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Abstract: Problem statement: We forecast return and volatility of the Stock Bange of Thailand
(SET) Index.Approach: In this study, we modeled the SET Index returringisnean equation with
day of the week effect and autoregressive moviregaye. Next we forecast the volatility of the SET
Index by using the GARCH-type model and the MarRegime Switching GARCH (MRS-GARCH)
model. Results: When we model the SET Index by the ARMA (3, 3)qass, we find that Friday is
the day of the effect of the SET Index. The empirignalysis demonstrates that the MRS-GARCH
models outperform all GARCH-type models in forezaswolatility at long term horizons (two weeks
and a month)Conclusion: The ARMA (3, 3) and the Friday is the day of tlifeet of the SET Index
return. The MRS-GARCH models outperform at longrtéworizons.

Key words. Volatility forecasting, SET index, GARCH models, Mav regime switching, stock
exchange, models outperform, empirical analysis

INTRODUCTION Moreover, Apolinarioet al. (2006) and Ulussever
et al. (2011) try to solve the second problem by
In the time series, the stock price is transfortied modeling the residuals with the ARCH model in order
return series for stationary process which lookéd | to correct the variability in the variance of thesiduals.
white noise and forecasting was possible usingrtean In this study, we reconsidered the two problems
equation. The forecasting of daily returns has ted again. For the first problem, we modeled the SEdein
additional research in financial literature, speeify  returns by mean equation with the day of the week
extending the analysis of the seasonal behavioctode  effect and the autoregressive moving-average opder
the day of the week effect. This seasonality hanltbee and g (ARMA (p, q)). For the second problem, we
subject of different studies which detected emairic model the residuals by the GARCH, EGARCH, GJR-
evidence of abnormal yield distributions based upen GARCH and MRS-GARCH models. Finally, we
day of the week. The pioneering work was carriedasu  compare their performance by one day, one week, two
used in the analysis of seasonality and can béfigpdly ~ Weeks and one month. _ _
seen in Miralles and Quiros (2000), they includize f Next, we present forecasting returns with the mean
dummy variables, one for each day of the week. equation. Then we forecast volatility of returnsdan
Nevertheless two serious problems arise with thigstimate parameters within-sample evaluation ®sult
approach. The first problem is that the residualdVioreover, statistical loss functions are descritae
obtained from the regression model can beout-of-sample forecasting performance of variouslei®
autocorrelated, thus creating errors in the infegeifhe  is discussed.
second problem is that the variances of the relsichre
not constant and possibly time-dependent. MATERIALSAND METHODS
A solution to the first type of problem can beveal
by introducing the returns with a one week deldy the  Forecasting financial returns. Let {P} denote the
regression model, as used in the works by Eastdn arseries of the financial price at time t and theimes for
Faff (1994) and Kyimaz and Berument (2001). each market {, o be a sequence of random variables
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on a probability space&X, F, P). The index t denotes the =, FE S, N \/h—
daily closing R observations with t = -R+1,...0.eTh = = = ' V7
sample period consists of an estimation (or in-dajmp
period with n observations and an evolution (oraft
sample) period with n observations (t = 1n), let be ~ where, @ > 0,a> 0 andf; > 0 are assumed to be non-
the logarithmic return (in percent) on the finahgiace  negative real constants to ensure that ®. We assume
attime t, i.e. Eq. 1: n; is an i.i.d. Process with zero mean and unit vaes.
The parameters of the GARCH model are generally
p considered as constants. But, the movement of éinhn
r, =10000n¢+) (1) returns between recession and expansion may fiesult
i the variation volatility. Gray (1996) extended the
GARCH model to the MRS-GARCH model in order to
To put the volatility models in proper perspecfive capture regime changes in volatility with unobsétea
it is informative to consider the conditional meand state variables. It was assumed that those uncddderv

(4)

— 2
hl =0, + a181—1+[31h1—1

variance of given, that is: state variables satisfy the first order of the Mark
Chain process.
W, =E(r|F.) The MRS-GARCH model represented as the
(2 variance of the residual term is not constant thhou

h, = Var(r|F1)= Bl - F| ) time with only two regimes and distributed g<1.i.d.

(0, h¢ and defined:
where, FE; refers to information up to time t-1.

Typically, R.; consists of all I|n_ear fur_lctlons of the past T, ,_ht.s
returns. Therefore, the equation farin Eq. 2 should \
be simple and we assume thaolows a simple time hig =0ps 0, & FB

series model such as a stationary ARMA(p, q) model
which includes five dummy variables, one for eaaly d where , $= 1 or 2, hsis the volatility under regime; S

of the week, such that Eq. 3: on R.;. Also ; and hs;are measurable functions ofF
for T < t. In order to ensure the positivity of the
=M e, conditional variance, we impose the restrictions
He =B1D1t+B2D2:+B3D3:+BP 4[+BP 5t (3) ao,s >0,,les 20 andBl.a 20. The sum
+Zp:(l’.¥-i ‘zq‘,e.%ﬂ- a,¢ +B,s measures the persistence of a shock to the
= =1 conditional variance.

The unobserved regime variablgiSgoverned by
where, B}, j = 1,..., 5 are dummy variables which take a first order Markov Chain with constant transition
on the value of 1 if the corresponding return bé tlay  probabilities. Given by
it is a Monday, Tuesday, Wednesday, Thursday or

Friday, respectively and O otherwise. Pr(§=1S.,=j)=p fori,j= 1z
LetB;, j = 1,..., 5 are coefficients which represent
the average return for each-d.ay of the_ week 1,...p In matrix notation Eq. 5:
and®, i = 1,..., q, are coefficients which represent the
ARMA (p, q).
P=|:p11 p21j| ={ p 1- q:| (5)
Forecasting financial volatility: We allow variance of P P»| [1-P @

errors to be time dependent to include a conditiona

heteroskedasticity that captures time variations of In the MRS-GARCH model with two regimes,
variances in stock returns Eq. 3. The GARCH-typeKlaassen (2002) forecast volatility for k-step-athea
models in our consideration are GARCH (1, 1),Klaassen used the recursive method as in the sthnda
EGARCH (1, 1), GJR-GARCH (1, 1) and MRS- GARCH model for k = 1,2,.,.n. In order to compute
GARCH. For notation conveniences, we shall presenthe k-step-ahead volatility forecasts, we first porne a

some basic definitions of these models. weighted average of the k-step-ahead volatility
The GARCH (1, 1) model in the series of theforecasts in each regime and the weights are the
returns rt in Eg. 3 can be written as Eq. 4: prediction probability Pr(§ = i/F.4).
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Since there is no serial correlation in the resurn g [ Ecal?a|Seecn= 1]Su: = }
the k-step-ahead volatility forecast at a time dejse
on information at time t-1. Let h,, denotes the time _ZE‘ A |Suea = 1PH(S,. .= S = 1R
t aggregated volatility forecasts for the next &ps. =1
It can be calculated as follows: where indicates th :iE [( ve )z‘s -1
step-ahead volatility forecast in the regime i made =i Hit Euort) e =
time t and can be calculated recursively as follows EPr( Soa= S, = ) ©)

Eqg. 6:
2
:zEt—l[utz +2ulsl+1—1 t+1’ 1‘ -1 J]

=

Fh,wk = zax,m = Z{z F’I‘(S+T = i‘ E_l),l\'l,t+r,sm-i:| (6) |:PI’( +'[—1 j$+T — iE-l)

=1 =1L i=1
N 2
ht,tﬂ,s+ =i —z~ 2 +h
g =200 M=t Miceas, =
i

where, R siw= i indicates thet-step-ahead volatility \ypere:
forecast in the regime i made at time t and can be

calculated recursively as follows Eq. 7: Pica = P(Ses =[S =i.F)
. Py Pr{Sus = §Ry) (10)
uiresnei = B NS =1] P(S. =R
=Ey[Ugg, +0ig & B g N ISk =]
=g, +0ug  Eof €4 Sy =] Similarly, the second term on the right hand side
+Bl,SHZiEI—l[hHI—l‘SHT = i] 7 Eq. 8 is equal to:
O B[ LIS S0 =1 e JEttSonm 11150 =1
+Byg. Bt Nivet[S = 1] - , (11)
=g, =it (lesf i+Big,- i)E 5 ][h e 4S8k = i] =JZ:1: pji't_l[ut ’Sm:j]

Also, in general the prediction probability in Ej. Substituting Eq. 9 and 11 into Eq. 8, one gets:

is computed as:

~ 2 ~
El_l(ht,tﬂ—l‘sﬂ = |)= 21: Hi,[-l[ut gﬂ,l:j-'- hﬂ—l,sﬂ,l: j]
=
2 2
- ; ji9—1[”t SJH:J

where, P defined in Eqg. 4 and Pr{$ i/F.;) will be Now we are ready to compute those regime
calculated in Eq. 12. Lastly, we compute expectatio probabilities p = Pr (§=i|F.,) fori=1, 2iin Eqg. 10. In
part B[Ny ur|Suc = i] as appeared in Eq. 7 as follows order to compute the regime probabilities, we derfi@t
Eq. 8: f (S =1, Ry fo = f (/IS = 2Ry). Then, the

condmonal distribution of return seriegs wecomes a
mixture-of-distribution model. Which the mixing
variable is a regime probability,pThat is:

_E t l[rl+T I‘SHT 1 J] ] N
- _[E -1[r[+r—l‘st+r—1 = j]]z‘sﬁ-r =i (8) rt “:1—1 ~{ f(rt ‘Sl B 1’ E_l) . with p.r.Obablllty ]P
f(r,|S, = 2,F_, )with probability p.= + p
=Et—l|: callne 1‘S[+I 1= l]‘ S ]

_E_l[[ [ 1‘Si+1 17 ]]] ‘ T }

{Pr(sm =1 E-l)} _ P{ P(S., = 15.1)}
Pr(S.. = 2|F.,) P(S..= 2F,)

Et—l[ht,t-ﬂ—l‘st-ﬂ =]

HerePr(S, = |F,) denotes one of the assumed

conditional distributions for errors, i.e. Normal
distribution (N), Student-t distribution with simg(t) or

The first on the right hand side of Eq. 11 can bedouble (2t) degree of freedom, or Generalized Error
calculated as follows Eq. 9 and 10: Distributions (GED).
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We shall compute regime probabilities recursively Then, all regime probabilities(pcan be computed
by following two steps (Kim and Nelson, 1999). by iterating these two steps. However, at the begmn

Step 1, given the PR (S= j|F..) at the end of the of the iteration, Pr ($= i/F) for i = 1, 2 are necessary
time t-1, the regime probabilities, Pr (S. = j|F.) is  to start iterating. We follow the technique of Héom

computed as: (1989; 1990) by setting:
. 2 . . _ _ __1-9q
P§ = [F,)=) Pr($= i$.= [iF; ARLUCRE LY v
=1
=P =dF)= P
Since the current regime \®nly depends on the L =Pr§ =35k 2-p-q

regime one period ago(s, then:
, Given initial values for regime probabilities,
Pr(§=1F,)=> Pr(S=i,8,= |iF, con_ditional mean and conditional variance in each
e regime, the parameters of the MRS-GARCH model can

2 , , be obtained by maximizing numerically the log-
T Z Pr(§ = {Sa= DPr(S. = JE,) likelihood function Marcucci (2005). The log-
) likelihood function is constructed recursively damito
= Pr($, = iRa) that in the GARCH model.
j=1
RESULTS
Step 2, once pbserved at the end of time t, we can
update the probability term in the following way: The data set was used the daily closing pricekeof
SET Index P over the period 3/01/2007 through
PI(S = [ F)= Pr(S= fir F )_f(ftvst =i[R.) 30/03/2011 (t=1,..., 1,038 observations). The datds
' r f(r|Fy) obtained from the Stock Exchange of Thailand. Téa d
set is divided into in-sample (R 977 observaticss)l
where,F, = {F.1, 1}. out-of-sample (n = 61 observations). The plaifand its

Let f(r, S = i/F.,) is the joint density of returns and log returns series (Eqg. 1) are given in Fig. 1. Plotgnd
unobserved at state for i = 1, 2 and it can betewrins  r;display the usual properties of financial dataeserAs

follows: expected, volatility is not constant over that peérof
time and exhibit volatility clustered with largeartges in
f(r.S =i[R) = (S =i RIS = 1R,) the index often followed by large changes and small
= f(f &= LB Pr(S | i changes often followed by small changes.

Descriptive statistics of are presented in Table 1.
Define f(i/F.1) is a marginal density function of As Table 1 shows, overall, has a quite small positive

returns and can be constructed as follows: average return (about 0.0436%). Standard deviafion
, is 1.5525%. The lowest average return is observed o

f(r|R) =2 (S =ilR.) Monday and the highest average return occurs i

i1 Moreover, we tested for the normality aqfhby

using the Jarque-Bera test (The Jarque-Bera Nagmali
test is a goodness-of-fit measure of departure from
normality and can be used to test which has a
We use Bayesian arguments Eq. 12: x?distribution with 2 degrees of freedom under the
null hypothesis that the data is from a normal

=3 14 $= iF, )Pr(s= i

PrS = i EFM distribution. The 5% critical value is, therefo99)
f(r.|F._) under the null hypothesisis normally distributed and
f(r]S, =i,Fy)PrS=|F,) we find that the test statistic value is 1,758.1080
= (12) which lead us to reject the null hypothesis. Sis not
2ffs =iR,)Pr§=[F,) normally distributed. Also, the skewness and kustos
'f:l of r, are -0.7189 (not equal zero) and 6.2605 (greater
=2“i than 3) respectively. These values confirm that the
D by returns are not normally distributed, namely,has
i fatter tails.
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Fig. 1: Graph of (a) SET Index closing priceg @hd (b) logs returns serieg) fior the period 3/01/2007 through

31/03/2011
Table 1:Descriptive statistics of SET Index log returngese(r)
Statistic All day Monday Tuesday Wednesday Thursday  Friday
Mean 0. 04% -0.04% -0.02% 0.03% 0.03% 0.22%
Std. Deviation 1. 55% 1.98% 1.46% 1.37% 1.43% 1.48%
Minimum -11. 09% -11.09% -4.28% -7.13% -5.44% -D0O4L
Maximum 7.55% 7.55% 5.29% 3.28% 6.10% 4.19%
Skewness -0.7189 -0.5511 0.2214 -1.0215 -0.2429 9878.
Kurtosis 6.2605 5.8511 1.7362 3.2096 2.7026 13.7500
Jarque-Bera Normality test 1758. 1080
Augmented Dickey-Fuller test -30.0801
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Table 2: Day of the week effect and ARMA (p, q) in mean ¢iguaof
return
Panel A: Day of the week effect in mean equatioretfrn

Monday Tuesday Wednesday Thursday Friday

B -0.064 -0.038 0.02 0.014 0.2210**
Std. error 0.109  0.106 0.105 0.106 0.107

** refer the significance at 95%confidence

Panel B: ARMA models parametric estimates in megquagon of

a group of autocorrelations of a time series afferdint
from zero. The test is also distributed as &gy, where
g is the number of lags). Since the P - value inroa

10 is equal to zero then the squared mean adjusted

return is non-stationary. Next, we apply Engle’s@tR
test (The ARCH test is a test with the null hypsike
that, in the absence of ARCH components, we have
0 for all i=1,2,...,q. The test is also distributed as a x

return

(q), whereq is the number of lags). The test is also

Variable Coefficient  Std. Error t-Statistic P-value

AR (1) > 5855 0.0579 14,6244 00000+ distributed as a*(q), where q is the number of lags)
AR (2) -2.4248 0.1121 -21.6289 0.0000++ (1982) to test ARCH effects of the squared mean
AR (3) 0.8289 0.0617 13.4318 0.0000""  adjusted return. The P-value in column 12 suggésts
m2 g; _g:gggg g:ggg jg:?ggi g:ggggm conditional heteroskedasticity.

MA (3) 0.7459 0.0799 9.3413 0.0000***

Empirical methodology: This empirical part adopts
the GARCH type and MRS-GARCH (1,1) models to
Moreover, we test for the stationary efoy using the estimate the volatility of the PThe GARCH type
Augmented Dickey-Fuller test (The Augmented Dickey-models that will be considered are GARCH (1,1),
Fuller test is a test for a unit root in a timeiesesample, EGARCH (Model of EGARCH (1,1) is):
the null hypothesis of ADF test is that the seigeron-
stationary. The 1, 5 and 10% critical value ard43-
2.86 and -2.57 respectively). The test statisticesas -
30.0801 which indicates the stationary.of r

Table 2 reports the day of the week effects an
ARMA (p, q) for returns. Panel A of Table 2 dispday
the first estimated coefficients of the day of theek
effect @: | = 1,..,, 5). From Table 2 (Panel A), we
found the estimated coefficients Bf are almost zero.
Then we test under the null hypothesis that each
coefficient G: | = 1,..,, 5) is zero. We find that the

coefficient of Fridays’ dummy variable is not zero ( .
significant at the 95% level and other days are?S'© @nd another is zero) (Klaanssen, 2002) (1n).

insignificant. These observations suggest that onl rder to account for the fat tails feature of fioii
Frid%y is the day of the effect of the SEgrglndex. )?eturns, we consider three different distributiémsthe

Panel B displays the estimated coefficients of thdnnovations: Normal (N), Student-t (t) and Geneexd

ARMA process and P-values. By using t-test under th E'TOr Distributions (GED).
null hypothesis that each coefficient AR (p) and &

is zero, we found that the P-values are all zeem th
each coefficient is not zero significant at the 9@¥%el.
Hence the SET Index return can be modeled by th
ARMA (3,3) process.

The autocorrelation functions (ACF) are presente
in Table 3, when we apply Ljung-Box to test serial
correlation in Pand . We use the specified lag from
the first to the tenth lags and the twenty-seccaml |

Serial correlation in Hcolumn 2) confirmed as non- ranging from 0.8950 to 0.9521, that is, volatiiiylikely

stationary butris stationary because of ACF. values 5 ramain high over several price periods onagcigiases.
(column 5) decrease very fast when the lag incease

and is confirmed by the Augmented Dickey-Fullett tes Markov regime switching garch models: Estimation
in Table 1. We analyze the significance of results and summary statistics of MRS-GARCH models
autocorrelation in the squared mean adjustegi)ir are presented in Table 5. Most parameter estiniates
return series by using the Ljung-Box Q-test (Theng- MRS-GARCH are significantly different from zero at
Box Q-test is a type of statistical test of whethry of  least at the 95% confidence level.

89

*+* refer the significance at 99%confidence

In(h) =g +a, 2 +Blln(ht_1)+5—£;]‘1

t=1

t-1

(%WhereE is the asymmetry parameter to capture
leverage effect) and GJR-GARCH (Model of GJR-
GARCH(1,1) is:

— 2 2
ht =0, + ulst—l(l_ I(s‘_1>0}) + Blh—l + Est—l (I(al_1>0) )

where }¢.1; > 0 is equal to one whem, is greater than

Garch type models Table 4, presents and estimation of
the results for GARCH type models. It is clear frdme
table that almost all parameter estimates are yighl
gignificant at 1%. However, the asymmetry effeanté
in EGARCH models is significantly different fromroe

hich indicates unexpected negative returns imglyin
higher conditional variance as compared to the ssipee
positive returns.

All models display strong persistence in volatilit
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Table 3:ACF of SET Index closed price JPlog returns seriesiJf squared mean adjusted return and results foleBr§RCH Test

ACF of R ACF of 1 ACF of (r-1)? Engle’'s ARCH test
Lag ACF LBQ Test P-value ACF LBQ Test P-value ACF BQTest P-value ARCH Test P-value
1 0.9962 0.1033 0.0000 0.0672 4.69380 0.0303  0.287285.71260 0.0000 85.48390 0.0000
2 09922 0.2059 0.0000 0.0639 8.94150 0.0114  0.3126187.3116 0.0000 145.2592 0.0000
3 09881 0.3077 0.0000 0.0111 9.06890 0.0284  0.2141235.0199 0.0000 152.0515 0.0000
4 09839 0.4088 0.0000 -0.0175 9.38790 0.0521  6.165 263.5800 0.0000 152.5688 0.0000
5 09798 05091 0.0000 -0.0261 10.0980 0.0725  0.203 306.5847 0.0000 162.1801 0.0000
6 09758 0.6087 0.0000 -0.0844 17.5358 0.0075 0.117 320.8663 0.0000 161.9628 0.0000
7 09723 0.7077  0.0000 0.0106 17.6543 0.0136  0.0808327.6824 0.0000 162.9380 0.0000
8 09688 0.8061 0.0000 -0.0447 19.7439 0.0113 8.101 338.5187 0.0000 164.0005 0.0000
9 09656 0.9039 0.0000 0.0634 23.9630 0.0044  0.1991380.0243 0.0000 187.2375 0.0000
10 0.9621 1.0011  0.0000 0.0870 31.8949 0.0004  @.270 456.4668 0.0000 217.0212 0.0000
22 0.9113 2.1086 0.0000 -0.0038 64.5758 0.0000 68.01 726.4272 0.0000 256.9269 0.0000
Table 4: Summary results of GARCH type models
GARCH EGARCH GJR-GARCH
Parameter N GED N t GED N t GED
ao 0.1318** 0.1593**  0.1476*** -0.1605*** -0.1612** -0.1628*** 0.1576** 0.1828*** 0.1715%**
Std.err. 0.0274 0.0443 0.0425 0.0224 0.0332 0.0323 0.0314 0.0472 0.0465
ER 0.1528** 0.1659** 0.1609*** 0.2476*** 0.2537*** 0.2512%* 0.2173*** 0.2421 2320+
Std. err. 0.0211 0.0357 0.0342 0.0295 0.0463 0.0442 0.0320 0.0527 0.0507
B1 0.7854**  0.7605** 0.7698*** (0.9521*** 0.9446** 0.9490%*** 0.7755** 0.7507** 0.7600%**
Std.err. 0.0206 0.0386 0.0361 0.0096 0.0154 0.0147 0.0238 0.0409 0.0391
13 -0.0759*** -0.0890*** -0.0823*** 0.0749%+* 0.0B7*** 0.0758***
Std.err. 0.0159 0.0261 0.0242 0.0217 0.0358 3203
\Y 7.3375%* 1.3861** 7.8523*** 1.4351%** 7.6961** 1.4074%**
Std.err. 1.6342 0.0805 1.9484 0.0872 1.7453 0.0809
Log (L) -1682.9300 -1667.7000 -1667.1400 -1672.8400 -1660.3800 -1659.9800 -1677.2900 -1662.7900 - BEm
Persistence 0.9382 0.9264 0.9307 0.9521 0.9446 90.94 0.8950 0.9096 0.9139
LBQ (22) 63.3245 63.3245 63.3245 63.3245 63.3245 3BH 63.3245 63.3245 63.3245
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (omo (0.0000) (0.0000) (0.0000)
LBQ?(22) 673.3047 673.6150 673.6558 671.9037 672.9447 672.8664 672.0820 672.9410 672.9100
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) Qom) (0.0000) (0.0000) (0.0000)

=+ and ** refer the significance at 99% and 95%ndinlence level respectively, LBQ (22) is Ljung-Btest of innovation at lag 22, LEQ22) is Ljung-Box test of
squared innovation at lag 22 and P-value of the 85D in parentheses

Table 5: Summary results of MRS-GARCH models

MRS GARCH

N t 2t GED
Parameters Low High Low High Low High Low High
State i volatility volatility volatility volatility volatility volatility volatility volatility
aV 0.2163*** 0.1850*** 0.2350** 0.1898** 0.0000 0.18% 0.0000 0.1763**
Std.err. 0.0844 0.0651 0.0893 0.1144 0.0926 0.1091 0.1090 0.0467
A 0.0000 0.0749*** 0.0000 0.0763 0.9027*** 0.0746 9619**+* 0.0681**
Std.err. 0.0560 0.0180 0.0264 69.2049 0.0270 50.227 0.3552 0.0351
B® 0.6052*** 0.88453** 0.5842%** 0.8750*** 0.0000 0.7613** 0.0000 0.762***
Std.err. 0.1205 0.0299 0.0456 0.1782 0.0465 0.1771 0.0207 0.0389
p 0.9582*+* 0.9603*** 0.9785*** 0.9822*+*
Std.err. 0.0179 0.0105 0.0204 0.0066
q 0.9737%* 0.9776*** 0.4409*+* 0.5696***
Std.err. 0.0100 0.0202 0.0107 0.1093
v 112518%* 9.1414%*= 8.3746 1.4692%**
Std.err. 4.4451 4.2972 29.6785 0.0947
Log(L) -1658.0700 -1652.6900 -1651.180 -1654.0600
o? 0.5479 1.7128 0.5652 3.8973 0.0000 1.1231 0.0000 .9956
T 0.3862 0.6138 0.3607 0.6393 0.0370 0.9630 0.0397 .9608
Persistence 0.6052 0.8919 0.5842 0.9513 0.9027 59.83 0.9619 0.8229
LBQ(22) 62.6690 57.659 62.2970 55.8980

(0.0000) (0.0000) (0.0000) (0.0000)
LBQ2(22) 678.9360 725.076 677.7940 720.355

(0.0000) (0.0000) (0.0000) (0.0000)

=+ and ** refer the significance at 99% and 95%ndinlence level respectively, LBQ (22) is Ljung-Btest of innovation at lag 22, LEQ22) is Ljung-Box test of
squared innovation at lag 22 and P-value of the 85D in parentheses
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Evaluation Results

Models N*  Pers* Aic R*  Shic R  Logl R  Msel R Mse2 R Qlike R Madl R Mad2 R Hmse R
Garch-N 4 09382 34533 13 34733 13 -1682.93 13944 13 436818 13 1.60764 12 7.4140 12  2.6653 138350 13
Garch-t 5 009264 3.4241 10 34491 6 -1667.70 107901 11 431525 8 1.60786 13 7.4197 13  2.6412 10 3308 12
Garch-GED 5 09307 34230 9 34480 5 -1667.14 98301 12 43.3345 10 1.60750 11 7.4045 11  2.6472 128320, 11
Egarch-N 5 009521 34347 11 34597 7 -1672.84 11294 4 414361 3 158851 3 7.3832 9  2.5688 4 0.82407
EGARCH-t 6 009446 34112 5 34412 2 -1660.38 6 3312 1 411859 1 158958 5 7.3854 10  2.5629 3 0.82396
EGARCH-GED 6 009490 3.4104 4 3.4404 1 -1659.98 51244 2 412950 2 158904 4 7.3713 7 25627 2 082295
GJR-GARCH-N 5 0.8950 3.4438 12 3.4688 12 -1677.292 1.1635 10 421079 6 159727 6 7.3687 6  2.6464 08302 10
GJR-GARCH-t 6 009096 3.4161 8 3.4461 4 -1662.79 81535 8 41.7429 4 159817 8 7.3728 8  2.6378 8 G829 9
GJR-GARCH-GED 6 0.9139 34159 7 34459 3 -1662.67 171559 9 418707 5 159759 7 7.3591 5 26384 92808 8
MRS-GARCH-N 10 09581 3.4147 6 3.4647 11 -1658.07 41518 7 431296 7 158837 2 7.2508 3 25784 6 18 3
MRS-GARCH-2t 12 0.8888 3.4047 1 3.4647 10 -1651.181 1.1373 5 436584 12 1.60437 9 7.1590 2  2.5816 78096 2
MRS-GARCH-t 11 0.8964 34057 2 34607 8 -1652.69 DR1261 3 434001 11 1.60655 10 7.1021 1 25568 18038. 1
MRS-GARCH-GED 11 0.9484 3.4085 3 3.4635 9 -1654.063 1.1473 6 431537 9 158770 1 7.2959 4  2.5696 58185, 4
*N=Number of Parameters, PERS=Persistence, R=Rank

Table 7: Result loss function of out-of-sample

Panel A: Result loss function of out-of-sample withecasting volatility for one day ahead

Model MSE1 R MSE2 R QLIKE R MAD1 R MAD2 R HMSE R SR R
Garch-N 0.9307 2 11.4131 6 23322 13 1.0260 2 2178 2 14.9938 13 0.5333 9
Garch-t 0.9386 3 11.4142 7 2.3287 11 1.0269 3 3179 3 14.7135 11 0.5333 9
Garch-GED 0.9305 1 11.4087 5 2.3317 12 1.0254 1 7631 1 14.8922 12 0.5333 9
Egarch-N 1.2836 8 11.3594 3 2.0482 6 1.1036 6 2392 7 3.8081 5 0.5667 3
Egarch-t 13391 10 11.4262 8 2.0389 3 11123 9 |42 10 3.4130 1 0.5833 1
EGARCH-GED 1.3073 9 11.3871 4 2.0423 4 1.1067 8 044 8 3.6081 3 0.5833 1
GJR-GARCH-N 1.3396 11 11.8156 9 20448 5 11127  102.4487 11 3.9283 6 0.5667 3
GJR-GARCH-t 1.3835 13 11.9325 13 2.0333 1 1.1200 132.4790 13 3.5696 2 0.5500 7
GJR-GARCH-GED  1.3627 12 11.8783 11 2.0364 2 111641 2.4653 12 3.6997 4 0.5500 7
MRS-GARCH-N 1.2383 4 11.1717 1 21023 8 1.1046 7 38@2 6 4.4324 8 0.5000 12
MRS-GARCH-2t 1.2827 7 11.8513 10 2.1618 9 10748 42.3403 4 8.2194 9 0.5667 3
MRS-GARCH-t 1.2797 6 11.2014 2 2.0985 7 1.1178 12 .41@6 9 4.2068 7 0.4833 13
MRS-GARCH-GED  1.2437 5 11.9301 12 2.1635 10  1.07565 2.3517 5 8.3499 10 0.5667 3
Panel B: Result loss function of out-of-sample wviidtecasting volatility for five days ahead. (A Wge

Model MSE1 R  MSE2 R QLIKE R MAD1 R MAD2 R HMSE R SR R
Garch-N 1.3612 12 39.236 12 4.3247 12 1.1097 6 65.26 8 1.5169 13 0.7667 11
Garch-t 1.3653 13  39.0978 11 4.3272 13 1.1234 10 3198 10 1.4435 11 0.7667 11
Garch-GED 1.3605 11 39.0643 10 4.3243 11 1.1135 8 .2775 9 1.476 12 0.7667 11
Egarch-N 0.9829 3  31.3583 8 4.1335 3 0.8642 3 7208 3 0.58 8 0.8833 3
Egarch-t 0.9769 2 29.5375 6 4.1243 1 0.8485 1 4115 1 0.5291 6 0.9167 1
Egarch-GED 09753 1  30.3812 7 4.1269 2 0.8528 2 4881 2 0.5546 7 0.9000 2
Gjr-garch-N 1.0412 6 26.2744 2 4.2308 7 1.1102 7 16% 6 0.429 3 0.8500 4
Gjr-garch-t 1.0374 5  26.6931 3 4.2394 9 1.1384 11 .32% 11 0.4225 1 0.8500 4
Gjr-garch-ged 1.0342 4 26.2502 1 4.2329 8 1.1204 95.2264 7 0.4229 2 0.8500 4
Mrs-garch-n 12209 7  36.7342 9 4.2182 5 1.206 12 04%. 12 0.4883 4 0.8333 8
Mrs-garch-2t 1.2774 9 28.8287 5 4.2184 6 0.9939 5 .63 5 0.6579 10 0.8333 8
Mrs-garch-t 1.2637 8  39.9566 13 4.2505 10 1.2768 136.4067 13 0.5125 5 0.8500 4
Mrs-garch-ged 1.2775 10 27.5975 4 4.2139 4 0.9815 44.5268 4 0.6421 9 0.8000 10
Panel C: Result loss function of out-of-sample Viitfecasting volatility for ten days ahead. (Twoeks)

Model MSE1 R MSE2 R QLIKE R MAD1 R MAD2 R HMSE R SR R
Garch-N 1.9098 7 838490 3 52852 7 16278 6 90190 6 0.5595 10 0.7667 12
Garch-t 2.0007 9 90.8608 6 5.3063 10 1.703 9 96707 8 0.5519 8 0.7500 13
Garch-ged 1.9512 8 875095 5 52957 9  1.6645 7 7988 7 0.5554 9 0.7833 8
Egarch-N 1.4102 3 95.5747 10 5.2121 2 1.5346 4 B84 4 0.8871 13 0.8333 2
Egarch-t 1.3958 1 938165 7 5.2106 1 15242 3 8052 3 0.8556 11 0.8333 2
Egarch-GED 1.4003 2 95.2004 8 5.2136 3 1.5373 5 4386 5 0.8859 12 0.8333 2
Gjr-garch-N 2.0831 11 101.1884 11 5.3156 11 1.803210 10.62690 10 0.4039 2 0.7833 8
Gjr-garch-t 2.2168 13 113.8863 13 5.3376 13 1.874813 11.22480 13 0.4133 5 0.8000 6
Gjr-garch-ged  2.1429 12 107.2969 12 5.3256 12 D833 12 10.88700 12 0.4079 4 0.8000 6
Mrs-garch-N 1.9057 6 87.1919 4 5.2639 6 1.6939 8 83300 9 0.3783 1 0.8500 1
Mrs-garch-2t  1.6556 5 70.3567 2 5.2385 5  1.3956 1 .43980 1 0.4352 7 0.7833 8
Mrs-garch-t 2.0646 10 95.3080 9 5.2887 8 1.8076 11 10.65460 11 0.4069 3 0.8333 2
Mrs-garch-ged 1.6434 4  68.9504 1 5.2337 4 1.4007 2 7.53820 2 0.4210 6 0.7833 8
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Panel D: Result loss function of out-of-sample vidrecasting volatility for twenty-two days ahe&fl.month)

Model MSE1 R MSE2 R QLIKE R MAD1 R MAD2 R HMSE R SR R

Garch-N 14.1768 60 913.3033 60 6.314 30 4.1168 60 9.772 6 0.6512 40 0.5500 20
Garch-t 14.8896 80  969.6524 80 6.346 50 4.2464 80 1.2089 8 0.66 80 0.5500 20
Garch-GED 145087 70  933.3108 70 6.3291 40 4.1817 0 7 30.4736 7 0.6565 60 0.5500 20
Egarch-N 9.5602 10 631.9223 10 6.5527 11 4.0874 3027.1309 3 4.9652 12 0.5500 20
Egarch-t 9.6971 30 635.4651 20  6.5539 12 4.0956 4027.212 4 4.9013 11 0.5500 20
Egarch-GED 9.6581 20 637.1163 30 6.5726 13 4.1044 0 5 27.2486 5 5.0823 13 0.5500 20
Gjr-garch-N 17.9597 11  1377.439 11 6.4293 80 4.509311 34.8962 11 0.6511 30 0.5167 90
Gjr-garch-t 18.6557 13  1439.5115 13 6.4532 10 46610 13 36.1021 13 0.6587 70 0.5000 10
Gjr-garch-ged 18.2373 12  1392.524 12 6.4384 90 14855 12 35.3763 12 0.6547 50 0.5000 10
Mrs-garch-n 16.7158 10 1247.1304 10 6.4006 60 4300 90 32.5696 90 0.6279 10 0.5500 20
Mrs-garch-2t 12.2903 40 651.7878 40 6.2225 10 3689 10 24.9944 10 0.737 10 0.5000 10
Mrs-garch-t 16.687 90 1224.4922 90 6.4033 70 4.3627 10 33.1213 10 0.6402 20 0.6333 10
Mrs-garch-ged 12,5857 50 686.0672 50 6.2299 20 2971 20 25.321 20 0.7226 90 0.5000 10

But &, a andp; are insignificantly different in some Forecasting volatility in out-of-sample:  We
states. All models display strong persistence iatility ~ investigate the ability of MRS-GARCH and GARCH
ranging from 0.5842-0.9619, that is, volatilitylilely to  type models to forecast volatility of the SET Index
remain high over several price periods once itsases. out-of-sample.

In Table 7, we present the results of loss fumctio
In-sample evaluation: We use various goodness-of-fit of out-of-sample with forecasting volatility for erday
statistics to compare volatility models. Theseistias  ahead, five days ahead (a week), ten days ahead (tw
are Akaike Information Criteria (AIC), Schwarz weeks) and twenty-two days ahead (a month). We
Bayesian Information Criteria (SBIC) and Log- found the GARCH-type models perform best in the
likelihood (LOGL) values. In Table 6, the results o short term (one day and a week) for forecasting

goodness-of-fit statistics and loss functions: volatility of the SET Index. Additionally, we have
reported a particular sign-test, the Success R&iR),
Loss functions: i.e.
1Q 2
MSE, = — 0.« —+/h , n L .
' n;( e t’K) SR:EZ I, wherel is indicator functio
1a 2 niz {ot+j1ht+j1>0}
— 2
MSE, = thzl(o—‘*K hth) ot = 0(2+j,1 - Stiandh.j; = Mja = Ra
1Q o? L . .
,QLIKE=—Z(In(hLK)—ht—*K], The SR test is simply the fraction of volatility
N tK forecasts that have the same sign as volatility
1 realizations. From the table we can see that thRGA-
MAD, _Hé ek "M | type models do a great job in correctly predictthg
18, sign of the future volatility in the short term.
MAD, =;Z Ok _ht,K|' On the other hand, we found that the MRS-
t=1

) GARCH models perform best in the long term (two
HMSE = EZ”Z[Of_H(_ 1] weeks and a month) for forecasting the volatilitythe
n SET Index. Also, the SR test MRS-GARCH models do
a great job in correctly predicting the future ity in
For all volatility models are presented. Accordingthe long term.
to SBIC, the EGARCH model with GED-distribution
performs best in modeling the SET Index volatility. DISCUSSION
However, the MSE1 and MSE2 suggest that the
EGARCH with a t - distribution performs best in SET For forecasting volatility in the long term in SET

Index volatility. Also AIC and LOGL suggest thateth Index, the MRS-GARCH models perform best.
MRS-GARCH-2t performs best in SET Index volatility.

MAD1, MAD2 and HMSE suggest that the MRS- CONCLUSION

GARCH-t performs best in SET Index volatility and i

QLIKE the MRS-GARCH with GED-distribution In this study, we modeled the returns of the SET
performs best in SET Index volatility. Index by mean equation with the day of the weekaff
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and the autoregressive moving-average order p and lamilton, J.D., 1989. A new approach to the ecomomi
(ARMA (p, g)) and forecasted the volatility of tIET analysis of nonstationary time series and the
Index by the GARCH, EGARCH, GJR-GARCH and business cycle. Econometrica, 57: 357-384. DOI:
MRS-GARCH models. Moreover we compared their 10.2307/1912559

volatility forecast performance with one day, oneeW,  Hamilton, J.D., 1990. Analysis of time series subje

two weeks and one month returns. changes in regime. J. Econ., 45: 39-70.

~ Friday is day effect of the SET Index. Displays th kim ¢ 3. and C.R. Nelson, 1999. State-space Models
first estimate of return equation with ARMA (3, 3he With Regime Switching: Classical and Gibbs-

GARCH-type models perform best in the short term Sampli - -
pling Approaches With Applications. 1st Edn.,
(one day and a week). On the other hand, the MRS- MIT Press, Cambridge, MA., ISBN-10:

GARCH models perform best in the long term (two .
. o 0262112388, pp: 297.
weeks and a month) for forecasting volatility ok th Klaanssen, F., 2002. Improving GARCH volatility

SET Index. ) . e
For further study, three or four volatility regime forec_a_sts with  regime-switching ~ GARCH.
Empirical Econ., 27: 363-394. DOl:

settings can be considered rather than two-vdiatili

regimes or using Markov Regime Switching with other 10.1007/s001810100100
volatility models e.g., EGARCH, GJR. In additiohet Kyimaz, H. and H. Berument, 2001. The day of the
performance of the MRS-GARCH models can be week effect on stock market volatility. J. Econ.

compared in terms of their ability to forecast \éalat Finan., 25: 181-19390I: 10.1007/BF02744521
Risk (VaR) for long and short positions. Klaassen, T., 2002. Out of Balance: Serotonergic
Studies in Affective Disorders. 1st Edn.,
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