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Abstract: The robust design in a flow network is one of the most important 

problems. It is defined as searching the optimal capacity that can be 

assigned to the nodes such that the network still survived even under the 

node’s failure. This problem is considered NP-hard. So, this study presents 

a genetic-based algorithm to determine the maximum node capacity for a 

two-commodity flow network with node failure. I.e., searching the 

minimum sum of the assigned capacities and the maximum network 

reliability. The obtained results show that The proposed GA-based 

algorithm succeeded to solve the robust problem for the two-commodity 

flow network considering the node’s failure. 
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Introduction 

Reliability evaluation is important to arrange the 

scheduling in many network systems (Zuo et al., 2007). In 

the case of an existing flow between nodes, the system 

reliability of a flow network is defined as the probability 

that the maximum flow path throw (nodes or arcs) is not 

less than the given demand (d) (Younes and Hassan, 2011; 

Lin et al., 1995; Lin, 2001). Lin (2001) presented a simple 

algorithm for generating all lower boundary points to 

calculate system reliability. Lin (2007a) constructed a 

stochastic-flow network to model the information system. 

Lin (2007b) proposed a new performance index, the 

probability that the upper bound of the system capacity 

equals the demand vector subject to the budget constraint, 

to evaluate the quality level of a multicommodity limited-

flow network. Satitsatian and Kapur, (2006) proposed an 

algorithm to search for lower boundary points and used it 

to account for the exact reliability. 
Lin (2002) Presented an algorithm to evaluate the 

reliability in terms of minimal paths for a two-

commodity (d1, d2) by generating all lower boundary 

points for a stochastic-flow network in which each arc 

and node has several capacities and may fail. Hassan and 

Abdou, (2020) presented a method to calculate the 

maximum value of the demand (dmax). The simple 

algorithm used to find (dmax), its idea is based on cut sets.  

In (Chen and Lin, 2008) the research debated the 

capacity assignment problem and offered a definition to 

the critical node. Prove that if the critical node fails then 

the system reliability drops to zero. In general, the 

Capacity Assignment Problem (CAP) is defined as the 

search for the optimal capacities that minimize the 

lateness in the network and maximize its reliability 

(Zantuti, 2008). Study structural analysis is very 

important to determine the critical nodes to avoid the 

system reliability don`t drop to zero (Chen and Lin, 

2010). Structural analysis is used to identify the node`s 

structural and locate critical nodes to avoid the system 

reliability don`t drop to zero (Chen and Lin, 2010).  
The robust design is defined as an issue in quality 

engineering where the designed product functions well 
even in a versatile environment. However, in the context 
of a stochastic-flow network, it means the network 
functions well even in a node`s failure situation (Chen and 
Lin, 2010). The robustness of an assignment is therefore 
recognized as the fact that the critical nodes generated 
after the assignment are equal to the important structural 
nodes (Chen and Lin, 2010; Niu et al, 2020). The Robust 
Design Problem (RDP) in a capacitated flow network is 
to search for the minimum capacity assigned to each 
edge such that the network still survived even under the 
edge`s failure (Chen, 2012). 

Genetic Algorithms (GAs) are an engaging tool to 
solve optimization problems (Back and Schwefel, 1996). 

The genetic algorithm will use a search technique to find 
optimized or tuned or approximate solutions and Genetic 
algorithms are an important technique in searching for 
the optimum option from a set of solutions available for 
a particular design, (Gen and Chen, 2000; Gong et al., 
2016; Azaron et al., 2009). 
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Younes and Hassan, (2011) present a GA to compute 

the reliability of a stochastic-flow network in which each 

arc or node has several capacities and may fail. To reach 

the best results in reliability optimization, to solve 

reliability optimization problems, many based GA 

approaches were proposed such as (Chen, 2012; Deeter 

and Smith, 1997; Dengiz et al., 1997). Also, GA is used to 

solve multiple objective optimization problems 

(Altiparmak et al., 1998; Coello and Christiansen, 2000). 

In addition, GA is used to solve the capacity assignment 

problem and the objective is to minimize the total 

capacities while meeting the network reliability 

requirement (Hamed et al., 2020).  

In this study, we extend the robust design problem to 

a flow network with multiple demands, (Lin, 2009). 

Also, we propose an approach based on GA to solve the 

presented problem. The main objective of the proposed 

GA is to search for the best-assigned capacities such that 

the network reliability is maximized. I.e., maximize the 

reliability and minimize the total assigned capacities. 

We used the GAs for their characteristics that 

distinguish them from the rest of the algorithms. GA is 

based on the concept of natural selection and natural 

genetics, these are easy to understand and enforcement, 

these are widely used in optimization problems, these 

work on a population of points rather than an individual 

point, these use probabilistic transition rule instead of 

deterministic rules, GAs can potent deal with a large 

number of variables. These are more effective for complex 

problems than simple problems (Sharma, 2013). 

The paper is organized as follows: We proposed 

notations and assumptions in section 2. Section 3 

presents the problem description. In section 4 we clarify 

the problem formulation. Section 5 describes the GA 

components. The proposed GA algorithm is given in 

section 6. Studied cases illustrate in section 7. Finally, 

we present the conclusion in section 8. 

Notations and Assumptions 

Notations  

np No. of paths 

mpj Minimal paths no. j, j = 1,2,…np 
k

iw  The weight of commodity (k = 1,2) 

d1 The demand of commodity 1 

d2 The demand of commodity 2 

d The demand,     1 2

1 2i id w d w d     

neq No. of components (nodes) 

n The node 

F1 Flow vector;  1 1 1

1 21 , ,..., npF f f f  

F2 Flow vector;  2 2 2

1 22 , ,..., npF f f f   

X Capacity vector; X = (x1, x2,…, xneq) 

r The probability 

1 2,d d
R  System reliability to the given demands; d1, d2 

NP Number of chromosomes 

NG Number of genes equals to neq 

maxgene The maximum number of generations 

cr The GA crossover rate 

mr The GA mutation rate 

Assumptions  

The following assumptions should be satisfied for the 

given SFN:  

 

 Two types of commodity are transmitted from 

source to sink 

 Capacities of different components are statistically 

independent 

 The capacity of each node is an integer 

 Flow of each commodity must satisfy the flow-

conservation law (Fulkerson and Ford, 1962) 

 

Problem Description 

The Reliability Evaluation to Two Commodities 

Given the demand d1, d2, the system reliability 
1 2,d d

R  

is defined by, (Lin, 2002): 

 

    
1 2

1 2,
Pr | ,

d d
R X V X d d   (1) 

 

where, X is a lower boundary point for d1, d2. 

And X can be deduced from  1 1 1

1 21 , ,..., npF f f f  and 

 2 2 2

1 22 , ,..., npF f f f  by using the following equation: 

 

  1 1 2 2

1
|

1,2,...,

np

i i j i j i jj
x w f w f n mp

for eachi neq


   
 




  (2)  

 
when F generate by equations that satisfies the flowing 

two constraints: 
 

  1 1 2 2 1

1
|

1,2,...,

np

i j i j i jj
w f w f n mp M

for i neq


   
 




  (3) 

 

 
1

1,2
np k

j kj
f d k


    (4) 

 

The Capacity Assignment  

The network structure is important to assignment the 

capacity. To analyze the network structure, we determine 

the minimum paths. The minimum path is an ordered 

sequence of nodes without a cycle. From the paths we 

specify the node covering, which extends to the definition 

of Structural Impact Factor (SIF) Si for node ni. 
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Coverage Node 

When ni, nj  N and nj  ni, nj is said to be covered by ni 
if no flow passes through nj when no flow passes through ni, 
(Chen and Lin, 2010; Niu et al., 2020; Chen, 2012).  

Critical Node 

When the capacity node ni  d and 
1 2, ,d d i

R is zero then 

this node is critical node (Chen and Lin, 2010; Chen, 2012). 

Probabilities Calculation Planner for Each Node  

At first, we must be defining the probability for 

Pr{xi} of node ni to calculate
1 2, ,d d i

R . To produce the 

corresponding capacities, we suppose find ci components 

for nodes ni. Each component has the reliability of ri, 

(Chen and Lin, 2010). Then the probability for the 

current capacity xi is Pr{xi} and is denoted as: 
 

   Pr 1
ic k

ki

i i i

c
x k r r

k

 
   

 
 (5)  

 

Problem Formulation 

Let M = (M1, M2,…, Mneq) as assigned capacities to 
the set of nodes (n1, n2,…, nneq). The mathematical 
formulation of the problem is: 
 

Minimize  (6) 

 

1 2,

. .

 
d d

S t

R is maximized
  (7)  

 

where, 
n i

i
M  and 

1 2,d d
R is reliability corresponding 

to the assigned capacities under demand 

 1 2

1 2i id w d w d  . Mi ranges from 1 to d, except for 

critical nodes (Chen and Lin, 2008), Mi = d. 

The GA Components  

The following subsections depict different 

components of the proposed GA. 

Representation  

A chromosome representation is needed to describe 
each chromosome in the GA algorithm. The 
chromosome M is exemplifying by a series of length 
(neq), where (neq) is the number of nodes as shown in 
this equation (M1, M2,…,Mreq). 

Initial Population 

The generation of an initial population is the first step 

in a GA. Each chromosome in generation encodes a 

possible solution to a problem. After creating the 

initial population, each chromosome is evaluated and 

assigned a fitness value according to the fitness 

function, (Diaz-Gomez and Hougen, 2007). 

Fitness Function 

We will use the total sum of capacities for each 

chromosome i as a fitness function, i.e., fit(i) = . 

For the selection process, the fitness function is 

normalized as follows: 

 

Calculate the sum of fitness for all chromosomes in 

the population, sum_fit. 

 For i = 1 to NP 

 normalize_fit(i) = fit(i)/sun_fit 

 End for 

 

Selection  

Selection process picks the fittest solutions by giving 

it a high percentage when picking the next generation 

and thus leads to choosing the best solution to the 

problem. In this research, we will use roulette wheel 

selection to choose two parents based on cumulative sum 

(cumsum) as follows: 

 

Begin 

For i = 1 to NP 

 For j = i to NP 

 cumsum(i) = cumsum(i) + normalize_fit(j)  

 End for j 

End for i 

Generate a random number [0,1] 

For i = 1 to NP 

 If  >cumsum(i) 

 Parent1 = i-1. 

 End if 

End for i  

Generate a random number [0,1]  

For i = 1 to NP 

 If  > cumsum(i) 

 Parent2 = i-1. 

 End if 

 End for i 

End  

Crossover  

Crossover process (Lim et al., 2017) is vital in 

generating new chromosomes by selecting two parents 

called parent 1 and parent 2. During crossover the parent 

chromosomes are taken in pairs and exchange 

information between two parents and generate offspring 

1 and offspring 2. These offspring become next 

generation parent chromosomes, (Varun Kumar and 

Panneerselvam, 2017). 
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Fig. 1: Crossover process 

 

 
 
Fig. 2: Mutation process 

 

In this research, we will use single point crossover, a 

crossover point is randomly generated which determines 

the point for swap of information between two parents to 

generate two offspring as shown in Fig. 1. 

Mutation  

 Mutation takes place after crossover is done. 

Mutation used to modify the genes of a chromosome 

selected with a mutation probability mr. It takes place 

the changes randomly to one “genes” to generate a new 

offspring. In this research, we will use Creep Mutation 

as shown in Fig. 2. In creep mutation, the gene is 

selected random and the value of it is changed with a 

random value between [1: d] unless the value of it, 

(Soni and Kumar, 2014). 

The Proposed GA Algorithm 

Start  

Input d1, d2, k

iw , neq, MPs, ri, 

and components’ informations. 

then compute the demand d  

Determine the critical nodes in the network.  

Set the GA parameters: NP, NG, maxgene, cr and mr. 

Generate the initial population randomly. 

Evaluate the initial population.  

 While g <= maxgene, do 

 While p <= NP, do 

 Select two chromosomes. 

Generate new offspring after applying crossover and 

mutation. 

 p = p + 1  

  end do 

Evaluate the current population. 

Save the best solutions.  

  g = g + 1  

End do  

Report the best solutions found. 

End 

 

Studied Cases 

In the following subsections, the proposed GA has 

been applied to four networks. We studied and 

observed the results in the case of varying each GA 

parameter. We found that the best values for these 

parameters are: Maxgene = 30, NP = 10, cr = 0.95 and 

mr = 0.05.  

Four-Node Network 

This network has four nodes as shown in Fig. 3. 

The network has four minimal paths as follows: mp1 = 

{n1, n2, n3, n4}, mp2 = {n1, n2, n3, n4}, mp3 = {n1, n2, 

n3, n4}, mp4 = {n1, n2, n3, n4}. The nodes probability, 

ri = (0.99, 0.98, 0.98, 0.99), 1

iw  = 1, 1

iw  = 1.5, Table 1 

shows the best candidate M with the corresponding , 

R3,2, execution time, Table 2 shows the best candidate 

M with the corresponding , R3,2, execution time. 

Eight-Node Network 

This network has eight nodes as shown in Fig. 4. 

The network has eight minimal paths as follows: mp1 

= {n1, n2, n4, n8}, mp2 = {n1, n2, n5, n8}, mp3 = {n1, n2, 

n6, n8}, mp4 = {n1, n2, n7, n8}, mp5 = {n1, n3, n4, n8}, 

mp6 = {n1, n3, n5, n8}, mp7 = {n1, n2, n6, n8}, mp8 = 

{n1, n2, n7, n8}. The nodes’ probabilities, ri = (0.90, 

0.88, 0.93, 0.91, 0.89, 0.90, 0.87, 0.92). 1

iw  = 1, 1

iw  = 

1.5. Table 3 shows the best candidate M with the 

corresponding , R1,2, execution time. 

Cut point 

Parent 1 
Offspring 1 

4 3 4 3 3 2 3 4 4 4  4 3 4 3 4 3 1 3 4 4  

Parent 2 
Offspring 2 

4 2 3 4 4 3 1 3 4 4 4 2 3 4 3 2 3 4 4 4 

4 2 3 4 3 2 3 4 4 4 

4 2 3 4 3 1 3 4 4 4 
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Fig. 3: Four-node network 

 

 
 

Fig. 4: Eight-node network 
 

Table 1: The results for four-node network with d1 = 3, d2 = 2, 
1

iw = 1, 2

iw = 1.5 

Run no. The best M Sum (M) Reliability Execution time (in seconds) 

1 [6,4,4,6] 20 0.886015 0.05 

2 [6,3,4,6] 19 0.879420 0.04 

3 [6,3,3,6] 18* 0.785197 0.04 

*The minimum  found 
 

Table 2: The results for four-node network with d1 = 2, d2 = 3, 
1

iw = 1, 2

iw = 1.5 

Run no. The best M Sum (M) R (value) Execution time (in seconds) 

1 [7,3,4,7] 21* 0.754180 0.05 

2 [7,4,4,7] 22 0.859764 0.05 

3 [7,4,3,7] 21 0.754180 0.05 

*The minimum  found 
 

Table 3: The results for eight-node network with d1 = 1, d2 = 2, 
1

iw = 1, 2

iw = 1.5 

Run no. The best M Sum (M) Reliability Execution time (in seconds) 

1 [4,4,4,2,3,3,2,4] 26 0.431576 0.10 

2 [4,1,4,4,3,2,4,4] 26 0.444284 0.07 

3 [4,1,3,3,4,2,4,4] 25 0.332267 0.04 

4 [4,2,4,4,4,4,1,4] 27 0.455874 0.07 

5 [4,4,4,1,4,3,2,4] 26 0.461148 0.05 

6 [4,3,4,3,1,3,4,4] 26 0.463200 0.08 

7 [4,3,3,1,4,4,4,4] 27 0.439850 0.07 

8 [4,4,3,4,1,3,1,4] 24* 0.457769 0.08 

9 [4,1,3,4,2,4,3,4] 25 0.332445 0.08 

10 [4,3,2,4,1,3,4,4] 25 0.318427 0.07 

*The minimum  found 
 

Ten-Node Network 

This network has ten nodes as shown in Fig. 5, it 

has seven minimal paths as follows (Chen and Lin, 

2010): mp1 = {n1, n2, n4, n8, n10}, mp2 = {n1, n2, n5, n8, 

n10}, mp3 = {n1, n2, n6, n8, n10}, mp4 = {n1, n2, n6, n9, 

n10}, mp5 = {n1, n3, n6, n8, n10}, mp6 = {n1, n3, n6, n9, 

n10}, mp7 = {n1, n3, n7, n9, n10}. The nodes’ 

n2 

n1 n4 

n3 

n2 

n1 

n3 

n4 

n5 

n6 

n7 

n8 
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probabilities, ri = (0.99, 0.98, 0.97, 0.98, 0.98, 0.99, 

0.97, 0.98, 0.97, 0.99), 1

iw  = 1, 1

iw  = 1.5. Table 4 

shows the best candidate M with the corresponding , 

R1,2, execution time. 

Thirteen-Node Network 

The network has 30 nodes as shown in Fig. 6 and 6 

minimal paths as follows: mp1 = {n1, n2, n4, n6, n8, n10, 

n12, n14, n16, n18, n20, n22, n24}, mp2 = {n1, n3, n5, n7, n9, 

n11, n13, n15, n17, n19, n21, n23, n24}, mp3 = {n1, n2, n4, 

n6, n8, n10, n25, n27, n28, n29, n14, n16, n18, n20, n22, n24}, 

mp4 = {n1, n2, n4, n6, n8, n10, n25, n27, n28, n30, n14, n17, 

n19, n21, n23, n24}, mp5 = {n1, n3, n5, n7, n9, n11, n26, n27, 

n28, n30, n15, n17, n19, n21, n23, n24}, mp6 = {n1, n3, n5, 

n7, n9, n11, n26, n27, n28, n29, n14, n16, n18, n20, n22, n24}. 

ri = (0.99, 0.88, 0.93, 0.91, 0.91, 0.89, 0.87, 0.91, 

0.90, 0.90, 0.93, 0.92, 0.88, 0.88, 0.87, 0.92, 0.92, 

0.93, 0.90, 0.90, 0.91, 0.87, 0.87, 0.99, 0.89, 0.93, 

0.90, 0.93, 0.87, 0.89). Table 5 shows the best 

candidate M with the corresponding , R1,2, execution 

time. Table 6 shows the best candidate M with the 

corresponding , R1,1, execution time. 

 

 
 

Fig. 5: Ten-node network 
 

 
 

Fig. 6: Thirty-node network 

n2 

n1 

n3 

n4 

n5 

n6 

n7 

n8 

n9 

n10 

n7 

n1 

n2 

n4 

n3 

n5 

n6 

n8 n9 

n10 n11 

n12 n13 

n15 
n14 

n16 
n17 

n18 
n19 

n20 

n22 

n21 

n23 

n24 

n25 n26 

n27 

n28 
n29 n30 
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Table 4: The results for ten-node network with d1 = 1, d2 = 2, 
1

iw = 1, 2

iw = 1.5 

Run no. The best M Sum (M) Reliability Execution time (in seconds) 

1 [4,3,2,1,4,4,1,4,3,4] 30 0.867441 0.05 
2 [4,4,3,1,2,4,4,3,3,4] 32 0.917677 0.07 
3 [4,1,4,3,2,3,3,4,3,4] 31 0.910575 0.08 
4 [4,4,4,1,4,1,4,4,3,4] 33 0.922117 0.04 
5 [4,4,1,4,2,1,4,4,3,4] 31 0.914196 0.07 
6 [4,2,4,2,3,4,1,1,4,4] 29* 0.910521 0.04 
7 [4,2,4,1,4,4,1,4,3,4] 31 0.917152 0.07 
8 [4,2,4,2,2,4,2,2,4,4] 30 0.912575 0.04 
9 [4,4,1,4,3,1,1,4,4,4] 30 0.916173 0.04 
10 [4,2,4,2,3,4,4,4,1,4] 32 0.912874 0.07 

*The minimum  found 
 

Table 5: The results for Fig. 6 network with d1 = 2, d2 = 2, 
1

iw = 1, 2

iw = 1 

Run no. The best M Sum (M) Reliability Execution time (in seconds) 

1 [4,4,3,3,4,2,2,4,4,4,3,1,4,3,3,2,2,4,4,4,2,3,4,4,2,2,2,1,4,2] 90 0.218391 0.05 
2 [4,4,4,3,3,3,2,3,3,4,1,2,4,3,3,3,4,3,4,4,2,4,4,4,1,2,4,3,3,1] 92 0.166409 0.05 
3 [4,4,3,3,3,3,4,1,4,2,4,4,4,4,3,4,4,3,2,4,4,2,3,4,3,2,1,3,4,2] 95 0.204131 0.05 
4 [4,3,4,4,4,2,4,4,3,4,3,2,4,2,4,3,3,2,4,4,3,1,3,4,3,2,2,2,2,4] 93 0.216591 0.05 
5 [4,2,4,4,4,3,4,4,4,2,4,1,3,4,3,2,3,4,2,3,4,4,4,4,1,1,3,2,3,4] 94 0.446587 0.06 
6 [4,4,2,2,4,2,4,3,3,4,3,1,1,3,4,2,2,3,4,3,3,3,2,4,2,4,4,3,2,3] 88 0.194756 0.05 
7 [4,1,3,2,3,3,3,2,3,1,4,1,4,3,3,4,4,4,4,3,3,3,2,4,1,4,3,3,4,4] 90 0.140628 0.05 
8 [4,4,2,2,4,3,3,2,4,2,4,2,1,4,3,4,4,4,4,4,3,3,2,4,3,1,4,2,4,4] 94 0.259161 0.06 
9 [4,3,3,4,3,2,3,4,4,4,4,2,1,3,2,3,3,3,4,4,1,4,2,4,2,2,4,4,4,4] 94 0.220534 0.05 
10 [4,2,3,1,4,4,4,3,3,3,4,1,4,3,3,3,4,2,3,3,4,1,3,4,1,2,2,3,4,1] 86* 0.101526 0.05 

*The best value for  
 

Table 6: The results for Fig. 6 network with d1 = 1, d2 = 1, 
1

iw = 1, 2

iw = 1.5 

Run no. The best M Sum (M) Reliability Execution time (in seconds) 

1 [3,4,4,4,3,4,3,4,4,4,3,4,4,2,3,3,2,2,3,3,2,1,3,3,2,1,3,2,2,2] 87 0.469482 0.05 
2 [3,4,3,2,2,4,4,3,2,4,3,3,4,4,4,4,3,2,2,3,3,4,3,3,1,3,2,3,4,4] 93 0.740452 0.05 
3 [3,3,4,4,4,3,2,2,1,4,2,4,4,2,3,3,4,3,1,3,1,3,4,3,4,4,4,1,1,2] 86 0.358579 0.05 
4 [3,3,4,4,3,2,2,1,4,1,2,4,4,2,3,4,3,3,4,3,3,3,4,3,4,1,2,1,4,1] 85 0.429503 0.05 
5 [3,2,3,3,4,4,1,4,4,3,3,4,1,3,3,4,3,2,1,4,3,3,2,3,4,1,4,1,4,2] 86 0.406832 0.06 
6 [3,4,3,4,2,4,2,4,4,3,2,1,4,4,3,2,4,2,4,2,4,2,2,3,4,4,4,4,3,2] 93 0.688758 0.05 
7 [3,2,3,2,4,4,4,3,2,2,4,3,4,4,4,1,4,3,2,1,3,2,4,3,1,4,3,3,3,2] 87 0.453717 0.06 
8 [3,4,3,3,1,4,4,3,1,2,4,2,2,2,4,4,3,2,1,3,3,3,3,3,1,2,2,4,1,3] 80* 0.277095 0.06 
9 [3,4,3,3,4,2,3,2,4,3,3,2,4,4,1,4,1,4,1,3,3,3,3,3,2,4,3,2,4,3] 88 0.586286 0.05 
10 [3,3,2,3,2,4,4,4,3,2,4,3,4,2,3,2,4,3,4,3,4,4,3,3,2,2,3,3,1,3] 90 0.764796 0.05 

*The best value for  
 

Conclusion 

The research studied the robust design problem in the 

case of tow-commodity (d1, d2). Each node’s capacity 

ranges from 1 to d, where    1 2

1 2i id w d w d  . The 

capacity of each critical node equals to d to avoid the 

reliability to drop to zero. The proposed GA-based 

algorithm succeeded to solve the robust design problem 

for a flow network with multiple demands. The obtained 

solution is distinguished by the minimum sum of the 

assigned capacities and the maximum reliability value. 
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