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Abstract: Steady state solute and heat transfer for laminar flow in a f la t  duct  has  been widely  
studied[1-4]. The same problem in a circular tube is called the Graetz Problem[5,6]. The transfer rate of 
solute and heat from fluids is of importance in a number of processes, such as diffusion of drugs in the 
blood stream and the uptake of environmental contaminants by animals in aquatic media [7]. In this 
study the rate of solute or heat transfer from fluids was determined by solving the associated 
differential equation. Solution by the series approach in the complex plane was used with a series that 
had a gaussian factor. The eigenfunctions and eigenvalues involved were examined for two different 
sets of boundary conditions. 
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INTRODUCTION 

 
 There are four types of boundary value problems 
that are of interest here. All of these boundary value 
problems have zero flux in the plane that is equidistant 
from and parallel to two boundary planes. The 
eigenfunctions and eigenvalues involved are examined 
here for two different sets of boundary conditions on 
this plane. One set of boundary conditions has been 
applied to the problem before [1-4]. The other has 
apparently not been. The eigenfunctions and 
eigenvalues are significantly different in each case. The 
condition at the other boundary is one of four types: (a) 
zero concentration, (b) zero flux, (c) constant flux, or 
(d) flux linearly proportional to the concentration at the 
boundary. 
 Treatments of these boundary value problems are 
given in the literature [1-4]. The treatments in much of the 
literature are based on only one of two possible choices 
for conditions that fulfill the zero flux condition on the 
central plane of the system. The condition used in the 
literature can fulfill the zero flux boundary condition 
only on the central plane. The second choice can fulfill 
the zero flux boundary condition anywhere in the 
system. Both conditions are examined here. For some 
choices of the two linearly independent solutions of the 
second order differential equation involved, only the 
second choice for the boundary condition is 
appropriate. The choice for the two linearly 
independent solutions determines the eigenvalues and 
eigenfunctions to be found. 
 The literature presents a discrete and apparently 
unbounded eigenvalue spectrum[1,2]. When the first 

choice for the boundary condition is applied to the two 
linearly independent solutions of the differential 
equation, the eigenvalue spectrum obtained is 
continuous and unbounded, because the first condition 
does not place restrictions on the coefficients of the 
linear combination of the two linearly independent 
solutions. 
 As the choice for the two linearly independent 
solutions of the differential equation changes, the 
eigenvalue spectrum changes. The most convenient 
solutions to choose are determined by the associated 
initial conditions. Convenience is often defined in terms 
of the rapidity of convergence of the representation of 
the solution to the associated initial value problem as a 
linear combination of eigenfunctions. 
 The system under examination here is a fluid 
mechanics system in which a fluid flowing with laminar 
motion between two parallel plates exchanges heat or 
mass with the plates. The rate of exchange can be 
determined by solving a partial differential equation. 
The system has been described[1-4]. The problem is to 
determine the concentration distribution and the transfer 
rate of mass or heat to the parallel plates. The system 
considered is similar to what is known as the Graetz 
Problem[8]. 
 This study proposes an alternative method of 
solving the partial differential equation involved. This 
method uses gaussian or trigonometric functions as 
factors in the series solution of the problem.  
Additionally, eigenvalues and eigenfunctions were 
determined. The study is important because it 
introduces a new pair of linearly independent solutions 
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to the differential equation and it uses a different zero 
flux condition in the central plane. 
 

MATERIALS AND METHODS 
 
 The method used here factors out gaussian 
functions from the series solution of the problem. The 
removal of the gaussian factors from the series 
solutions leads to sine and cosine coefficients. The 
basic equation to be solved [1-4] is: 
 

2
1 1

y 1 2

C (x,y) C(x,y)
u D

y x
∂ ∂

=
∂ ∂

 (1) 

 
Where: 
 

2 2
y

1 dP
u (h x )

2 dy
= − −

µ
 (2) 

 
Here : 
µ = The coefficient of viscosity of the fluid 

between the plates, P is the fluid pressure 
H = Half the distance between the parallel plates, 

D1 is the diffusion coefficient of the solute 
in the fluid 

x and y = Denote Cartesian coordinates 
 
 The eigenfunction expansion solution of the 
problem is : 
 

m m m
m 1

C(x,y) A G(y, )F(x, )
∞

=

= λ λ∑  (3) 

 
where, the values of the expansion coefficients Am can 
be determined from a boundary condition on y. For 
example: 
 

m m m
m 1

C(x,0) A G(0, )F(x, )
∞

=

= λ λ∑  (4) 

 
 The function C(x, 0) is assumed to be known. The 
equations for G(y, λm) and F(x, λm) follow: 
 

21
1

G ( y , )
G (y, ) 0

y
∂ λ

+ λ λ =
∂

 (5) 

 
and 
 

2
2 2 21

1 12

F(x, ) 1 dP
D (h x )F(x, ) 0

x 2 dy
 ∂ λ

+ λ − − λ = ∂ µ 
 (6) 

 
 The solution to Eq. 5 is : 

2
1 0G ( y , ) a exp( y)λ = −λ  (7) 

 
where, a0 is a constant of integration or boundary 
condition. 
 Remember that in some cases the conditions 
relevant to the associated physical problem is : 
 
dP

0
dy

≤  (8) 

 
 The solution to Eq. 6 under the condition given by 
Eq. 8 will be given next. Let: 
 

1/2

2
1

1

1 dPF'(x, ) exp x f (x)
2 2 D dy λ

  λ − λ = −  
µ   

 (9) 

 
 The differential equation obtained from Eq. 6 and 9 
for fλ(x) is : 
 

2
1/2

2

2 2 1/2

f ( x ) f ( x )2 x
x x

h f ( x ) 0

λ λ

λ

∂ ∂− λβ
∂ ∂
 + λ β −λβ = 

 (10) 

 
Where: 
 

1

1 dP
2 D dy

−
β =

µ
 (11) 

 
Let: 
 

j
j

j 0

f (x) E x
∞

λ
=

= ∑  (12) 

 
Then: 
 

1 /2 2 2

j 2 j
(1 2j) hE E

(j 1)(j 2)+
+ λβ − λ β=

+ +
 (13) 

 
 To examine several ways to express F1(x) in terms 
of a linear combination of two linearly independent 
functions, the solution is found for Eq. 6 for the case: 
 

1 /2

2
1

1

1 dP
F' '(x, ) exp x g (x)

2 2 D dy λ

  λ − λ =  µ   
 (14) 

 
 The differential equation for gλ(x) is : 
 

2
1/2

2

2 2 1 / 2

g (x) g (x)
2 x

x x
h g (x) 0

λ λ

λ

∂ ∂
+ λβ

∂ ∂
 + λ β +λβ = 

 (15) 
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Let: 
 

j
j

j 0

g (x) H x
∞

λ
=

= ∑  (16) 

 
Then: 
 

1/2 2 2

j 2 j
(1 2j) hH H

(j 1)(j 2)+
− + λβ − λ β=

+ +
 (17) 

 
 From Eq. 12, 13, 16 and 17, it follows that: 
 
g (x) f (x )−λ λ=  (18) 
 
when, :Ej = Hj. 
 So, from Eq. 8, 14 and 18: 
 

1 1F''(x; ) F ' (x, )−λ = λ  (19) 
 
 This indicates that F’1(x,λ) and F’’2(x,-λ) are not 
linearly independent. A complete solution of the 
differential equation has not been found until two 
linearly independent solutions have been chosen. 
 Because λ occurs in Eq. 6 as λ2, it is necessary 
that: 
 

1 1F''(x, ) F' '(x, )λ = −λ  (20) 
 
 This and Eq. 19 imply that: 
 

1 1F''(x, ) F ' (x, )λ = λ  (21) 
 
Let: 
 

1 / 2

2
1 1

1

1 dP
F(x, ) a exp x f (x)

2 2 D dy λ

  −λ λ =    µ  
 (22) 

 
where, a1 is a constant. The boundary conditions are: 
 

1F(h, ) 0λ =  (23) 
 
and 
 

1
x 0

F(x, )
0

x =

∂ λ
=

∂
 (24) 

 
 The first boundary condition is met when: 
 

0f (h,E ) 0λ =  (25) 
 
 The second boundary condition is met when: 

1/2 1 /2 2
1 x 0

1 /2 2
1 x 0

a x exp x f (x)
2

1 d f (x)
axexp x 0

2 x dx

λ =

λ
=

−λ − λβ β  
−λ + β = 

 

 (26) 

 
 At x = 0, this boundary is automatically satisfied 
when fλ(x) is an even function of x, so the stronger 
boundary condition implied by Eq. 26 has been ignored. 
To this point only the condition that fλ(x) is an even 
function of x has been used. 
 Equation 6 may be solved under the following 
condition": 
 
dP

0
dy

≥  (27) 

 
 This  condition  is  equivalency  to  that given by 
Eq. 18 when the coordinate system is rotated by π about 
the x-axis. The solution to Eq. 6 under the condition 
given by Eq. 27 will be found next.  
Let: 
 

1/2

2
1

1

1 dP
F' (x , ) exp x f (x )

2 2 D dy λ

  λ − λ = −  µ   
 (28) 

 
 The differential equation for fλ(x) of Eq . 28 is : 
 

2
1/2 2 2 1/2

2

f ( x ) f (x)
2 x h f (x) 0

x x
λ λ

λ

∂ ∂  − λβ + λ β − λ β = ∂ ∂
 (29) 

 
Let: 
 

j
j

j 0

f (x) E x
∞

λ
=

= ∑  (30) 

 
 The relationship for the expansion coefficients is : 
 

1 /2 2 2

j 2 j
(1 2j) hE E

(j 1)(j 2)+
+ λβ − λ β=

+ +
 (31) 

 
 Since Eq. 2) holds, it follows that: 
 

1 / 21/2

1 1

1 dP 1 dP
i

2 D dy 2 D dy

  −
=     µ µ   

 (32) 

 
Where: 
 

1/2i ( 1)= −  (33) 
 
So: 
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1/2

2

1

1 1 / 2

2

1

1 dPcos x
2 2 D dy

F' (x , ) f (x)
1 dPisin x

2 2 D dy

λ

   λ      µ   λ =
   λ  −     µ    

 (34) 

 
Let: 
 

[ ]1 1 1

1
F(x, ) F ' ( x , ) F '*(x , )

2
λ = λ + λ  (35) 

 
 Here F’1

* is the complex conjugate of F’1. It 
follows that: 
 

1 / 2

2

1

1 1 / 2

2

1

1 / 2

2

1
*

1 / 2

2

1

1 dP
cos x

2 2 D dy1F(x, ) f (x )
2 1 dP

isin x
2 2 D dy

1 dP
cos x

2 2 D dy1
f (x)

2 1 dP
isin x

2 2 D dy

λ

λ

   λ      µ   λ =
   λ  −     µ    

   λ      µ   +
   λ  +     µ    

 (36) 

 
 Note that Ej in Eq. 30 is given by: 
 

( )1/2 2 2

j 2 j

i 1 2 j h
E E

(j 1)(j 2)+

λ β + + λ β
=

+ +
 (37) 

 
where, β  denotes the absolute value of the real 

number β. It follows from Eq. 35 that: 
 

1/2 2
1

1/2 2

F(x, ) cos x Re(f (x))
2

sin x Im(f (x))
2

λ

λ

λ λ = β  
λ + β 

 

 (38) 

 
 The boundary conditions are given by Eq. 23 and 
24. The first boundary condition is met when: 
 

1/2

2

1

1 dP Re(f (h))
tan h

2 2 D dy Im(f (h))
λ

λ

  λ  = −   µ  
 (39) 

 
 If the right-hand side of Eq. 39 is a constant, then 
the eigenvalues have a periodicity of (4π). In the case 

being treated here the right-hand side is a function of λ, 
so it is unlikely that the eigenvalues are periodic. 
 The second boundary condition is met when: 
 

1/2

1 /2 2
x 0

1/2

1/2 2
x 0

Re(f (x) )
xsin x 1 d f ( x )

Im2
x dx

Im(f (x) )
xcos x 01 d f (x)Re2

x dx

λ

=λ

λ

=λ

 −λβ
λ   β     +      

 λβ
λ   + β =    +      

 (40) 

 
 Equation 40 is equivalent to: 
 

1 / 2
0 0 2 2R sin( ) 2R cos( ) 0λβ θ + θ =  (41) 

 
or 
 

2

0 arctan
2

 σ
θ = − 

 
 (42) 

 
Where: 
 

1 / 2

2 2 1/2 2

1

1 dP
h h

2 2 D dy

 λ
σ ≡ =λβ  µ 

 (43) 

 
 The quantities R0 and R2 are the real parts of E0 
and E2, respectively. The quantities E0 and E2 are 
coefficients in the series expansion given by Eq. 30. 
 The function fλ(x) may be found using the 
following prescription: 
 

j
j j

j 0 j 0

j
j

f (x) E x [Re(E)

iIm(E )]x Re(f ( x ) ) iImf(x))

∞ ∞

λ
= =

λ λ

= =

+ = +

∑ ∑
 (44) 

 
Where: 
 

j
j

j 0

Re(f (x)) Re(E )x
∞

λ
=

= ∑  (45) 

 
and 
 

j
j

j 0

Im(f (x)) Im(E)x
∞

λ
=

= ∑  (46) 

 
 The complex coefficients Ej may be expressed as : 
 

( )1/2 2 2

j 2 j

j 2 j 2 j j

i 1 2 j h
E E

(j 1)(j 2)
r exp(i )R exp(i )

+

+ +

λ β + + λ β
=

+ +
= φ θ

 (47) 
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Where: 
 

j 2 j 2 jR r R+ +=  (48) 
 

j 2 j 2 j+ +θ = φ + θ  (49) 
 

j 2 j j 2Re(E ) R cos( )+ += θ  (50) 
 
and 
 

j 2 j j 2Im(E ) R sin( )+ += θ  (51) 
 
Here : 
 
R0 = E0  (52) 
 
and 
 
R1 = E1  (53) 
 
 The value of θ0 must be specified. The values of 
rj+2 and φj+2 are given by: 
 

( )
1/2222 4 4

j 2

1
r 1 2 j h

(j 1)(j 2)+
 = λ β + + λ β + +

 (54) 

 
and 
 

2

j 2
j 2

( h)
arcos

(j 1)(j 2)r+
+

 λ β
−φ =   + + 

 (55) 

 
 The standard procedure for finding eigenvalues is 
to use one of the boundary conditions to place 
limitations on the values of the undetermined 
parameters. The undetermined parameters here are R0 
and θ0. The next step is to place limitations on the 
eigenvalues using the remaining boundary condition. 
This procedure was used to find the condition on λ 
given by Eq. 42. The value of R0 can be found by 
imposing a normalization condition. The allowed 
values of θ0 are determined from the second boundary 
condition. The second boundary condition imposes the 
condition on θ0 given by Eq. 42. Values for λ are then 
found for a given value of θ0. The dependence of λ on 
R0 and θ0 are given by Eq. 37, 39 and 42. 
 

RESULTS 
 
 The results in the Table 1 were obtained using the 
following condition: 
 
E1 = 0 (56) 

Table 1: Eigenvalues for three different choices for the two linearly 
independent solutions to Eq. 6. Column I: Gaussian factor, 
Eq. 9. Column II: Trigonometric functions factors, Eq. 38, 
with θ0 = 0. Column III: Trigonometric function factors, Eq. 
38, with tan(θ0) = -σ 2/2 

 Combination of linearly independent functions 
Eigenvalue -------------------------------------------------------------- 
No.  I  II  III 
1 1.682 1.571 1.059 
2 5.670 4.712 6.333 
3 9.668 7.854 12.579 
4 13.668 10.996 18.855 
5 17.667 14.137 25.136 
6 21.667 17.279 31.418 
7 25.667 20.420 37.700 
8 29.667 23.562 43.982 
9 33.667 26.704 50.266 
10 37.667 29.845 56.549 

 
 This choice for E1 means that fλ(x) is an even 
function of x. The eigenvalues and the eigenfunctions 
were found numerically. The results for eigenvalues are 
given in the table. The eigenvalues for three cases are 
given. The results in Column I of the table are for the 
case that has been discussed in the literature [1-4]. The 
results in Column I are for a “weak” zero flux condition 
in the central plane with the solution of Eq. 6 given by 
Eq. 9, 12, 13, 23 and 24. The values in Column I are the 
same as those in the literature [1,2]. The results in 
Column II are also for a “weak” zero flux condition in 
the central plane with the solution of Eq. 6 given by Eq. 
38, 39 and 45-55 with θ0 = 0. The results in Column III 
are also for a “strong” zero flux condition in the central 
plane with the solution of Eq. 6 given by Eq. 38, 39, 42 
and 45-55. 
 

CONCLUSION 
 
 The solution to one of four boundary value 
problems of interest is presented here. The method used 
to solve the boundary value problem treated here is 
applicable to the other three boundary value problems. 
 The approach to solving the problem differs in 
several ways from the way that the problem has been 
treated in the literature. First, a new form for the 
solution is introduced. Second, a different zero flux on 
the central plane boundary condition is used. Before 
this study only one set of eigenfunctions had been 
presented. The most convenient set of eigenvalues and 
eigenfunction to use depends on the specific initial 
value problem being treated. 
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