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Abstract: The number of CD4 white blood cells has been established as an important clinical marker 
of disease progression to acquired immunodeficiency syndrome (AIDS) for persons infected with 
human immunodeficiency virus (HIV). The number of CD4 cells per unit volume is expected to 
decrease with time since infection by the virus. However on introduction of treatment interventions, 
the process is expected to reverse with the counts increasing to return to the normal level. In this study 
we deduce that the count per unit volume of blood of an HIV/AIDS patient has a linear relationship 
with the time since infection during the short period of time immediately treatment usage begins. We 
show one application of the model in treatment selection strategy. 
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INTRODUCTION 

 
 An understanding of typical course of the infection 
within an individual and the quantitative information 
about latent period, infectious period or in some cases 
incubation period is essential in designing effective 
treatment strategies. In a given population, it is 
considered desirable to classify individuals (further 
stratified by spatial locality, age or gender) for 
modeling purposes into the categories that are: 
 
* Immunized (protected from the infection by 

maternally derived factors or through vaccination) 
* Susceptible (not yet infected but may get infected 

if exposed to the disease) 
* Infected (and in the various stages of infection) 
* Permanently removed (AIDS or dead) 
 
 In order to describe the various stages of HIV 
infection one can make use of the corresponding 
differential equations showing the rates of changes in 
the number of individuals at the respective stages with 
the help of relevant parameters[1,2]. Simwa and 
Pokhariyal[3] constructed a dynamical model for stage-
specific HIV incidences, using two systems of ordinary 
differential equations that are coupled through a delay 
in one of the systems. Further by incorporating possible 
vaccine interventions in the dynamical stage specific 
model simulations of the HIV pandemic show the 
vaccine effect on the stage specific projections[4]. 
 Other forms of interventions include use of anti-
retroviral (ARV) drugs by the HIV infected patients. 
These drugs include AZT, among others. In this study 
the effect of such drugs to a patient is considered. The 
CD4 cells forms a group of white cells that provide 
immune capability to ones body. The HIV virus is 

known to attack and destroy these cells once an 
individual is infected. The depletion of the cells leads to 
loss of body immunity and thus AIDS. In fact the 
absolute number of CD4 cells has been established as a 
significant predicator of disease progression in the 
patient[5]. However application of the anti-retroviral 
drugs may lead to reduced rate of destruction of these 
cells by the virus such that the cell count per unit 
volume of blood of the patient starts increasing. We 
model the CD4 cells counts per unit volume of blood in 
an HIV patient as from time of treatment application, as 
a function of time since infection. Theories from 
survival and actuarial studies are adapted to analyse the 
distribution of the future lifetime of an arbitrary newly 
formed CD4 cell in an HIV infected patient. An 
expression for the counts per unit volume (milliliter) as 
a linear function of the hazard rate of the distribution of 
the CD4 cell lifetime on commencement of treatment is 
derived in the next section. From these results we 
deduce strategies that can be used in the analysis of 
treatment interventions, with the analysis based on 
Simwa[6]. 
 
The model: Let N (t) be the number of CD4 cells per 
unit volume of blood in an individual’s body at time t. 
N(t) is a random variable and if  
 

( )N E N t= � �� � (2.1a)  

 
is the expected value of N(t), then the estimate for N for 
a healthy person has been approximated to be 1200 per 
mm3[5]. For an HIV patient it has been noted that this 
number reduces to, say 

( )NP 1200τ <  (2.1b) 
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 Where,τ  is the duration in, say years, since the 
HIV infection and ( ) 10 ≤< τP . Thus,  

<< τ0 (incubation period). Let ( )tN ,τ  denote the 
number of CD4 cells per unit volume at time t in the 
body of an HIV patient infectedτ years ago. ( )tN ,τ  is 
also a random variable and we let its expected value be 
denoted by τN , that is, 
 

( )N E N ,tτ τ= � �� � (2.2) 
 
Thus, 
 

( )N NPτ τ=  (2.3) 

 
 We next derive the expression of ( )τP  in terms 
of some mean parameters and the exact expression of 

τN ,  (equations 2.26, 2.27 and 2.28). 

 A model for ( )τP : We show that a possible model 

for ( )τP  is given by 
 

( ) ( )
P

µ τ
τ

µ
=  (2.4) 

 
 Where, µ  is the expected lifetime of a CD4 cell in a 
healthy person and ( )τµ  is the expected lifetime of a 
CD4 cell in an HIV patient. 
 Let ( )tTτ  denote the future lifetime of a newly 

formed CD4 cell at time t in an individual infected τ  
years ago and T(t) denote the future lifetime of a newly 
formed CD4 cell in a healthy individual at time t. Both 
the quantities ( )tTτ  and T(t) for 0,0 ≥≥ τt  each 
form a stochastic process with means to be denoted by 

( )τµ ,t  and µ(t) respectively. Let ( )τ,tP  be the 
proportion at time t of the N  CD4 cells per unit volume 
that are observed in an HIV patient infected τ  years 
ago. It follows that 
 

( ) ( ) ( )
t 0

P t, P t, dtτ ω τ τ
∞

=
= �  (2.5) 

 
 Where, the function ( )τω ,t gives the distribution at 
time t of the CD4 cells in a patient infected τ years ago 
such that 
 

( )
0

t, dt 1ω τ
∞

=�  (2.6) 

 

Proposition 1: ( ) ( )
( )

( )
( )

E T t ,t
P t,

tE T t
τ µ τ

τ
µ

� �� �= =
� �� �

 (2.7) 

Proof: A CD4 cell in an HIV patient is exposed to extra 
risk of dying due to the attack by the HIV viruses and 
hence the average lifetime of the cells is less than the 
case before the infection. Hence we may adopt the 
theories on Exposed-to-Risk to estimate ( )τ,tP . It is 

noted that ( )τ,tP  can also be taken as the ratio of the 
expected total exposure time (expected total lifetime) of 
CD4 cells to the risk of dying at time t with and without 
infection, of a given constant number of these cells, say 
k (t) cells. 
 For a healthy HIV non infected individual at time t, 
 

Total exposure time = ( )
( )k t

j 1

T t, j
=
�  (2.8) 

where ( )jtT ,   is the lifetime of the thj  CD4 cell         
(j = 1, 2, …, k(t)). On the other hand, for an HIV 
infected patient (infectedτ  years ago), 
 

total exposure time = ( )
( )k t

j 1

T t, jτ
=
�  (2.9) 

where ( )jtT ,τ  is the lifetime of the thj  CD4 cell (j = 
1, 2,  …, k(t)). Thus,  
 

( ) ( )
( )( )

( )
( )( )

k t

j 1k t

k t

j 1k t

lim E T t, j
P t,

lim E T t, j

τ
τ

=→∞

=→∞

� �
� �=
� �
� �

�

�
 (2.10) 

 

( )
( ) ( )

( )
( ) ( )

( )
( )

k t

k t

lim k t E T t ,t

tlim k t E T t

τ µ τ
µ

→∞

→∞

× � �� �
= =

× � �� �
 (2.11) 

 
 Note that we have assumed that 

( ) ( )T t, j ; j 1,2,...,k tτ =  form a random sample from the 

distribution of the random variable ( )tTτ  while T(t, j); 
j = 1,2, …, k(t) form a random sample from the 
distribution of the random variable T(t) and that time t 
may be the calendar time or age of an individual. Thus 
the prove to the proposition. 
 Now, assume ( ) µµ =t ; that the mean lifetime of a 
CD4 cell in a healthy individual is on average 
independent of time t, the age of the person (or calendar 
year) as expected. Also let ( ) ( )τµτµ =t, ; that in an 
HIV infected person the mean lifetime of a CD4 cell 
depends only on the time since infection.  Then 

( ) ( ) ( ) ( ) ( )
( )0 0

,t
P t, P t, dt t, dt

t

µ τ
τ ω τ τ ω τ

µ
∞ ∞

= =� �  

( ) ( ) ( )
0

t
t , dt

µ µ τ
ω τ

µ µ
∞

= =�  (2.12) 

This completes the prove to the main result on ( )τP . 
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 The result below gives ( )τµ  as a function of the 
hazard function for the distribution of the lifetime of a 
CD4 cell. 
 

Proposition 2: ( ) ( )
1

2
ωλ τ

µ τ ω
� �

≈ −	 

� �

 (2.13) 

 
where ω  is the maximum (limiting) age or lifespan and 

( )τλ  is the hazard function of the distribution of the 
future lifetime of an arbitrary newly formed CD4 cell in 
an HIV patient who was infectedτ  years ago. 
 
 
Proof: Let  ( ) ( )s ,t prob. T tττ = >          (2.14) 
 

And  ( ) ( )
( )dt 0

prob. t T t dt
,t lim

prob. T t
τ

τ

λ τ
→

< < +
=

>
        (2.15) 

 
Then ( )ts ,τ   and ( )t,τλ   are the survival and the 
hazard function for the distribution of the lifetime of a 
CD4 cell in an infected patient who was infectedτ  
years ago respectively. 
 From theories on survival analysis[7], note that 
 

( ) ( )t

0
s , t exp , t dtτ λ τ= − �  (2.16) 

Assume 
 

( ) ( ), tλ τ λ τ=  (2.17) 

 
that the hazard function is independent of the ‘age’ of 
the CD4 cell  (as sometimes assumed in 
demography)[8,9], but depends on time since HIV 
infection of the individual. Then 
 

( ) ( ) ( )t

0
s , t exp dt exp tτ λ τ λ τ= − = −�  (2.18) 

 
 The Taylor series expansion of ( )ts ,τ  leads to the 
approximation; 
 

( ) ( )s , t 1 tτ λ τ≈ −  (2.19) 
 
Note that  
 

( ) ( )
0

t s ,t dt
ω

µ τ= �  (2.20) 

 
where,ω  is the maximum (limiting) ‘age’ of a CD4 
cell[7]. Thus, 
 

( ) ( ) ( ) ( )
0 0

s ,t dt 1 t dt 1
2

ω ω ωλ τ
µ τ τ λ τ ω

� �
= ≈ − = −	 


� �
� �  (2.21) 

Hence,  the proof of the proposition. 
 Therefore, the average number of CD4 cells per 
mm3 in an HIV patient infected τ  years ago 
 

( ) ( )N
N NP 1

2
ω

τ
ωλ τ

τ
µ
� �

= ≈ −	 

� �

 (2.22) 

 
A model for ( )τλ : The hazard rate ( )τλ  is constant for 
a givenτ , it is assumed not to depend on the ‘age’ of 
the CD4 cell. However due to increased depletion of the 
cells by the HIV viruses we expect ( )τλ  to increase as 

∞→τ . But from above we note that 
 

( ) ( )2dN d
d 2 d

τ λ τω
τ τ

= −  (2.23) 

 
such that as ( )τλ  increases ( )τN  decreases for 0≥τ . 

Let X  denote the incubation period of AIDS with ( )xh  
as the hazard function of the distribution of the 
incubation period. Kiuchi et al.[5] note that in the 
absence of treatment as x increases ( )xh  increases 

while ( )xN  decreases. For a treatment that has been 
developed to improve the immune system of an HIV 
patient we expect that once the patient takes up the 

treatment, say *τ  time units since infection, ( )τh  

decreases while ( )τN  increases initially for *ττ ≥ . We 
assume the treatment act by at least reducing the rate of 
destruction of the CD4 cells by the invading HIV 
viruses. Thus,  in either case 
 

( ) ( )dN dh
k

d d
τ τ

τ τ
= −  (2.24) 

 
where 0>k  and ( )τh  is an increasing function of τ  

for *ττ <  but is a decreasing function of τ  for 
*ττ ≥ . Combining these results (equation 2.23 and 

2.24) we have 
 

( ) ( )ch dλ τ τ= +  (2.25) 
 
where, 0≥c and d  is some constant. 
Hence, 
 

( ) ( )( )ch dN
N NP 1

2
ω

τ

ω τ
τ

µ
� �+

= ≈ −	 

	 

� �

 (2.26) 
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 The Weibull distribution has been assumed to 
approximate the distribution of X [10,11], such that 
 

( ) 1−= ααγττh  for  *ττ <  (2.27) 
 

where,α  and γ are some parameters. When treatment 

is availed and taken by the HIV patient this model 

for ( )τh  may not hold. However the function must be 

nonnegative and decreasing for *ττ ≥  for at least a 

short interval of time thereafter. A linear approximation 

to ( )τh  for *ττ ≥  may be assumed. Thus, 
 

( )( ) ( )* *ch dN
N 1 a b , ,

2
ω

τ

ω τ
τ τ τ τ δτ

µ
� �+

≈ − = + ∈ +	 

	 

� �

(2.28) 

 

where, a  and b  are some constants and δτ  is a small 

change in τ , say 1<δτ  year. b  is the slope 

parameter. Note that in the short time interval after *τ  

time units since the HIV infection, ( )τh  is a decreasing 

function so that its linear approximation has a negative 

slope and thus 0>b  for any treatment form. 

 

Model application in treatment selection: In this 

section we illustrate the application of the model in 

HIV/AIDS treatment intervention in measuring the 

relative effectiveness of a treatment and thus provide a 

possible procedure for selecting an optimal treatment 

form. Fig. 1 will be used to describe the procedure. 
 HIV infection leads to a gradual reduction in the 
number of CD4 cells while treatment by the ARV drugs 
is expected to lead to an initial abrupt increase in this 
number. If 1N  and 2N  are the average numbers before 
and after the infection at time 0 and ( )*

2 τ=t  years 
respectively since the infection, treatments type X and 
type Y may lead to the curves sketched in the figure. 
Treatment type X requires duration of length 

22 tyttxt −≥− , the corresponding length with 
respect to treatment type Y, to get the CD4 cells counts 
back to the normal level, 1N  (“healing phase” period). 
Thus, the magnitude (and sign) of the slope of either 
curve during time interval ( )xtt ,2  or ( )ytt ,2  provides 
a relative measure of effectiveness of the treatments. 
 Therefore, the following steps could lead to 
classifying various types of treatment forms that may be 
available for the “healing phase” of an HIV infected 
patient under treatment. 

  
 
Fig. 1: CD4 counts per unit volume since HIV 

infection 
 
Step 1: For each patient, once treatment begins, record 

time of treatment and the corresponding CD4 
cells count per millilitre for several treatment 
sessions and treatment forms. A patient is 
assumed to undergo one type of treatment. 

Step 2: Assume linearity for a specified short time 
interval and determine the slopes of the curve. 
The approximate duration of the interval can 
be estimated by observing the plot of the 
relevant data ( xt  and yt  in Fig. 1). 

Step 3: Test whether there is marked and significant 
relative treatment effects basing on the slope 
parameter. Then select the predominant 
treatment form, if any. For instance in Fig. 1, 
we note that the slope parameter estimates are 
such that ybxb ˆˆ >  and hence treatment type X 

is better than treatment type Y. However 
standard statistical tests may be used for more 
rigorous analysis. 
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