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Abstract: We prove that the standard discrete-time accelerator equation 

cannot be considered as an exact discrete analog of the continuous-time 

accelerator equation. This leads to fact that the standard discrete-time 

macroeconomic models cannot be considered as exact discretization of the 

corresponding continuous-time models. As a result, the equations of the 

continuous and standard discrete models have different solutions and can 

predict the different behavior of the economy. In this study, we propose a 

self-consistent discrete-time description of the economic accelerators that is 

based on the exact finite differences. For discrete-time approach, the model 

equations with exact differences have the same solutions as the 

corresponding continuous-time models and these discrete and continuous 

models describe the same behavior of the economy. Using the Harrod-

Domar growth model as an example, we show that equations of the 

continuous-time model and the suggested exact discrete model have the 

same solutions and these models predict the same behavior of the economy. 
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Introduction  

Economic accelerator is a fundamental concept of 

macroeconomic theory (Allen, 1960; 1967). Accelerators 

can be considered in the models with continuous and 

discrete time. The continuous-time accelerators are 

described by using equations with derivative of the first 

order. The discrete-time accelerators are described by 

using the equations with finite differences. One of the 

simplest macroeconomic models, in which the concept 

of the accelerator is used, is the Harrod-Domar growth 

model proposed in works (Harrod, 1936; Domar, 1946; 

1947). The Harrod-Domar growth model with 

continuous time (Allen, 1960, p. 64-66) and the Harrod-

Domar growth model with discrete time (Allen, 1960, p. 

74-76) are not equivalent. A similar situation occurs with 

other macroeconomic models. The discrete-time 

macroeconomic models cannot be considered as exact 

discrete analogs of continuous-time models. The equations 

of these models have different solutions and can predict the 

different behavior of the economy. In this regard, it is 

important to understand the reasons for the lack of 

equivalence of discrete and continuous models. 

It is well-known that the standard finite differences of 
integer orders cannot be considered as an exact 

discretization of the integer derivatives. Therefore the 
discrete-time accelerator equation with the standard 
finite differences cannot be considered as an exact 

discrete analog of the accelerator equation, which 
contains the derivative of first order. To define discrete-
time accelerators that are exact discrete analogs of 
continuous-time accelerators, we should consider an 
exact correspondence between the continuous and 
discrete time approaches. The problem of exact 

discretization of the differential equations of integer 
orders has been formulated by Potts (1982; 1986) and 
Mickens (1988; 1993; 1999; 2000; 2002; 2005). It has 
been proved that for differential equations there is a 
finite-difference discretization such that the local 
truncation errors are zero. A main disadvantage of this 

approach to discretization is that the suggested 
differences depend on the form of the type and 
parameters of the considered differential equation. In 
addition, these differences do not have the same 
algebraic properties as the integer derivatives. 
Recently, a new approach to the exact discretization 

has been suggested by Tarasov (2014; 2015a; 2015b; 
2016a; 2016b; 2017). This approach is based on the 
principle of universality and the algebraic 
correspondence principle (Tarasov, 2016a). The exact 
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finite differences have a property of universality if 
they do not depend on the form and parameters of the 
considered differential equations. An algebraic 
correspondence means that the exact finite differences 

should satisfy the same algebraic relations as the 
derivatives. In this study, we propose a self-consistent 
discrete-time description of the economic accelerators 
that is based on the exact finite differences. 

Accelerator 

In macroeconomics, the accelerator describes how 

much the change in the value of the endogenous variable 

(for example, the induced investment I(t)) in response of 

a single relative increase of the exogenous variable (for 

example, the income Y(t)). The formulation of the 

accelerator depends on whether continuous or discrete 

analysis is used. The simplest expression of the linear 

accelerator in the continuous form without lags (Allen, 

1960, p. 62-63) has the form: 

 

( ) ( )dY t
I t v·

dt
=   (1) 

 

where dY(t)/dt is the rate of output (income) and I(t)is 

the rate of induced investment, each as a flow at time t 

and v is a positive constant, the investment coefficient 

indicating the power of the accelerator. Equation (1) 

means that induced investment is here a constant 

proportion of the current rate of change of output. 

In discrete analysis, the linear accelerator without 

lags can be written (Allen, 1960, p. 63) in the form: 

 

( )1t t tI v· Y Y −= −   (2) 

 

in which the unit step (T = 1) is supposed and Yt = 

Y(t) for integer values of t. This discrete equation 

corresponds to the equation (1). In the discrete approach 

with an arbitrary step T>0, the linear accelerator can be 

written in the form: 

 

( )1n n n

v
I · Y Y

T
−= −   (3) 

 

where Yn = Y(n·T), In = I(n·T) and T is a positive 

constant indicating the time scale. If T = 1, then t = n 

and Yn = Yt. In this case, equation (3) takes the form 

(2). Equations (2) and (3) mean that induced 

investment depends on the current change in output 

(Allen, 1960, p. 63). 

Using the standard finite differences, such as the 

backward difference ( ) ( )1 1bY t : Y t Y( t )∆ = − − , equation (2) 

can be written as: 

 

( ) ( )1

bI t v· Y t= ∆   (4) 

Equations (2), (3) and (4) cannot be considered as 

exact discrete analogs of equation (1). This is caused by 

that the standard finite differences, such as the 

backward difference ( ) ( )1 : ( 1)bY t Y t Y t∆ = − −  and forward 

difference ( ) ( )1 : 1 ( )f Y t Y t Y t∆ = + − , do not have the same 

basic characteristic properties as the derivatives of first 

order (Tarasov, 2015a; Tarasov, 2016a). For example, 

the standard Leibniz rule (the product rule), which is a 

characteristic property of derivatives, is violated for the 

standard finite differences (Tarasov, 2015a; Tarasov, 

2016a), that is, we have the inequality: 

 

( ) ( )( ) ( )( ) ( ) ( ) ( )1 1 1

1 2 1 2 1 2· · (· )b b bX t X t X t X t X tt X∆ ∆+∆ ≠   (5) 

 

For the backward difference, the product rule has the 

nonstandard form: 

 

( ) ( )( ) ( )( ) ( )

( ) ( ) ( )( ) ( )( )

1 1

1 2 1 2

1 1 1

1 2 1 2

b b

b b b

X t · X t X t · X t

X t · X ( t ) X t · X t

∆ = ∆ +

∆ − ∆ ∆
  (6) 

 

For comparison, we give the action of the derivative 

and the standard finite difference on some elementary 

functions in the form of Table 1. 

We can see that the action of standard difference 1

b
∆  

does not coincide with the action of first derivative in 

general. As a result, in the general case the solutions of 

the equations with standard finite differences do not 

coincide with solutions of the differential equations, 

which are derived by the replacement of the standard 

finite differences by the derivatives of the same orders 

(Tarasov, 2016a). 

The nonequivalence of the action of derivatives and 

standard finite differences leads to the fact that 

macroeconomic models with discrete time are not 

equivalent to the corresponding models with continuous 

time. In the next section, we demonstrate the 

nonequivalence of the continuous and discrete 

macroeconomic models by using the Harrod-Domar 

growth models. 

Harrod-Domar Growth Models 

Continuous Time Approach 

Let us consider the Harrod-Domar growth model 

with continuous time (Allen, 1960, p. 64-66). If 

autonomous investment A(t) grow, for example, as a 

result of the sudden appearance of large inventions, the 

multiplier gives a corresponding increase A(t)/(1-c) in 

output, where c is the marginal value of propensity to 

consume (0<c<1). The expansion of output activates the 

accelerator and leads to further (induced) investment. 

These additional investments increase output due to the 

multiplier effect and another cycle begins.  
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Table 1: Actions of derivatives and standard finite differences 

f(t) df(t)/dt ( )1

b f t∆  

exp (λ·t) λ · exp(λ·t ) 
( )

( )
( )

1exp
·exp ·t

exp

λ −
λ

λ
 

sin (λ·t) λ · cos(λ·t) 2
2 2

·sin ·t cos
λ λ   λ −   

   
 

cos (λ·t) - λ · sin(λ·t) 2
2 2

·sin ·t sin
λ λ   − λ −   

   
 

t2 2·t 2·t -1 

t3 3·t2 3·t2 – 3·t + 1 

 

The Harrod-Domar model describes the interaction 

of the multiplier and the accelerator in the absence of 

delays (lags) and the simplest form of an accelerator. 

In a continuous time approach, all variables are taken 

as continuous functions of time and relations are 

assumed linear. If we select independent (autonomous) 

expenditures for both consumption and capital 

investment, the basic condition (balance equation) can be 

written in the form: 

 

( ) ( ) ( ) ( )Y t C t I t A t= + +   (7) 

 

where Y(t) is the output (income), C(t) is the 

consumption, I(t)is the induced investment and A(t)is 

the autonomous investment. Here we can use the 

consumption function C(t) = c·Y(t) and accelerator 

equation (1) with 0<c<1 and v>0. As a result, we get 

the equation: 

 

( ) ( ) ( ) ( )
dY t

Y t c·Y t v· A t .
dt

= + +   (8) 

 

Equation (8) can be rewritten in the form: 

 

( ) ( ) ( )1dY t
·Y t ·A t

dt v
= λ −   (9) 

 

where λ = s/v and s = 1−c is the marginal propensity to 

save. Equation (9) is the differential equation, whose 

solution described the dynamics of output Y(t) over time. 

The solution of (9) depends on the dynamics of 

autonomous expenditure A(t) over time. Let us consider 

the case of the fixed autonomous expenditure (A(t) = A = 

const). Let y(t) be the deviation of income from the fixed 

level A/s, i.e., y(t) = Y(t) – A/s and dy(t)/dt =dY(t)/dt. 

Then equation (9) can be rewritten in the form: 

 

( ) ( )
dy t

·y t
dt

= λ   (10) 

where λ = s/v. The solution of equation (10) has the form: 
 

( ) ( ) ( )0y t y ·exp ·t= λ   (11) 

 
where y(0) is a constant that described the initial income 

level. Using y(t) = Y(t)−A/s, we get the solution of 

equation (9) with A(t) = A in the form: 
 

( ) ( ) ( )/ ( 0 / )·exp ·Y t A s Y A s tλ= + −   (12) 

 
Solution (12) expresses continuous growth of output 

or income with a constant growth rate λ = s/v>0. Usually 
the marginal propensity to save s = 1 – c is quite small in 
comparison with the investment coefficient v. In this 
case the growth rate λ = s/v is a positive fraction that 
may be quite small. 

Discrete Time Approach 

Let us consider the Harrod-Domar growth model 

with discrete time (Allen, 1960, p. 74-76). The main 

Harrod assumption is that saving plans, rather than 

consumption plans, are realized. This is one possible 

assumption that leads to the introduction of delays. In the 

linear case, when we exclude any autonomous 

expenditure At = 0, the saving function has the form St = 

s. Yt-1 where s is the constant marginal propensity to 

save. Generally speaking, this is the expected ratio. But, 

as savings plans are implemented, St is also the actual 

value of savings. The expected consumption will be 

equal to (1-s). Yt-1, the actual consumption is determined 

by the formula: 
 

1t t t t tC Y S Y s·Y −= − = −   (13) 

 
The balance equation, which connects the actual 

values of the model, is analogous to equation (7) of 

continuous model and it has the form: 
 

t t t tY C I A= + +   (14) 

 
where It is induced investment and At is independent 

investment. Therefore, we have equation St = It + At which 

expresses the actual equality of savings and investment. 
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Let us consider the most important case, when there are no 

autonomous investments. For At = 0, the actual 

investment, which all are induced, is given by expression: 

 

1t t tI S s·Y −= =   (15) 

 

Expected induced investments express the action of 

the accelerator without lag (delay) in the form: 

 

( )1t t tJ v· Y Y −= −   (16) 

 

The further specification of the model depends on the 

relationship between the expected investment Jt and 

actual investments It. The growth rate of output Yt is 

given by the equilibrium condition that investment plans 

are always realized (Jt = It) for all t. Since saving plans 

are assumed realized in the first place, this is the special 

type of situation in which saving and investment are 

always the same, expected and actual. This condition is 

expressed by the equation: 

 

( )1 1t t tv· Y Y s·Y− −− =   (17) 

 

Using the backward difference 1

b
Y∆ (t): = Y(t)-Y(t-1) 

equation (17) can be written in the form: 

 

( )1

1b tY t ·Y −∆ = λ   (18) 

 

where λ = s/v.  Equation (17) also can be written in the 

form Yt = (1+λ)·Yt-1. The solution of this difference 

equation (Allen, 1960, p. 76) has the form: 

 

( ) ( )0 01 1
t

tY Y · Y ·exp t ·ln( )= + λ = + λ   (19) 

 

Solution (19) expresses continuous growth of output 

or income with the constant relative speed ln(1+λ).  

Let us consider the case of the fixed autonomous 

expenditure (A(t) = A = const). The equation has the form: 

 

( )1

1b t

A
Y t · Y

v
−∆ = λ −   (20) 

 

The solution of equation (20) can be given (Allen, 

1960, p. 185-186) by the expression: 

 

( ) ( )0/ / ·exp ·ln(1 )tY A s Y A s t λ= + − +   (21) 

 

which described the growth of income with the constant 

growth rate ln(1+λ).  

If we take into account the step T≠1, solution (19) 

takes the form Yt = Yo · (1 + λ·T)
t/T

. Only in the limit T → 

0 we get Y(t) = Y(0) · exp(λ·t), by using limx→0 (1+x)
1/x

 

= e. It is easy to see by direct substitution that the 

expression (12) is not a solution of the difference 

equation (20) since 1 exp( · ) ·exp( · )
b

t tλ λ λ∆ ≠ . 

As a result, we can see that the growth rate ln(1+λ) of 

the discrete models does not coincide with growth rate λ 

= s/v of the continuous model.  

The similar situation occurs with other 

macroeconomic growth models, including the natural 

growth model, the Keynes model, the dynamic intersect 

oral model of Leontief and others. 

Using the Harrod-Domar growth model as an 

example, we show that the discrete-time macroeconomic 

models, which are based on standard differences, cannot 

be considered as exact discrete analogs of continuous-

time models. The equations of these models can have 

different solutions and can predict the different behavior 

of the economy. In the next section, we propose a self-

consistent discrete-time description of the economic 

accelerators that allows us to propose discrete 

macroeconomic models, which can be considered as 

exact discretization of the corresponding continuous-

time models. In addition these discrete models predict 

the same behavior of the economy as the corresponding 

continuous-time macroeconomic models.  

Concept of Exact Discretization 

In order to have difference equations of the 

accelerator, which can be considered as exact discrete 

analogs of equation (1), we propose to use the 

requirement on difference operators in the form of the 

correspondence principle (Tarasov, 2016a): The finite 

differences, which are exact discretization of derivatives 

of integer orders, should satisfy the same algebraic 

characteristic relations as these derivatives. The 

suggested principle of algebraic correspondence means 

that the correspondence between the discrete and 

continuous time economic models lies not so much in 

the limiting condition, when the step tends to zero 

(T→0) as in the fact that mathematical operations on 

these two models should obey in many cases the same 

mathematical laws. 

The exact discrete analogs of the derivatives should 

have the same basic characteristic properties as these 

derivatives (Tarasov, 2016a):  

 

• The Leibniz rule is a characteristic property of the 

derivatives of integer orders. Therefore the exact 

discretization of the derivatives should satisfy this rule. 

The Leibniz rule should be the main characteristic 

property of exact discrete analogs of the derivatives  

• The exact discretization should satisfy the semi-group 

property. For example, the exact finite difference of 

second-order should be equal to the repeated action of 

the exact differences of the first order 
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• The exact differences of power-law functions 

should give the same expression as an action of 

derivatives. This allows us to consider the exact 

correspondence of derivatives and differences on 

the space of entire functions 
 

Tarasov (2014; 2015a; 2015b; 2016a; 2016b; 2017) 

we proposed new approach to exact discretization that is 

based on new difference operators, which can be 

considered as an exact discretization of derivatives of 

integer and non-integer orders. These differences do not 

depend on the form and parameters of considered 

differential equations. Using these differences, we can 

get an exact discretization of differential equation of 

integer and non-integer orders. The suggested approach 

to exact discretization allows us to obtain difference 

equations that exactly correspond to the differential 

equations. We consider not only an exact correspondence 

between the equations, but also exact correspondence 

between solutions. The suggested exact differences allow 

us to propose the exact discrete-time analogs of the 

continuous-time equations of the accelerators. 

Exact Discrete Analogs of Standard Accelerators 

Let E(R) be a space of entire function on the real axis 

R and E(Z) be the space of entire function over the field 

of integer scalars Z. Any function X(t)∈E(R) can be 

represented in the form of the power series: 

 

( )
0

· k

kk
X t x t

∞

=
= ∑   (22) 

 

where the coefficients Xk satisfy the condition 

0k
k klim x→∞ =  and t ∈ R. 

It is obvious that X(n)∈E(Z) if X(t)∈E(R). Let us 

define the exact difference operator k

T
∆  of the positive 

integer order k on the function space E(Z). The linear 

operator k

T
∆  will be called the exact finite difference of 

integer order k>0, if the following condition is satisfied: 

If X(t), Y(t)∈E(R) and the differential equation: 

 

( )
k

k

d Y( t )
· X t

dt
= λ   (23) 

 

Holds for all t∈R, then the difference equation: 

 

( ) · ( )k

TY n X nλ∆ =   (24) 

 

holds for all n∈Z. 

In the papers (Tarasov, 2015a; 2016a), the exact 

differences of integer order have been suggested in 

explicit form. The exact finite difference of the first 

order is defined by the equation: 

( ) ( )1

1

1
m

T

m

X( t ) : · X ( t Tm ) X ( t Tm )
m

∞

=

−
∆ = − − +∑   (25) 

 
where the sum implies the Cesaro or Poisson-Abel 

summation (Tarasov, 2016a, p. 55-56). 
Equation (23) with k = 1 represents the standard 

equation of the continuous-time accelerator. Equation 
(24) with the exact difference (25) represents the exact 
discrete analog of the standard continuous-time 
accelerator, which is given by equation (23) with k = 1. 

Exact finite difference of second and next integer 
orders can be defined by the recurrence formula: 
 

( )1 1( ) : ( )k k

T T TX t X t+∆ = ∆   (26) 

 
As a result, the exact difference of second order has 

the form: 
 

( ) ( ) ( )

( ) ( )

2

1 2
1

2

2· 1
: ·( ·

· ) ·
3

m

m

X t X t T m
m

X t T m X t
π

∞

=

−
∆ = − − +

+ −

∑
  (27) 

 
For the arbitrary positive integer order n, the exact 

difference is written by the equation: 

 

( ) ( )

( ) ( )
1

( ) : ·( ·

1 · ( · )) 0 · ( )

n

T n

m

n

n

X t M m X t T m

X t T m M X t

∞

=

∆ = − +

− + −

∑
  (28) 

 

where the kernel Mn(m) is given by the equation 
 

( ) ( ) ( )
( )

( )

1
1

2 22

2 2
0

1 · 1 ·

2 1 ·

2 ·cos · ·sin
2 2

n
m k n k

n k
k

n
M m

n k m

n n
n k m

π

π π
π

+ + +  − − 

+
=

− Γ +
=

Γ − +

    − +    
    

∑
  (29) 

 

For m ≠ 0 and by the expression: 
 

( )0
1 2

n

n

n
M ·cos ,

n

π π =  +  
  (30) 

 

Here we take into account that 1/Γ(-m) = 0 for 

positive integer m. 

An important characteristic property of the exact 

finite difference of the first order is the Leibniz rule on 

the space of entire functions (Tarasov, 2016a), i.e.: 
 

( ) ( )( )
( ) ( )

1

1 1

·

( ) · ( ) ( )· ( )

T

T T

X t Y t

X t Y t X t Y t

∆ =

∆ + ∆
  (31) 

 

for all X(t), Y(t) ∈ E(Z). For exact finite difference of 

integer order k the Leibniz rule has the form: 
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( ) ( ) ( )
0

( ) · ( ) · ( ) · ( )
kk k j j

T T Tj

k
X t Y t X t Y t

j

−

=

 
∆ = ∆ ∆ 

 
∑   (32) 

 
which is an exact analog of the rule for the standard 

derivative d
k
/dt

k
 of the integer order k. 

For comparison the differences and derivatives, we 
give the action of the derivative and the exact difference 
on some elementary functions in the form of Table 2. 

Note that the elementary functions, which are 
considered in the table, are examples of the entire 
functions. In the paper (Tarasov, 2016a), we prove that 
that the action of exact differences 1

T
∆  on the space of 

entire function coincides with the action of first 
derivative. As a result, the solutions of the equations 
with exact differences coincide with solutions of the 
wide class of differential equations (Tarasov, 2016a). 
The equivalence of the actions of derivatives and exact 
differences leads to the equivalence of wide class of 
macroeconomic models with discrete and continuous 
time if the exact differences will be used. Let us 
demonstrate the equivalence of the continuous and 
discrete Harrod-Domar growth models. For this purpose 
we shall use the concept of an exact discrete accelerator 
(Tarasova and Tarasov, 2017d). 

The exact difference analog of differential equation 
(1) of the standard accelerator has the from 
 

( ) ( )( )1

TI t v· Y t= ∆   (33) 

 
which can be written as: 
 

( ) ( ) ( )
1

1
· · ( · ) ( · )

k

k
I t v Y t T k Y t T k

k

∞

=

−
= − − +∑   (34) 

 
Using the Newton-Leibniz theorem, equation (1) can 

be written in the form of the integral equation: 
 

( ) ( ) ( )
0

1
0

t

Y t Y · I d
v

= + τ τ∫   (35)  

 
The exact difference analog of integral equation (35), 

which corresponds to (34), has the form: 
 

( ))
1

1 ( . )
( ) (0) . .( ( . ) ) ·

k

Si k
Y t Y I tI t T k T

v
k

π
π

∞

=

− − − += + ∑   (36) 

 

where Si(π . k) is the sine integral and ( )1 0 0TY∆ = . In 

equation (36), we use the exact difference 1

T

−∆ of the first 

negative order that can be considered as an exact discrete 

analog of the ant derivative (Tarasov, 2015a; 2016a), 

such that the relations ( )1 1( ) ( )T T X t X t−∆ ∆ =  and 

( )1 1( ) ( )( )k k

T T TX t X t+ −∆ ∆ = ∆ are satisfied for all X(t)∈E(Z). 

Discrete equation, which is exact discrete analog of 

the Harrod-Domar model with continuous time, can be 

rewritten in the form: 

( )( ) ( ) ( )1 1
TY t ·Y t · A t

v
∆ = λ −   (37) 

 

where λ = s/v and s = 1−c is the marginal propensity to 

save. The solution of this equation with A(t) = A = const 

has the form: 
 

( ) ( )( ) ( )0Y t A / s Y A / s ·exp ·t= + − λ   (38) 

 
The fact that the function (38) is a solution of the 

exact-difference equation (37) can be verified by direct 

substitution of this function into equation (37) and using 

the following equalities ( ) ( )1

T exp ·t ·exp ·t∆ λ = λ λ  and 

( )1 0T A / s∆ = .  

Solution (38) coincides with solution (12) of equation 

(9) of the Harrod-Domar model with continuous time. 

As a result, we can state the discrete Harrod-Domar 

growth model, which is used exact differences, is 

equivalent to the continuous Harrod-Domar growth 

model, which is based on the differential equation.  

As a result, using the Harrod-Domar growth model as 

an example, we proved that equations of the continuous-

time models and the corresponding discrete-time models, 

which are based on the suggested exact differences, have 

the same solutions. These discrete and continuous 

macroeconomic models describe the same behavior of 

the economy. 

Numerical Comparison 

Let us give an illustration of the difference between 
the proposed approach and the standard approach by 
simple computer simulation of output (income) growth. 
We will compare the Harrod-Domar growth model with 
continuous time (Allen, 1960, p. 64-66), the standard 
Harrod-Domar growth model with discrete time (Allen, 
1960, p. 74-76) and the suggested exact discretization of 
the Harrod-Domar model with continuous time. 

The comparison of the growth in the continuous 
model, the exact discrete and the standard discrete 
models will be illustrated by simple numerical examples 
of the output growth, which is described by equations 
(12), (21), (38) with A = 0.  

The comparison of the output growth of the 

Continuous Model (CM), the Standard Discrete Model 

(SDM) and the Exact Discrete Model (EDM) is given by 

Table 3. The first column specifies the growth rate of 

CM; the second column gives the growth rate of EDM. 

Note that the growth rate of CM and EDM coincides. 

The third column gives the growth rate of SDM. The 

fourth column specifies the difference between the 

growth rates of CM and EDM on the one hand and the 

growth rates of SDM on the other hand in percentages. 

The fifth column describes how many times the growth 

in output at t = 10·t is greater for the ED model in 

comparison with the SD model. 
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Table 2. Actions of derivatives and exact differences 

f(t) df(t)/dt 1

T
f ( t )∆  

exp(λ·t) λ·exp(λ·t) λ·exp(λ·t) 

sin(λ·t) λ·cos(λ·t) λ·cos(λ·t) 

cos(λ·t) - λ·sin(λ·t) - λ·sin(λ·t) 

t2 2·t 2·t 

t3 3·t2 3·t2 

 
Table 3. The comparison of the growth of the Continuous Model (CM), the Standard Discrete Model (SDM) and the Exact 

Discrete Model (EDM) 

CM EDM SDM D (%) G (times) 

0.1 0.1 0.095 4.69 1.048 

0.3 0.3 0.262 12.54 1.457 

0.5 0.5 0.405 18.90 2.574 

0.7 0.7 0.531 24.19 5.440 

0.9 0.9 0.642 28.68 13.22 

1.1 1.1 0.742 32.55 35.90 

1.3 1.3 0.833 35.93 106.8 

1.5 1.5 0.916 38.91 342.7 

1.7 1.7 0.993 41.57 1173 

1.9 1.9 1.065 43.96 4242 

 
For example, if the growth rate of EDM and CM is 

equal to  λ = 0.3, then the growth rate of SDM is ln 
(1+λ) ≈ 0.262, i.e. the growth rate of the standard 
discrete model is less than the growth rate of the 
continuous model by more than 12 percent. The growth 
rate of CM and EDM coincides. As a result, for example 
the output at t = 10·t differ by almost half times in 
standard discrete and continuous models with A = 0. 

If the growth rate of EDM and CM is λ = 0.9, then 
the growth rate of SDM is equal to ln(1+λ) ≈ 0.642, i.e. 
the growth rate of the discrete model is less than the 
growth rate of the continuous model by more than 28 
percent. In this case, for t = 10·t the output growth differ 
by more than 13 times for Standard Discrete (SDM) and 
Exact Discrete Models (EDM) with A = 0. The output 
growth of CM and EDM coincides. 

As a result, we have that the differences of the 
standard discrete model from the exact discrete and 
continuous models can be significantly in the magnitude 
of output growth. Moreover the growth of the output 
may differ not only in several times, but also by an order 
of magnitude (see the fifth column (G) of Table 3). 

Conclusion 

A new approach to the exact discretization of the 

continuous-time macroeconomic models is suggested. 

This approach is based on the exact finite differences 

that are suggested in (Tarasov, 2014; 2015a; 2015b; 

2016a; 2016b). These finite differences satisfy the 

principle of universality and the algebraic 

correspondence principle (Tarasov, 2015a; 2016a). The 

finite differences have a property of universality if they 

do not depend on the form and parameters of the 

considered differential equations. An algebraic 

correspondence means that the exact finite differences 

should satisfy the same algebraic relations as the 

derivatives. We propose the self-consistent discrete-time 

description of the accelerator that is based on the exact 

finite differences. We proved that equations of the 

continuous-time macroeconomic models and the 

corresponding discrete-time models, which are based on 

the suggested exact differences, can have the same 

solutions. These discrete and continuous economic 

models can describe the same behavior of the economy. 

It should be noted that the proposed approach can be 

used for macroeconomic models with power-law 

memory (Tarasov and Tarasova, 2016; Tarasova and 

Tarasov, 2017c; 2017d; 2018a). The continuous growth 

models with power-law memory have been suggested in 

(Tarasova and Tarasov, 2016; 2017a; 2017b; 2018a; 

2018b; Tarasov and Tarasova, 2017), where the Caputo 

fractional derivatives are used. The exact fractional 

differences, which are suggested in (Tarasov, 2014; 

Tarasov, 2015b; Tarasov, 2016a; 2016b), allow us to 

propose the exact discrete-time analogs of the 

continuous-time equations of the accelerator and 

multiplier with power-law memory that are described by 

the Liouville fractional integrals and derivatives. The 

discrete macroeconomic models, which are used exact 

fractional differences, can be equivalent to the 

continuous models of processes with memory, which is 

described by the Liouville fractional derivatives.  

We should note that additional investigations, which 
are based on real data, are needed to illustrate the 
differences between the existing methods and the 
suggested approach. We have proved the advantage of 
the proposed approach, which is based on exact finite 

differences, by using the well-known Harrod-Domar 
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growth models. A comparison of the analytical solutions 
of the model equations and a numerical comparison of 
the output growth showed a significant advantage of the 
proposed approach to discretization of macroeconomic 

models with continuous time. 
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