP and GIS (Case study: Baghmalek 

district). J. Environ. Sci. Technol., 18: 173-188.  
Babakan, A.S. and M. Taleai, 2015. Impacts of transport 

development on residence choice of renter 
households: An agent-based evaluation. Habitat Int., 
49: 275-285. DOI: 10.1016/j.habitatint.2015.05.033  

Census Bureau, U.S., 2018. TIGER/Line Shapefiles and 

TIGER/Line files. 

Cheng, C., Y. Chen, T. Liu and Y. Yang, 2011. Using 

spatial analysis to demonstrate the heterogeneity of 

the cardiovascular drug prescribing pattern in 

Taiwan. BMC Public Health, 11: 1-9. 
 DOI: 10.1186/1471-2458-11-380  

DataUSA. Retrieved from https://datausa.io 

Duncan, D.T., M.C. Castro, S.L. Gortmaker, J. Aldstadt and 

S.J. Melly et al., 2012. Racial differences in the built 

environment-body mass index relationship? A 

geospatial analysis of adolescents in urban 

neighborhoods. Int. J. Health Geograph.  

García-Palomares, J.C., 2009. Urban sprawl and travel to 

work: the case of the metropolitan area of Madrid. J. 

Trans. Geo.  

Giuliano, G. and S. Hanson, 2017. The geography of 

urban transportation. The Guilford Press.  

Holt, J.B., 2007. The topography of poverty in the 

United States: A spatial analysis using county-level 

data from the community health status indicators 

project. Preventing Chronic Disease.  
Horner, M.W., 2004. Spatial dimensions of urban 

commuting: A review of major issues and their 
implications for future geographic research. Profess. 
Geo., 56: 160-173.  

Hu, Y. and F. Wang, 2016. Temporal trends of intraurban 

commuting in batonrouge, 1990-2010. Annals Am. 

Assoc. Geo., 106: 470-479. 

 DOI: 10.1080/00045608.2015.1113117 

Huo, X., W. Zhang, D. Sun, H. Li and L. Zhou et al., 

2011. Spatial pattern analysis of heavy metals in 

Beijing agricultural soils based on spatial 

autocorrelation statistics. Int. J. Environ. Res. Public 

Health, 8: 2074-2089. DOI: 10.3390/ijerph8062074 

IPUMS. National Historical Geographic Information 

System (NHGIS). www.nhgis.org 

Jeefoo, P., 2016. Analyzing spatial clustering and 

hotspots detection of HIV/AIDS prevalence using 

GIS technology. Int. J. Geo. 

Karimi, F., S. Sultana, A.S. Babakan and S. Suthaharan, 

2019a. An enhanced support vector machine model 

for urban expansion prediction. Comput. Environ. 

Urban Syst., 75: 61-75. 
 DOI: 10.1016/j.compenvurbsys.2019.01.001  

Karimi, F., S. Sultana, A.S. Babakan and S. Suthaharan, 

2019b. Urban expansion modeling using an 

enhanced decision tree algorithm. Geoinformatica.  

Matkan, A.A., A. Shariat Mohaymany, M. Shahri and B. 

Mirbagheri, 2013. Detecting the spatial-temporal 

autocorrelation among crash frequencies in urban 

areas. Can. J. Civ. Eng., 40: 195-203. 
 DOI: 10.1139/cjce-2012-0374  

Oort, V. and G. Frank, 2004. Urban growth and 

innovation. Spatially bounded externalities in the 

Netherlands. Aldershot, Ashgate.  

O'sullivan, D. and D.J. Unwin, 2010. Geographic 

information analysis.  

Prasannakumara, V., H. Vijitha, R. Charuthaa and N. 

Geethaa, 2011. Spatio-temporal clustering of road 

accidents: GIS based analysis and assessment. Proc. 

Soc. Behav. Sci., 21: 317-325. 
 DOI: 10.1016/j.sbspro.2011.07.020  

Sandow, E. and K. Westin, 2010. Preferences for 

commuting in sparsely populated areas. J. Trans. 

Land Use, 2: 87-107. DOI: 10.5198/jtlu.v2i3.21  

Shirzadi Babakan, A. and A. Alimohammadi, 2016. An 

agent-based simulation of residential location choice 

of tenants in Tehran, Iran. Trans. GIS, 20: 101-125. 

DOI: 10.1111/tgis.12144 

Shirzadi Babakan, A., A. Alimohammadi and M. Taleai, 

2015. An agent-based evaluation of impacts of 

transport developments on the modal shift in 

Tehran, Iran. J. Dev. Effectiveness, 7: 230-251. 

DOI: 10.1080/19439342.2014.994656 

Shirzadi, A., M. Taleai and A. Alimohammadi, 2013. 

Public transportation mode selection in an urban 

corridor: Application of multi-criteria decision making 

methods. Urban-Regional Studies Res. J., 5: 1-6.  

Sohn, J., 2005. Are commuting patterns a good indicator of 

urban spatial structure? J. Trans. Geo., 13: 306-317. 

DOI: 10.1016/j.jtrangeo.2004.07.005 

Sultana, S. and J. Weber, 2007. Journey-to-work patterns 

in the age of sprawl: Evidence from two midsize 

southern metropolitan areas. Professional Geo., 59: 

193-208. DOI: 10.1111/j.1467-9272.2007.00607.x  

Sultana, S. and J. Weber, 2014. The nature of urban 

growth and the commuting transition: Endless sprawl 

or a growth wave? Urban Stud. J., 51: 544-576. 
 DOI: 10.1177/0042098013498284  

Tobler, W.R., 1970. A computer movie simulating urban 

growth in the Detroit region. Economic Geo., 46: 

234-240. DOI: 10.2307/143141  

United-States-Census-Breau. U.S. Census Bureau. 

Retrieved from factfinder.census.gov  

Xia, J., S. Cai, H. Zhang, W. Lin and Y. Fan et al., 2015. 

Spatial, temporal and spatiotemporal analysis of 

malaria in Hubei Province, China from 2004-2011. 

Malaria J.  

Yang, J., 2005. Commuting impacts of spatial 

decentralization: A comparison of Atlanta and 

Boston. J. Regional Anal. Policy.  


