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Abstract: Problem statement: The interactions of a malignant tumor with the patient’s immune 
system are dynamic, multiple and bi-directional. Approach: This article reviews the clinical evidence 
of the interaction of cancer with immunity with emphasis on recent developments highlighting some of 
the mechanisms of tumor-mediated regulation of immunity. Results: Most of the time, the immune 
response to a malignancy acts to prevent/contain tumor growth. Immune responses to tumor-associated 
antigens are frequently detected in the setting of tumor development. Furthermore, individuals with 
various forms of immune deficiency are at increased risk for the development of malignancies 
compared with the general population. However, immune responses to tumors rarely lead to 
eradication of clinically detectable established cancer, and many cancers are thought to become more 
aggressive in the setting of tumor-targeted inflammation. Individuals with cancer typically exhibit 
aberrancies in immune function, both within the tumor microenvironment as well as throughout the 
body. Conclusion: Tumors have been demonstrated to produce cell surface molecules, cytokines and 
growth factors that disrupt normal immunity, supporting the hypothesis that tumors dysregulate the 
immune system in favor of their progression.  
 
Key words: Immunosuppression, neoplasm antigens, cytokines, apoptosis, regulatory T lymphocytes 

 
INTRODUCTION 

 
 The principle that the immune system can 
recognize and respond to neoplastic cells was first 
proposed in the 19th century, when William Coley 
administered killed bacteria (a combination of 
Streptococcus pyogenes and Serratia marcescens) to 
sarcoma patients and observed rare, but dramatic, 
clinical responses[1]. In 1909, the concept of 
immunosurveillance was hypothesized when Paul 
Ehrlich proposed that the immune system prevented 
the outgrowth of carcinomas that would otherwise 
occur with high frequency[2]. As the understanding of 
immunobiology expanded, F. Macfarlane Burnett 
proposed that tumor-specific neo-antigens were 
capable of eliciting a protective immune response[3] 
and Lewis Thomas theorized that organisms 
sufficiently complex and long-lived to be threatened 
by cancer must possess mechanisms capable of 
protecting against tumors[4]. Subsequently, physicians 
have recognized rare spontaneous regressions and 
remissions in cancer patients[5,6]. In many instances of 
partial tumor regression, histologic evaluation reveals 
leukocytes infiltrating tumors, suggestive of an 

immune mechanism of tumor regression. Furthermore, 
reports of increased incidence and aggressiveness of a 
variety of cancers in patients receiving 
immunosuppressive therapy (e.g., solid organ 
transplant recipients) or suffering from AIDS have 
further supported the hypothesis that the immune 
system plays a critical role in controlling the 
generation of malignant tumors. In recent years, 
investigators have recognized the ability of a variety 
of cells of the immune system to recognize and 
destroy tumor cells, suggesting a set of cellular 
mechanisms for tumor immunosurveillance. 
Enthusiasm over the purported role of the immune 
system in combating cancer has led to the 
development of numerous therapeutic agents designed 
to modulate endogenous immune responses in order to 
treat tumors; these range from instillation of the 
mycobacterium Bacillus Calmette-Guerin (BCG) to 
treat bladder cancer[7] to the use of antibodies 
targeting negative regulators of immunity such as 
blocking antibodies to cytotoxic T lymphocyte antigen 
4 (CTLA-4)[8]. Many such agents are currently in 
development in a wide array of clinical trials for the 
treatment of different malignancies. 
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 However, the concept of tumor 
immunosurveillance in humans is not universally 
accepted. Skeptics are quick to point out that the vast 
majority of cancers arise in patients with no known 
immune deficit. Moreover, many cancers are known to 
arise in the setting of immune/inflammatory 
responses[9]. Similar to the concept of immune targeting 
of tumors, the idea that inflammation promotes cancer 
formation dates back to the 19th century, when Rudolf 
Virchow observed an increased incidence of cancers in 
areas of chronic irritation or inflammation[10]. 
Immunostimulation, the hypothesis that the immune 
system promotes rather than retards tumor growth, is 
supported by the observation that infiltration of tumors 
by mast cells, macrophages and other immune cells is 
associated with a poor prognosis[11-13]. Furthermore, 
increased levels of inflammatory cytokines are seen in 
patients with a variety of cancers. Excess levels of 
interleukin (IL)-1, IL-6, IL-17, IL-18, IL-23, 
Transforming Growth Factor beta (TGFβ) and Tumor 
Necrosis Factor alpha (TNFα) have all been 
demonstrated in patients with cancers and are 
associated with poor survival in[14]. Thus, while the 
immune system may play a role in tumor surveillance, 
some immune responses appear to allow and even drive 
tumor growth. 
 The concepts of immunosurveillance and 
immunostimulation, while in opposition to each other, 
both are scientifically substantiated and illustrate the 
complexity of the tumor/immune system interactions. 
Because of this apparent paradox, many investigator 
now support the idea that the immune system exerts a 
selective pressure on tumor cells and that those tumor 
cells that grow in the face of immune pressure become 
resistant to immune attack by a variety of mechanisms, 
including immunoediting, the selection of non-
immunogenic tumor cell variants and 
immunosubversion, the active suppression of immune 
responses by tumor cells. While ample evidence in 
experimental model systems support the both concepts 
(immunosurveillance and immunosubversion), this 
review will focus the clinical evidence for 
immunosurveillance/immune escape and the cellular 
mechanisms therein.  
 

INCREASED INCIDENCE OF 
CANCERS IN PATIENTS WITH 

IMMUNODEFICIENCIES 
 
 The primary clinical data that support the 
importance of immunosurveillance as a mechanism of 
tumor prevention have been generated by 
epidemiologic studies of immunodeficient patient 

populations. While an increased risk of developing 
malignancies has been demonstrated in patients with 
several primary immunodeficiencies including 
Common Variable Immunodeficiency (CVID), Severe 
Combined Immunodeficiency (SCID) and Wiskott 
Aldrich syndrome[15], the largest studies of cancer 
incidence in immunodeficient populations have been in 
patients on immunosuppressive medications following 
organ transplantation and in patients with Human 
Immunodeficiency Virus (HIV) infection and Acquired 
Immune Deficiency Syndrome (AIDS). 
 It is perhaps not surprising that immunodeficient 
patients are more prone to develop virus-associated 
cancers such as cervical cancer, Kaposi sarcoma and 
Epstein-Barr Virus (EBV)-mediated non-Hodgkin 
lymphoma at an increased rate compared to the general 
population. However, accumulating evidence has 
shown that transplant and AIDS patients are at elevated 
risk for developing multiple other tumor types that are 
not associated with any known infection, including lung 
cancer, colorectal cancer, testicular cancer, melanoma 
and multiple myeloma[16,17]. The predominating 
hypothesis explaining this increased tumor risk is that 
immunodeficient patients lack appropriate 
immunosurveillance and cannot prevent tumor 
outgrowth as effectively as immunocompetent patients. 
However, competing explanations include oncogenic 
effects of some types of immunosuppressive agents and 
antiretroviral agents[18,19]. 
 
Patients undergoing long-term immunosuppressive 
therapy: Patients who have undergone allogenic organ 
transplantation require long-term immunosuppression 
to prevent graft threatening immune rejection. While 
the risk for allograft rejection is highest within the first 
few years after transplantation, transplant patients 
generally require lifelong immunosuppression. As rates 
of organ loss due to acute rejection and death due to 
infection have decreased, malignancy has emerged as a 
significant cause of morbidity and mortality in this 
population[20]. Currently, the incidence of malignancy 
in transplant recipients is estimated at 20% after ten or 
more years of chronic immunosuppression[21,22]. As the 
use of steroid-sparing and steroid limiting 
immunosuppressive regimens becomes more common, 
cancer may surpass cardiovascular disease as the 
leading cause of mortality in transplant recipients[16]. 
 Transplant patients have long been known to be at 
increased risk for multiple types of non-Hodgkin 
lymphomas[20]; these cancers are now collectively 
termed Posttransplant Lymphoproliferative Disorder 
(PTLD). Most cases of PTLD appear to be associated 
with EBV infection[23]. Of those cases of PTLD not 
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associated with EBV infection, other viruses including 
cytomegalovirus and polyomavirus[24] have been 
implicated in some, but other cases of PTLD do not 
appear to be virally associated. The risk for PTLD 
appears to be linked to immunosuppression dose[16]. 
 In addition to PTLD, transplant recipients have a 
markedly higher incidence of non-melanoma skin 
cancers than age-matched controls in[25]. Incidence of 
skin cancer has been shown to increase with length of 
follow-up, suggesting a dose response to 
immunosuppression[26]. While skin cancers in general 
have a low incidence of morbidity and mortality 
relative to other cancers in general, transplant recipients 
frequently suffer from aggressive cancers that present 
as multifocal disease (42%) or that recur or metastasize 
(15%)[16]. 
 More recently, a large registry of transplant 
patients from Australia and New Zealand has 
determined Standardized Incidence Ratios (SIR) for 
cancer risk in kidney transplant recipients[27]. For all 
registered cancers (non-melanoma skin cancers were 
excluded), the SIR for transplant recipients was 3.12 
(95% confidence interval 2.97-3.28). Besides tumors 
with known viral etiology, a greater than twofold risk 
was seen in solid organ cancers involving the head and 
neck (SIR 2.77), esophagus (SIR 4.73), liver (SIR 
4.78), gallbladder (SIR 2.49), lung (SIR 2.01), skin 
(melanoma, SIR 3.18), soft tissue (SIR 3.16), kidney 
(SIR 8.49), bladder (SIR 5.14) and thyroid (SIR 4.53). 
As has been the case with non-melanoma skin cancer, 
transplant recipients with solid organ tumors tend to 
have a much more aggressive clinical course when 
compared to non-immunocompromised patients[28]. 
 
Patients with HIV infection and AIDS: The 
association between advanced infection with HIV and 
the incidence of certain cancers is so well-established 
that development of the viral-associated cancers 
Kaposi’s sarcoma (mediated by human herpesvirus 8), 
non-Hodgkin lymphoma (often mediated by EBV) and 
invasive cervical cancer (mediated by human 
papillomavirus) are included in the United States 
Center for Disease Control’s definition of AIDS in[29. 
However, accumulating evidence has shown that AIDS 
patients are at increased risk for development of 
multiple other cancers as well. Large cohort studies 
from the United States[30,31], Australia[29] and Italy[32] 
have shown significantly increased risk for non-AIDS-
defining malignancies in AIDS patients. Based on these 
cohort studies, AIDS patients are at elevated risk 
(reported as relative risk or SIR) for Hodgkin disease 
(8.0-11.5), anal cancer (3.3-33.8), lung cancer (1.44-
4.5), testicular cancer (1.46-2.0), cancer of the lip (2.26-

3.1), melanoma (1.3-2.5), hepatoma (1.8-7.7), multiple 
myeloma (2.6-4.15), CNS tumors (1.1-3.5), leukemia 
(1.4-3.38) and sarcomas (3.3-9.71) in[17. As with 
transplant-associated malignancies, cancers in AIDS 
patients frequently are of higher grade and more 
aggressive clinical course than cancers in 
immunocompetent patients[33]. Additionally, systemic 
treatment of AIDS-associated malignancies is greatly 
complicated by concurrent highly active anti-retroviral 
therapy (HAART) treatment, as many common 
chemotherapeutics, including alkylating agents, 
anthracyclines, campothecins, etoposide, taxanes and 
vincristine dramatically affect levels of multiple anti-
retroviral agents[34-36]. However, the clinical outcomes 
of patients with AIDS-related non-Hodgkin’s 
lymphoma whose HIV infection is contained by 
HAART are similar to those of non-AIDS patients with 
the same lymphomas treated with the same agents[37]. 
The latter suggests that “repair” of immune competence 
with HAART improves the clinical behavior/outcomes 
of malignant lymphomas, suggesting the clinical 
relevance of cancer immunosurveillance. 
 Does increased incidence of cancer in 
immunosuppressed patients prove that 
immunosurveillance is relevant in preventing cancer? 
 Interestingly, while there is clearly overlap in the 
type of cancers for which transplant recipients and 
AIDS patients are at increased risk, other cancers pose 
an increased threat only to transplant recipients and 
others only to AIDS patients. According to a meta-
analysis of seven studies of people with HIV/AIDS and 
five studies of transplant recipients[38], transplant 
recipients carry an increased SIR for bladder cancer and 
thyroid cancers, whereas HIV/AIDS patients have no 
increased risk. Conversely, HIV/AIDS patients are at 
increased risk for CNS and testicular cancers, while 
transplant patients are not. The disparity between 
increased risk for cancer in AIDS and transplant 
patients suggests that additional factors beyond simply 
degree of immunosuppression convey increased cancer 
risk in these immunocompromised populations.  
 The disparity in cancer risk between different 
populations of immunocompromised patients has 
suggested to some investigators that other mechanisms 
besides impaired immunosurveillance may be primarily 
responsible for increased cancer incidence in these 
populations. In transplant patients, the type of 
immunosuppressant used has been strongly linked to 
risk for cancer development as well as the degree of 
immunosuppression maintained. Calcineurin inhibitors 
such as cyclosporine and tacrolimus and antimetabolites 
such as azathioprine are associated with an increased 
risk for malignancy beyond that expected for the degree 
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of immunosuppression they impart[18]; this is thought to 
be at least in part due to pro-oncogenic effects 
including inhibition of DNA damage repair 
mechanisms[39,40]. In contrast, use of sirolimus does not 
appear to confer an increased risk for cancer 
development[41]. In fact, the mammalian Target Of 
Rapamycin (mTOR) pathway, which is inhibited by 
sirolimus, has been targeted by several newer 
chemotherapeutic agents. Nonetheless, the observation 
that only some immunosuppressants are associated with 
increased cancer risk has been interpreted to suggest 
that it is the presence of pro-oncogenic drugs rather 
than the absence of immunosurveillance that is 
responsible for increased cancer risk in transplant 
recipients.  
 In AIDS-associated cancer development, 
oncogenic drug effects are more difficult to implicate as 
causes for increased cancer risk, as cohort studies 
demonstrate increased cancer risk in pre-as well as 
post-HAART era patients[17,19]. However, HIV/AIDS 
patients have been shown to have a higher rate of 
participation in other behavior patterns known to 
increase cancer risk, including smoking and alcohol 
use[42]. Studies comparing cancer risk between HIV-
infected and non-infected individuals while adjusting 
for smoking and other risk factors have concluded that 
HIV infection confers a higher risk for malignancy 
independent of behavioral and other factors[43,44]. 
 The increase in cancer incidence in patients with 
multiple forms of immunosuppression, including HIV 
infection, immunosuppressive drug use and primary 
immunodeficiency strongly suggests that 
immunodeficiency itself is important in cancer 
susceptibility, independent of other risks associated 
with various modes of immunocompromise. This 
hypothesis is also supported by numerous genetic 
studies in animal models in[45,46]. Based on these data, 
most investigators currently affirm that the immune 
system plays an important role in preventing cancer 
development. 
 

TYPES OF LEUKOCYTES THAT 
PARTICIPATE IN ANTI-TUMOR 

IMMUNE RESPONSES 
 
 Much of what is known regarding the cellular and 
molecular mechanisms responsible for human anti-
tumor immune responses has come indirectly from 
pathologic examination of tumors and in vitro co-
cultures of tumor cells and leukocytes. As such, it is 
difficult to ascertain the relative importance of various 
cell types and molecular pathways in the prevention and 
control of human cancer. However, associational 

studies highlight the importance of both myeloid and 
lymphoid leukocytes in generating anti-tumor immune 
responses. The predominant cellular mediators of 
immunosurveillance are discussed below: 
 
Macrophages and dendritic cells: Macrophages and 
Dendritic Cells (DC) are myeloid-derived cells of the 
innate immune system. DC reside throughout the body 
and are concentrated in the lymph nodes, where their 
primary function is to interact with antigen-naïve T 
cells to initiate immune responses. Dendritic cells are 
capable of phagocytosing tumor cells and degrading 
tumor-derived proteins within lysosomes. As proteins 
are degraded into short peptides, these peptides are 
presented on the DC surface in the context of MHC 
class I and class II molecules in[47]. These MHC-peptide 
complexes can then be recognized by T cells. DC 
subsets are derived from both lymphoid and myeloid 
precursors in the bone marrow and develop into 
immature DC (iDC), at which point they may traffic 
either to tumor tissues or to lymph nodes. In order for 
DC to elicit potent immune responses from naïve T 
cells, they must become activated or “mature”. This 
typically occurs through ligation of pattern recognition 
receptors on the DC surface, including Toll-Like 
Receptors (TLR) and receptors of the Tumor Necrosis 
Factor (TNF) superfamily[48,49]. While tumors do not 
contain the extent of molecular pattern motifs found on 
bacterial and viral pathogens, malignant cells frequently 
also induce proinflammatory signals recognized by DC, 
including uric acid[50], heat shock proteins[51,52] and 
extracellular matrix derivatives[53,54]. Upon recognizing 
proinflammatory proteins elaborated by tumors, DC 
upregulate MHC class I and class II molecules; they 
also upregulate costimulatory molecules such as CD80 
(B7-1), CD86 (B7-2) and CD137 (4-1BB)[48,49]. 
 Like DC, macrophages are efficient phagocytic 
cells and serve to present antigens to T cells. However, 
while DC generally interact with naïve T cells in lymph 
nodes, macrophages more commonly interact with 
activated T cells in areas of tissue inflammation, 
including tumors. Depending on surrounding signals 
from the local tissue environment, macrophages are 
capable of elaborating numerous cytokines that either 
promote or suppress active inflammation[55]. As 
macrophages commonly reside within tumors, they are 
particularly influenced by pro- and anti-inflammatory 
factors that are produced by tumors. Thus, macrophages 
are highly plastic in nature and can have either augment 
immunosurveillance or promote tumor growth. When 
working toward immunosurveillance, macrophages 
operate to both directly destroy tumors and to augment 
the functions of natural killer cells and T cells. Direct 
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anti-tumor functions of macrophages include killing of 
neoplastic cells by phagocytosis. In addition, cytokines 
produced by activated macrophages include type I 
interferons[56], TNFα, IL-1, IL-6 and IL-8[57,58]. These 
cytokines can mediate direct anti-tumoral (and pro-
tumoral) effects; they also serve to modulate natural 
killer cell and T cell anti-tumor responses. 
 The importance of macrophages in tumor 
immunosurveillance and immunoediting has been 
suggested by studies in patients with surgically resected 
tumors. Here, clinical outcomes were compared with 
the degree of infiltration of tumors by macrophages and 
other innate immune cells. In one study of patients with 
resected colorectal cancer, patients whose tumor 
samples were highly infiltrated by macrophages and 
mast cells had a lower level of invasion and higher 
overall survival than patients with sparsely infiltrated 
tumors[59]. Similar outcomes have been seen in patients 
with follicular lymphoma[60], hepatocellular 
carcinoma[61] and nasopharyngeal carcinoma[62]. 
However, other correlative pathologic studies done in 
bladder cancer[63], leiomyosarcoma[64], lung cancer[65] 
and breast cancer[12] have shown a detrimental effect of 
tumor-associated macrophages. Thus, while it appears 
that both macrophages and DC participate in tumor 
immunosurveillance, macrophages may be involved in 
tumor promotion and immunosubversion as well. 
 
Natural killer cells: Natural Killer (NK) cells are 
lymphocytes of the innate immune system. The “natural 
killer” designation reflects investigators’ early 
recognition of the ability of these cells to kill tumor 
cells without immune priming[66]. For several years, the 
triggers for NK cytotoxicity were unknown. However, 
investigators discovered that NK cells selectively lyse 
cells deficient in class I molecules; this led to the 
hypothesis that NK cells recognize the absence of MHC 
class I, or “missing self”[67]. However, the missing self 
hypothesis does not explain why NK cells to not lyse 
red blood cells or other MHC class I-negative cell 
types, or why they do lyse certain class I-positive tumor 
cells. As the molecular basis for NK cell recognition of 
tumor cells and virally infected cells has been 
elucidated, it is now understood that targeting of NK 
cells is highly complex, with both positive and negative 
signals. Negative signals are generated by Killer-
Inhibitory Receptors (KIR) binding to MHC class I 
molecules and inhibiting NK cell activity[68]. One of the 
most prominent positive triggers for NK cytotoxicity is 
the receptor NKG2D[69]. This receptor is expressed by 
both NK cells and certain subsets of T cells. NKG2D 
recognizes a host of MHC class I-like protein ligands, 
including MHC class I-chain-related protein (MIC) A 

and MIC B[70] and the Retinoic Acid Early inducible-1 
(RAE-1) family of proteins[71]. Binding of these 
proteins to NKG2D enhances their ability to lyse tumor 
cells as well as the ability to secrete interferon gamma 
(IFNγ). IFNγ secretion leads to a host of anti-tumor 
effects, including upregulation of MHC class I and 
class II expression, inhibition of angiogenesis, 
upregulation of pro-apoptotic genes, activation of 
macrophages and augmentation of cytotoxic T cell 
responses in[72]. 
 Unlike macrophages, robust infiltration of solid 
tumors by NK cells is nearly always associated with a 
favorable prognosis[73-75]. However, perhaps the 
strongest evidence for the role of NK cells in tumor 
surveillance is patients who receive autologous stem 
cell transplants for non-Hodgkin lymphoma and other 
hematologic malignancies. Patients who recover their 
Absolute Lymphocyte Count (ALC) to normal levels by 
day 15 post-transplantation have a significantly better 
prognosis than patients whose ALC remains abnormal 
for a prolonged period. Analysis of the ALC cellular 
components has shown that of the lymphocyte subsets, 
NK cells are most critical for improved survival[76]. 
These data strongly suggest that NK cells play a vital 
role in immunosurveillance of multiple types of solid 
and liquid tumors. 
 
B lymphocytes: B cells are found primarily in the 
bone marrow and in lymphoid organs. They recognize 
antigens via somatically rearranged B Cell Receptors 
(BCR). Once B cells are engaged via the BCR, they 
generally require additional input from CD4 T 
lymphocytes to become activated. Once activated, they 
proliferate and differentiate into antibody-producing 
plasma cells. Antibodies in turn serve to coordinate 
immune responses by neutralizing very small antigens, 
fixing complement and enhancing phagocytosis and 
Antibody-Dependent Cell-Mediated Cytotoxicity 
(ADCC). These latter effects are mediated through 
specialized antibody receptors known as Fc 
receptors[77]. Fc receptors on DC and macrophages 
enhance their ability to engulf antibody-labeled target 
cells, whereas Fc receptors on NK cells serve to 
activate killing via perforin and granzyme secretion[68]. 
 Antibody responses in the setting of cancer were 
initially discovered as being responsible for a host of 
unfavorable clinical effects including neurologic and 
neuromuscular toxicities. These maladies, known as 
paraneoplastic antibody syndromes, occur in a wide 
variety of cancers and are thought to be due to 
crossreactivity between tumor and normal host 
tissues[78]. Interestingly, patients with paraneoplastic 
antibody syndromes often have more indolent tumor 
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growth than patients with the same tumor type who do 
not have evidence of a paraneoplastic syndrome[79]. 
This suggests that endogenous antibody responses to 
tumors may be an effective means to control tumor 
growth. 
 
T lymphocytes: T cells are present both in primary 
lymphoid tissue and in sites of inflammation. Like B 
cells, they recognize antigens via clonotypic receptors 
(T Cell Receptors-TCR) that have undergone somatic 
rearrangement. However, T cells do not recognize 
native antigens, but rather fragments of antigens 
presented by MHC molecules. Thus, T cells must 
interact with antigen presenting cells in order to 
recognize antigen. Naïve T cells reside primarily in the 
lymphatic tissues, where they may become activated 
through interactions with DC. T lymphocytes may be 
broken down into subsets based on cell surface 
molecule expression and function. T cells bearing the 
CD8 antigen co-receptor recognize peptide antigens in 
the context of MHC class I molecules; once activated, 
they function primarily to lyse antigen-bearing target 
cells and to secrete proinflammatory cytokines such as 
IFNγ. As such, they are frequently termed Cytotoxic T 
Lymphocytes (CTL). By contrast T cells with the CD4 
co-receptor recognize antigens bound by MHC class II 
molecules. Upon activation, CD4 T cells generally do 
not directly kill antigen-bearing cells, but rather serve 
to augment immune responses by macrophages, B cells, 
NK cells and CTL; thus, they are often referred to as T 
helper cells. T helper cells have divergent functions, 
depending primarily on paracrine cytokine production 
by DC and other antigen presenting cells. The most 
prevalent types of T helper cells are termed T helper 1 
(Th1) and T helper 2 (Th2). Th1 cells are formed 
primarily when DC produce IL-12 during antigen 
presentation[80]. Th1 cells produce IFNγ; in doing so, 
they enhance the cytotoxicity of macrophages, NK cells 
and CTL. Th2 cells, by contrast, produce a host of 
cytokines, including IL-4, IL-5 and IL-13. These 
promote a chronic inflammatory environment but 
downregulate cytotoxic functions in immune effector 
cells. While Th1-driven immune responses have been 
shown to eradicate tumor cells, Th2 responses are 
typically associated with ineffective immune responses 
and tumor persistence[81]. A third T helper subset, 
regulatory T cell (Treg), serves to downmodulate 
immune responses. This subset is important in 
maintaining self-tolerance but is detrimental to tumor 
immunosurveillance. Regulatory T cells will be 
discussed in more detail later in this article. 
 In addition to the T lymphocyte subsets mentioned 
above, investigators have described several additional 

groups of T cells with a more limited spectrum of T cell 
receptor structure and reactivity. These include NKT 
cells and gamma-delta T cells. NKT cells bear both 
TCR and NKG2D. The reactivity of NKT cell TCR 
appears to be toward lipid antigens presented by the 
non-classical MHC molecule CD1d[82]. NKT cells have 
been demonstrated to recognize human tumor cells[83]. 
However, different NKT cell subsets appear to play 
divergent roles in response to tumors in that while some 
NKT cells secrete IFNγ and promote CTL activity, 
other NKT cell subsets inhibit anti-tumor immune 
responses[84]. Gamma-delta T cells are a small subset of 
T cells that utilize a TCR made up of chains encode by 
the gamma and delta regions of the TCR locus rather 
than the more common alpha and beta chains. Gamma-
delta T cells use relatively invariant TCR to recognize 
non-classical MHC-like molecules including MICA and 
MICB and CD1d[85]. Recent recognition that these cells 
can recognize and lyse cancer cells has led to 
consideration of how they can be manipulated for the 
therapy of cancer patients[86]. 
 The importance of T cells in tumor immunity has 
long been established in model systems and in vitro 
tissue culture experiments. However, in recent years, 
spontaneous T cell immunity to a variety of tumors has 
been identified and is linked to clinical outcomes. 
Tumor-Infiltrating Lymphocytes (TIL) in histologic 
tumor specimens have been correlated with favorable 
clinical outcomes in multiple types of tumors, including 
cancers of the breast[87], colonp[88], lung[89], ovary[90] and 
kidney[91], as well as in melanoma[92]. Furthermore, TIL 
have been demonstrated to recognize tumor antigens 
and provide clinical benefit in patients with 
melanoma[93,94]. Together, these data highlight the 
importance of T lymphocytes in mediating tumor 
immunosurveillance and immunoediting. 
 

LOCAL IMMUNE DYSREGULATION 
BY CANCERS 

 
 The cellular and molecular mechanisms mentioned 
above are reasonably well-established as relevant 
means through which the immune system attacks 
neoplastic cells and prevents or limits tumor growth. 
However, the reality that the majority of clinically 
apparent cancers grow relentlessly despite the response 
of an apparently intact immune system suggests that 
somehow the immune response to tumors is or becomes 
ineffective. Cancers have been found to utilize diverse 
mechanisms to avoid, suppress and alter both innate 
and adaptive anti-tumor immune responses. Much of 
this downregulation is the result of tumor-directed 
alterations in both the neoplastic cells themselves as 
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well as the surrounding stromal tissues. As such, the 
majority of the clinical evidence for immunosubversion 
by tumors has been demonstrated within the tumor 
microenvironment. 
 
Decreasing tumor antigenicity: The majority of the 
leukocytes responsible for immunosurveillance and 
immunoediting utilize the recognition of antigens in 
order to target abnormal tissues and prevent damage to 
healthy tissues. As such, tumors that reduce antigen 
expression are able to avoid immune recognition and 
targeting. CTL, NKT cells and gamma-delta T cells use 
complexes of small molecules (peptides and lipids) 
bound to MHC class I or class I-like molecules for 
targeting of effectors functions and NK cells are 
targeted by class I-like molecules independent of small 
molecule binding. Tumors may therefore reduce their 
antigenicity either by decreasing expression of peptides 
or by decreasing expression of class I and/or class I-like 
molecules[95]. Under the selective pressure of an anti-
tumor immune response, cancer cells that are able to 
survive and proliferate despite loss of expression of the 
protein containing a given peptide antigen can replace 
antigen-bearing cells; this form of antigen loss leads to 
a tumor-wide change in gene expression[96,97]. However, 
cancers have also been shown to avoid immune 
recognition via loss of the MHC class I-binding protein 
beta-2-microglobulin (β2m)[98], loss of antigen 
processing machinery[99], loss of the MHC class I loci 
themselves through chromosomal loss, 
hypermethylation, or   loss   of transcriptional 
factors[100-102] and mutations in class I molecules[103,104]. 
Furthermore, the typical upregulation in MHC class I 
and antigen processing machinery that occur in the 
presence of IFNγ may be abrogated by cancer cell loss 
of interferon response element genes[105]. While loss of 
MHC class I expression may remove an important 
inhibitory signal from NK cells (KIR signaling), NK 
activity is also subject to immunoselection, as tumor 
cells have been shown to downregulate the MHC-like 
molecules MIC A and MIC B via shedding them; these 
soluble forms of MIC A and MIC B then further inhibit 
NK function by inhibiting NKG2D expression and 
function[106,107]. 
 
Modulation of leukocyte trafficking to tumors and 
killing of tumor-infiltrating leukocytes: In addition to 
the prevention of immune recognition through various 
forms of antigen loss, cancers avoid immune 
destruction by regulating which immune cells traffic 
into tumors and by killing pro-inflammatory leukocytes 
that do enter the tumor microenvironment. Homing of 
leukocytes to tumors is an extremely complex process 

mediated by tumor cells and by tumor-associated 
endothelial cells, as well as by leukocytes themselves. 
To create a cancer-promoting environment, tumors 
must attract certain leukocytes such as anti-
inflammatory macrophages, while at the same time 
excluding cells cytotoxic to the tumor such as CTL and 
NK cells. To accomplish this, tumors express different 
chemoattractant cytokines (chemokines) that promote 
trafficking of anti-inflammatory cells into the tumor[108]. 
For example, the chemokine CCL9 (macrophage 
inhibitory protein 1 gamma-MIP-1γ) recruits 
immunosuppressive immature myeloid cells, while the 
chemokines CCL2 (monocyte chemoattractant protein 
1-MCP-1), CCL3 (MIP-1a) and CCL5 (regulation on 
activation, normal T cell expressed and secreted-
RANTES) recruit macrophages[109]. Dependent on other 
cytokines present in the tumor microenvironment, 
recruitment of these cell types may lead to reduced 
immune control on the tumor and more rapid tumor 
progression[110-112]. On the other hand, the chemokines 
CXCL16 and CX3CL1 serve to recruit T cells into 
tumors; tumors expressing these chemokines generally 
have a more indolent clinical course with improved 
patient survival[113]. Vascular growth factor-receptor 
networks also play an important role in governing 
leukocyte adhesion to tumor vasculature and subsequent 
intratumoral trafficking. Endothelin B receptor (ETBR), 
which binds to endothelin-1, prevents T cell migration 
into tumors; expression of ET

B

BBR correlates with both the 
absence of TIL and shortened survival[114]. 
 Lymphocytes that successfully migrate into tumors 
may subsequently be killed by cell-cell interactions 
with tumor cells. This contact-dependent killing is 
mediated by aberrant tumor cell expression of CD95L 
(Apoptosis Stimulating Fragment ligand-FasL), TNF-
Related Apoptosis-Inducing Ligand (TRAIL) and the 
receptor-binding cancer antigen expressed on SiSo cells 
(RCAS1). Upon activation, T cells express CD95 (Fas) 
and other receptors that can induce apoptosis; binding 
of these receptors mediates T cell death, thus serving as 
a homeostatic means to downregulate T cell immune 
responses[115,116]. Expression of death receptor ligands 
by tumor cells leads to increased killing of intratumoral 
T cells via apoptosis. Furthermore, a soluble form of 
FasL can be produced by melanoma and other forms of 
tumor and has been associated with poor outcomes[117]. 
 
Resistance to immune-mediated tumor killing: Cells 
of the immune system, when properly activated and 
targeted, can kill neoplastic cells via a variety of 
mechanisms, including the above-mentioned Fas/FasL 
system and other cell surface death receptor pathways, 
as well as through the use of perforin and granzymes. 
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These pathways converge to target intracellular 
apoptotic pathways, including members of the B Cell 
Lymphoma 2 (BCL-2) family of proteins, caspases and 
endonucleases, ultimately resulting in tumor cell death. 
To combat this, tumors decrease expression of cell 
surface ligands such as Fas and numerous pro-apoptotic 
pathway proteins including BCL-2 interacting mediator 
of cell death (BID), BH3-interacting domain death 
agonist (BID), p53-upregulated modulator of apoptosis 
(PUMA) and several members of the caspase 
family[118]. Tumors also increase levels of anti-apoptotic 
proteins such as BCL-2, BCL-XL and members of the 
cellular inhibitor of Apoptosis Protein 1 (cIAP1) 
family[118]. These changes result in resistance to both 
immune and non-immune-mediated tumor cell death. In 
particular, the absence of Fas in cancers of several 
tissues is associated with poor outcomes[119,120]. 
 
Alterations in T cell signaling: T cell responses to 
tumors and other antigens are governed not only by 
antigen-specific signaling through the TCR, but also 
through numerous regulatory signals. One potent 
negative regulatory signal for T cells is through CTLA-
4. T cell downregulation through CTLA-4 normally 
occurs toward the end of an acute immune response and 
serves to restore immune homeostasis. However, in 
situations in which the antigen is not rapidly cleared, 
such as cancers, CTLA-4 interrupts ongoing anti-tumor 
immune responses[121]. The use of blocking antibodies 
to CTLA-4 as a means to augment endogenous and 
vaccine-driven anti-tumor immunity has produced 
clinical responses in some patients with melanoma[122] 
and clinical trials of anti-CTLA-4 are underway. 
 An additional checkpoint for T cells involves the 
molecule programmed death-1 (PD-1), expressed on 
activated CTL. PD-1 is bound by the ligands B7-H1 
(PD-L1) and B7-H2 (PD-L2)[123]; this results in 
inhibition of T cell activation through recruitment of the 
inhibitory phosphatase Src homology phosphatase-2 
(SHP-2)[124]. B7-H1 is expressed by numerous tumor 
cells and induces apoptosis of tumor-specific CTL. 
Furthermore, blockade of B7-H1 was shown to augment 
immune-mediated tumor rejection[124], suggesting that 
targeting of PD-1-B7-H1 interactions may be important 
in potentiating anti-tumor CTL responses. 
 Several additional negative regulators of T and B 
cell function have recently been identified. B and T 
Lymphocyte Attenuator (BTLA) is expressed upon T 
cell activation and Th1 (but not Th2) differentiation[125]. 
Additionally, suppressive macrophages from human 
ovarian tumors have been shown to express B7-H4[126]. 
B7-H4 blockade restored the ability of macrophages to 
stimulate T cell effectors functions. Thus, multiple cell 

surface negative regulatory molecular interactions exist; 
several of these are used directly by tumors to inhibit 
the function of TIL.  
 
Alterations in tryptophan metabolism: Cancers cells 
also co-opt the use of tryptophan pathway enzymes to 
disrupt effective anti-tumor immunity. Indoleamine 2, 
3-dioxygenase IDO catalyzes the rate-limiting first step 
in tryptophan metabolism[127]. Increased expression of 
this enzyme leads to accumulation of tryptophan 
metabolites and uncharged tRNA. These byproducts act 
by mechanisms not fully understood to inhibit T and 
NK cell function by inducing T cell energy 
(unresponsiveness to antigens), cell cycle arrest and 
apoptosis, as well as by inducing activation of Treg. 
Additionally, depletion of tryptophan itself may prevent 
effective lymphocyte activation. IDO is induced by 
TLR ligands, IFNα and IFNγ and by CD137[128]; thus, it 
serves as part of a negative feedback loop to 
downmodulate Th1 immune responses. IDO is 
expressed both by tumor cells and by immature DC; 
thus it is active in inducing immune tolerance directly 
in the tumor microenvironment and in tumor-draining 
lymph nodes. 
 The importance of IDO as a mediator of immune 
tolerance was first described in maternal-fetal 
interactions[129]. Here, IDO inhibition in animal models 
led to rejection of allogenic fetuses. IDO is now known 
to be expressed by multiple human tumors. IDO 
expression in tumors[130-132] and tumor-draining lymph 
nodes[133] has been found to be a poor prognostic 
indicator in many cases; however, at least one study has 
shown favorable clinical courses in patients with IDO-
expressing tumors[134]. Studies of IDO inhibition as a 
therapeutic for solid organ tumor patients with 1-
methyl-D-tryptophan are currently underway. 
 
Proteoglycans: Carbohydrate-modified proteins play a 
number of roles in various aspects of cancer biology, 
including metastasis and angiogenesis[135]. As such, 
they are expressed by numerous tumors and 
proteoglycan expression is linked to aggressive 
phenotype[136]. In addition to their other tumor-
promoting actions, a number of proteoglycans have 
been implicated in T cell inhibition. Galectins, 
including galectin-1, -2, -3 and -9 adversely affect T 
cell effecter functions by induction of apoptosis[137-139], 
blockade of TCR signaling[140], augmentation of CD95 
(Fas)-mediated T cell killing[141] and inhibition of Th1 
responses[142]. As galectins are expressed within tumors 
(as well as detected in peripheral blood), they are 
poised to disrupt the effector arm of T cell-mediated 
tumor immunity. 
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SYSTEMIC IMMUNE DYSREGULATION 
BY CANCERS 

 
 Based on successful protection from cancer in 
preclinical models, numerous investigators have 
designed therapeutic vaccines for cancer patients. 
Vaccine strategies have included injection of tumor 
lysates, tumor-derived proteins, tumor-associated 
peptides, DNA and patient-derived or allogenic 
dendritic cells pulsed with tumor antigens. A multitude 
of vaccine adjuvants have been used and vaccines have 
been administered to several different tissues, including 
intra-tumoral injection, injection into lymph nodes and 
injection into skin, subcutaneous tissue and muscle. 
Although some vaccines have been given to patients 
without gross disease, most clinical trials have been in 
patients with metastatic cancer. Unfortunately, of over 
2000 vaccine clinical trials to date, none has provided 
consistent benefit to patients[143]. As many of the 
vaccines tried have been administered in sites distant to 
tumors, immunosuppression at the level of the tumor 
microenvironment does not adequately explain the 
ability to generate robust anti-tumor T cell responses. 
 Several distinct reasons exist that might explain the 
poor immunogenicity of anti-tumor vaccines in 
patients. One difficulty with cancer vaccines, as 
compared with pathogen vaccines, is that in cancer 
vaccines the target antigen to be destroyed (the tumor) 
is derived from patient tissue; thus, the vaccine-
generated immune response must overcome normal 
self-tolerance mechanisms. This is almost certainly a 
prominent barrier to anti-tumor vaccine efficacy. 
However, cancer patients have additionally been shown 
to have abnormal immune responses to other antigens, 
including recall vaccine responses and responses to 
pathogens. For example, patients with metastatic 
melanoma had very poor recall Delayed-Type 
Hypersensitivity (DTH) responses to mumps and 
Candida antigens when compared with the general 
population[144]. Also, patients with malignant gliomas 
have been shown to have a variety of immune defects, 
including impaired DTH responses, energy to bacterial 
antigens and inability to generate appropriate 
proliferative responses to in vitro mitogen 
stimulation[145]. Furthermore, many cancer patients have 
a diminished ability to respond to prophylactic vaccines 
against influenza and Streptococcus pneumonia[146]. In 
addition to decreased reactivity to microbial vaccines 
and antigen challenges, cancer patients have a 
heightened incidence and severity of a variety of 
infections[147,148]. While it is difficult to dissect the 
relative roles of tumors versus cytotoxic chemotherapy 
in contributing to the increased infection risk seen in 

cancer patients, it appears that even cancer patients not 
on chemotherapy have an elevated risk for infection and 
for poor vaccine responses compared to healthy 
controls[149]. Taken together, these data suggest that 
tumors may promote a global state of immune 
dysfunction rather than simply dysregulating the tumor 
microenvironment.  
 The difficulty in obtaining robust anti-tumor 
vaccine responses in patients with metastatic cancer has 
prompted some investigators to bypass the step of 
eliciting immune responses in vivo and to instead 
transfer ex vivo expanded tumor-specific CTL into 
patients. One study utilized melanoma-reactive clones 
from patient PBMC that were expanded in vitro and re-
infused into the same patient[93]. A subsequent trial 
utilized adoptive transfer of melanoma-specific CTL 
cloned from autologous TIL into metastatic melanoma 
patients who were pre-treated with lymphodepleting 
chemotherapy[94]. In both trials, CTL that were 
expanded ex vivo were functionally active upon 
reinfusion, as clinical responses and autoimmune 
melanocyte destruction (vitiligo) were seen in some 
patients. Although they are not practical to perform in 
large numbers of patients, these trials demonstrate the 
principle that CTL directed against melanoma-
associated peptide antigens can mediate clinical 
responses in melanoma patients. The disparity between 
the efficacy of exansion of antigen-specific CTL in vivo 
(via vaccination) and in vitro (via adoptive transfer) 
highlights the global suppression of anti-tumor immune 
resposnes seen in patients with metastatic cancer. 
Several integrated immune mechanisms of tumor-
mediated regulation have been elucidated that impact 
not only the effector arm of immune responses within 
tumors, but also the generation of immune responses 
systemically. 
 
Self-tolerance and regulatory T cells: The existence 
of CD4 T cells capable of interrupting anti-tumor 
immune responses has been known since the 1980s[150]. 
However, it has been difficult to distinguish these 
immunity-suppressing cells from immunity-promoting 
T helper cells until recently. Presently, 
immunosuppressive T cells, known as regulatory T 
cells are a well-established population of lymphocytes 
that mediate suppression of inflammatory responses[151]. 
Regulatory T cells are implicated as critically important 
in the prevention of autoimmunity[152]. These 
immunosuppressive cells have been further divided into 
subsets. T regulatory cells (Treg) are characterized by 
cell surface expression of CD25 and expression of the 
transcription factor FoxP3[153,154]. By contrast, type 1 
regulatory T cells (Tr1) are characterized not by cell 
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surface expression, but by the capacity to secrete large 
amount of the immunosuppressive cytokine IL-10[155]. 
These subsets represent distinct cell populations, as 
clones have been identified that either are CD25-
negative and secrete IL-10 or are immunosuppressive 
and secrete TGFβ, but not IL-10[156]. However, both 
types of regulatory T cells appear to downregulate 
activity of Th1 and CTL. 
 Regulatory (or suppressor) T cells were originally 
described based on their ability to inhibit anti-tumor 
immune responses in mice. Their role in human cancer 
was initially suggested when increased numbers of Treg 
were found in the blood of patients with lung 
cancer[157]. Subsequent studies have confirmed the 
presence of expanded numbers of Treg and/or Tr1 in 
the peripheral blood of patients with head and neck 
cancer[158], gastrointestinal cancers[159], breast cancer[160] 
and melanoma[161]. The presence of increased numbers 
of Treg and Tr1 in tumor tissue and in peripheral blood 
has been seen to correlate with high stage and poor 
prognosis[162,163]. 
 Treg and Tr1 are produced in vitro by the culture 
of T cells with DC that secrete IL-10[156]. As many 
tumors secrete high levels of IL-10, this represents a 
potential mechanism for the excess Treg seen in cancer 
patients. Culture of T cells in TGFβ has also been 
demonstrated to induce Treg; this may also be a means 
by which tumors elicit Treg. Treg and Tr1 disrupt anti-
tumor immune responses via several mechanisms. 
Through their ability to secrete IL-10 and TGFβ, 
Treg/Tr1 dramatically suppress Th1 and CTL 
function[151]. In addition, Treg are able to modulate DC 
and macrophage function, thereby interrupting T cell 
activation. In this way, Treg are able to downmodulate 
not only immune responses to that antigen to which 
they are reactive, but also to “bystander” antigens 
presented by the same antigen presenting cell; thus, 
tolerance can be transferred from one antigen to 
another, leading to broad immunosuppression. 
 
Changes in dendritic cell function: As DC are the 
principal means by which tumor-specific T cells, 
including CTL, T helper cells and regulatory T cells 
become activated, much of the adaptive immune 
response to tumors is controlled through the regulation 
of dendritic cell function. Tumors suppress 
proinflammatory DC functions at multiple checkpoints 
in DC development and activation. This leads to both a 
reduction in the number of DC, as well as a dramatic 
change in the proportion of DC subsets, with a shift 
away from mature DC and toward immature DC and 
immunosuppressive (regulatory) DC. Circulating DC 
were measured in patients with head and neck cancer 

and a variety of other cancers and were compared with 
blood DC levels in normal donors[164-166]. Cancer 
patients had a dramatic reduction in the number of 
normal circulating DC. Furthermore, among those DC 
present in tumor specimens, there is a high proportion 
of immature DC with low levels of co-stimulatory 
molecules[167]. However, not only do cancer patients 
have a paucity of mature DC and relative increase in 
immature DC, but they also have high levels of 
regulatory DC. These cells accumulate by trafficking 
toward tumor-produced Stromal-Derived Factor-1 
(SDF-1); they are also generated by antigen uptake in 
the absence of endogenous TLR ligands and other pro-
inflammatory signals[116]. Regulatory DC are a 
heterogeneous group of DC with low levels of 
costimulatory molecule expression that suppress CTL 
and T helper function while driving expansion of Treg. 
They do so by expressing high levels of the enzyme 
IDO[128], as well as by secreting IL-10 and nitric 
oxide[116]. 
 
Myeloid-derived suppressor cells: In addition to 
global changes in DC function, tumors induce a 
heterogeneous population of myeloid cells comprised of 
immature macrophages, granulocytes and other myeloid 
cells of early differentiation state; these are collectively 
known as myeloid-derived suppressor cells (MDSC). 
In, humans, MDSC are defined by expression of the 
common myeloid marker CD33 in the absence of other 
myeloid and lymphoid markers, including absence of 
HLA-DR[168]. These cells are absent or very rare in 
blood from healthy donors, but they accumulate in the 
blood of patients with advanced cancer and they 
decrease when tumors are surgically removed[169]. 
MDSC from cancer patients have been shown to inhibit 
IFNγ production by CTL; this inhibition occurs via a 
hydrogen peroxide-dependent mechanism[170].  
 
Cytokines: Cytokines are soluble mediators of 
inflammation and play a wide array of roles in 
regulating inflammatory cell trafficking, changes in 
local tissues, susceptibility of cells to apoptosis and 
differentiation and activation of leukocytes. Both pro-
inflammatory and anti-inflammatory cytokines have long 
been known to promote cancer growth, angiogenesis and 
metastasis and to regulate immune responses to tumors. 
Cytokines typically mediate their effects in an autocrine 
or paracrine manner that is tightly regulated in time and 
space. However, in the setting of cancer, 
supraphysiologic levels of numerous cytokines are 
present continuously throughout the circulation; this 
leads to a broad dysregulation of normal immune 
responses,  both  to  the   tumor   and   to  other  antigens. 
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Table 1: Leukocyte-derived cytokines involved in tumor 
immunoediting and immunosubversion 

Immune response type Major cytokines involved 
Acute phase response IL-1, IL-6, IL-8, IL-17a, TGFβb TNFαc

Th1 response IL-12, IL-18, IFNγd TNFα 
Th2 response IL-4, IL-5, IL-10, IL-13 
Immunosuppressive response IL-10, TGFβ 
aIL:  Interleukin;  bTGFβ:  Transforming   growth    factor    beta; 
cTNFα:  Tumor necrosis factor alpha; dIFNγ:  Interferon gamma 
 
The network of cytokine interactions associated with 
tumors and tumor-directed inflammation is intricately 
complex and is itself the subject of several review 
articles[14,171]. Here, the roles of several key leukocyte-
derived cytokines in cancer-mediated immune 
dysregulation are highlighted. 
 Cytokines can be broadly and imperfectly divided 
based on the type of immune response with which they 
are associated: Acute phase responses, acute 
inflammatory responses, chronic inflammatory 
responses and tolerogenic responses (Table 1). Acute 
phase responses occur rapidly in response to tissue 
injury. These responses are characterized by production 
of IL-1, IL-6 and TNFα. IL-1 induces the expression of 
proinflammatory genes including cyclooxygenase type 
2 (COX-2), inducible Nitric Oxide Synthase (iNOS) 
and matrix metalloproteinases[172]. IL-6 has many 
effects, including mediating resistance to apoptosis 
through upregulation of survival and proliferation 
factors[14]. Effects of TNFα range from induction of 
apoptosis to maintaining cell proliferation; it is critical 
in several inflammatory conditions including Chron’s 
disease and rheumatoid arthritis[173]. Though their 
proinflammatory effects, acute phase response 
cytokines promote cancer formation in the context of 
chronic inflammation. In addition, IL-6 plays a direct 
role in protecting tumor cells from apoptosis and 
stimulating proliferation. Elevated serum IL-6 levels 
are seen in patients with multiple myeloma and with 
renal, ovarian, colon, breast and prostate cancers[174,175]. 
 Th1 immune responses are were classically 
described as acute responses to microbial pathogens 
such as viruses and some bacteria. Hallmarks of Th1 
responses include enhanced antigen presentation and 
induction of cytotoxic mechanisms driving target cell 
apoptosis. Th1 responses often involve TNFα, but also 
involve IL-12, IL-18 and IFNγ. IL-12 is produced by 
mature DC and induces T cell differentiation to Th1 
cells. IFNγ is secreted by Th1, CTL and NK cells and it 
promotes macrophage activation, upregulation of MHC 
presentation and increased target cell susceptibility to 
immune-mediated apoptosis. IL-18 serves to stimulate 
CTL and NK cells and augments IFNγ production[176]. 
Th1 immune responses have frequently been shown in 

animal models to eradicate tumors. As such, they are 
used to monitor immune responses in cancer 
immunotherapy trials[177]. However, uncontrolled 
systemic Th1 cytokines can be harmful in the setting of 
cancer, in that IL-18 is often secreted by cancer cells 
themselves and IL-18 has been shown to promote tumor 
angiogenesis, proliferation and metastasis[176].  
 Immune responses driven by Th2 cytokines are 
involved in immunity to helminths and other large 
parasites, as well as in allergic hypersensitivity 
responses. Th2-mediated inflammation is characterized 
by induction of antibody production and by stimulation 
of eosinophils and mast cells. These serve to generate a 
chronic inflammatory environment such as is seen in 
chronic parasitic infections and in asthma. In addition, 
Th1 and Th2 cytokines serve as negative regulators of 
one another, thus polarizing immune responses toward 
one type or the other[178]. IL-4 serves as a control 
cytokine for Th2 immune responses; it is a growth 
factor for Th2 cells and drives antibody production by 
B cells. IL-4 also opposes IL-12 in that it skews 
immune responses away from a Th1 phenotype. IL-5 
primarily serves to induce eosinophil-based 
inflammatory responses, while IL-10 is a highly potent 
negative regulator of Th1 immune responses. IL-13, 
which shares homology with IL-4, also suppresses Th1 
immunity[179]. Some investigators have described 
effective anti-tumor responses driven by Th2 cytokines, 
particularly implicating eosinophils as an effective anti-
tumor mediator[180]. However, because of their potent 
suppression of Th1-based immunity, Th2 cytokines are 
generally regarded as harmful to anti-tumor immunity. 
Unfortunately, Th2 dominance is often seen in 
advanced cancer patients, as patients with metastatic 
cancer have elevated levels of multiple Th2 cytokines 
systemically[181] and elevation in plasma levels of IL-
10[182,183] predict poor clinical outcomes. 
 While IL-10 is considered by many to be a Th2 
cytokine, its principal effect is to suppress cytotoxic 
immune responses and it is produced by Tr1 regulatory 
T cells in addition to Th2 cells. TGFβ, while it has 
broad effects on differing cells and tissues, is also 
considered to be primarily an immunosuppressive 
cytokine with regard to inflammation in that it 
suppresses both Th1 and Th2 immune responses[184]. 
TGFβ has both protective and tumor-promoting roles. 
In responsive epithelial tissues TGFβ promotes 
cytostasis, differentiation and apoptosis[185]. However, 
once tumor cells lose responsiveness to TGFβ, its 
immunosuppressive effects, along with its ability to 
promote angiogenesis and metastasis serve to promote 
tumor progression. 
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Vascular growth factors: The isoforms of Vascular 
Endothelial Growth Factor (VEGF) and other related 
growth factors such as Placental Growth Factor (PlGF) 
are well-known by tumor biologists and oncologists for 
their importance in mediating tumor angiogenesis. 
Many solid tumors overproduce VEGF and VEGF 
overproduction is closely associated with poor 
outcomes[186]. While VEGF concentrations are highest 
in the tumor microenvironment, marked plasma 
elevations in VEGF are frequently seen in patients[187]. 
As tumors must synthesize their own blood vessels to 
grow beyond a certain size, interruption of 
vasculogenesis by blockade of vascular growth factors 
has proven to be an effective means of controlling 
growth. Agents that bind VEGF or block signaling from 
VEGF receptors have been proven efficacious in 
patients with many tumor types. 
  It has been observed that in vitro DC maturation 
from CD34+ progenitors isolated from umbilical cord 
blood is impaired by incubation with tumor cell culture 
supernatants[188]. Additionally, IFNγ production by 
Peripheral Blood Mononuclear Cells (PBMC) is 
abrogated in the presence of patient plasma; responses 
to non-specific T cell stimuli were skewed from Th1 to 
Th2 dominance[181]. In both DC maturation and PBMC 
stimulation, addition of VEGF to cell cultures 
reproduced the immune inhibitory function of tumor 
cell supernatants or cancer patient plasma. This 
indicates that VEGF, which is nearly ubiquitous in 
tumors and is often present systemically in cancer 
patients, is involved in global immune dysregulation 
and in altering anti-tumor immunity.  
 

CONCLUSION 
 
 While the debate over the importance of the 
immune system in preventing and controlling tumor 
growth has now gone on for over a century, 
accumulating clinical evidence now strongly supports 
the relevance of both tumor immunosurveillance in 
preventing clinical tumorigenesis and immunoediting in 
controlling tumor growth. Clinical evidence now also 
demonstrates the ability of cancers to prevent, evade, or 
disrupt anti-tumor immune responses by a variety of 
mechanisms. Immunosubversion appears to begin 
within the tumor microenvironment, but ultimately 
leads to systemic dysregulation via both cellular and 
soluble mediators of immunosuppression. As the means 
by which tumors inhibit anti-tumor immunity are both 
diverse and redundant, it is likely that successful 
immune modulation will require simultaneous targeting 
of multiple immunosuppressive pathways in order to 
achieve consistent clinical benefit. 
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