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Abstract: Viruses are obligate parasites and can only reproduce within host 

cells because they lack metabolic pathways to complete their replication 

cycles. Host factors required in viral replication are mainly those involved 

in lipid metabolism, cell cycle control and apoptosis, cell-to-cell 

interactions, immune system regulation, etc. Several inhibitors targeting 

viral polymerases have been designed. However, the rapid appearance of 

resistant mutants, as a direct consequence of the viral population structure, 

diminishes the efficacy of this kind of molecules. To elude the rapid loss of 

treatment efficiency due to the appearance of resistance mutations, cellular 

factors have been proposed as a promising therapeutic target to inhibit 

RNA(+) virus replication. In this review, we focus on those interactions 

between host factors and HCV replicase, to modulate either cellular 

metabolism or HCV polymerase activity. 
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Introduction 

Viruses are obligate parasites and can only reproduce 
within host cells because they lack metabolic pathways 
to complete their replication cycles. Host factors 
required in viral replication are mainly those involved in 
lipid metabolism, cell cycle control and apoptosis, cell-
to-cell interactions, immune system regulation, etc. 
Viruses may infect a cell only if the cellular factors that 
virus needs to replicate are present in the cell (Flint et al., 
2015; König and Stertz, 2015). 

Positive strand RNA viruses (RNA(+) virus) are 

classified in the group IV of the Baltimore’s 

classification of viruses. They are the greatest group of 

pathogenic viruses affecting human and animal health 

(Flint et al., 2015). RNA(+) include viruses from well-

known families as Coronaviridae (Alpha Coronavirus 1, 

SARS-related coronavirus, MERS-related coronavirus), 

Picornaviridae (Hepatitis A virus, Human Rhinovirus, 

Enterovirus including poliovirus), Flaviviridae (Dengue 

virus, Yellow Fever virus, Hepatitis C virus), among 

others (Flint et al., 2015). RNA(+) viruses replicate their 

RNA genomes through a negative strand intermediate 

and this reaction is catalyzed by a viral RNA dependent 

RNA Polymerase (RdRP) (Ferrer-Orta et al., 2015). 

Consequently, RdRP plays a key role in virus replication 

cycle (Verdaguer et al., 2014). RNA(+) genome 

replication is an error prone process and thereby 

genomic copies will carry mutations that could be 

selected in the viral offspring following Darwinian 

forces. Furthermore, RNA(+) virus replicate at large 

population size, reaching 10
10

-10
12

 viruses in an infected 

individual. Putting these two factors together, error 

prone replication and population size, RNA(+) viral 

populations consist of mutant spectra (or mutant clouds) 

rather than genomes with the same nucleotide sequence. 

Mutant spectra, usually referred as viral quasispecies and 

not individual viral particles are the target of 

evolutionary events (Más et al., 2010). 

Several inhibitors targeting viral polymerases have 

been designed. However, the rapid appearance of 

resistant mutants, as a direct consequence of the viral 

population structure, diminishes the efficacy of these 

kind of molecules (Más et al., 2010). To elude the rapid 

loss of treatment efficiency due to the appearance of 

resistance mutations, cellular factors have been proposed 

as a promising therapeutic target to inhibit RNA(+) virus 

replication (Lou et al., 2014). Factors of cellular origin 

cannot mutate and be selected to escape antiviral 

pressure at the same rate as virus factors. Therefore, 

host-targeted antivirals show high genetic barrier to 

escape (Plummer et al., 2015). 

Hepatitis C Virus (HCV) is RNA(+) virus with a 

high-titer and error-prone replication rate leading to the 

generation of viral populations in which mixtures of 

almost infinite different variants called quasispecies may 

coexist (Más et al., 2010). HCV infection is widespread 

worldwide, showing geographical differences in terms of 

genetic identity with seven well defined genotypes 
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(Baumert et al., 2016; Clemente-Casares et al., 2011). 

Independently of the infecting genotype, HCV infection 

is the main cause for cirrhosis and hepatocellular 

carcinoma (Westbrook and Dusheiko, 2014). HCV entry 

into the cell is mediated by the interaction of the 

glycoproteins from the viral envelope with receptors on 

the surface of the hepatocyte such as CD81, CLDN1 and 

OCLN among others (Ding et al., 2014). HCV entry is a 

complex process governed by viral and cellular factors 

and several of them contribute to liver tropism and limit 

host range of this virus. Once the virus has entered the 

cell, RNA(+) HCV genome is released into the 

cytoplasm where it is translated at the rough Endoplasmic 

Reticulum (ER) as a polyprotein (Paul et al., 2014). HCV 

polyprotein is about 3000 amino acids in length and is 

co- and post-translationally processed by proteases from 

cellular and viral origin to give ten mature viral proteins. 

HCV proteins are structural (core C and envelope 

proteins E1 and E2) and nonstructural (p7, NS2, NS3, 

NS4A, NS4B, NS5A and NS5B) proteins. Proteins C, E1 

and E2 are main constituents of the virus particle. The 

p7 viroporin and NS2 participate in virus assembly. 

Finally, NS3, NS4A, NS4B, NS5A and NS5B form the 

replicase complex that is sufficient for viral RNA 

replication (Paul et al., 2014). RNA(+) replication 

product may be either used for translation, for synthesis 

of new negative strands, or can be packaged into virus 

particles that exit the cell via the secretory pathway. 

Translation and replication take place in opposite 

directions on the RNA(+) and cannot occur 

simultaneously. A rigorous control by cis-acting 

elements in the HCV genome and antigenome as well as 

cellular proteins and miRNAs mediates the transition 

from translation to replication (Sagan et al., 2015). 

HCV replication takes place in microvesicles derived 

from ER where replication complex is located. Viral 

replicase is composed of at least viral proteins NS3, 

NS4A, NS4B, NS5A and NS5B. NS3 is composed of 

two domains located at N-terminal and C-terminal ends, 

showing serine-protease and helicase activities, 

respectively (Moradpour and Penin, 2013). The serine-

protease domain is responsible for polyprotein cleavage 

in complex with the NS4A protease cofactor, whereas 

the helicase domain is important for RNA replication 

because of its RNA unwinding activity. NS4B is a 

poorly characterized protein with a complex 

transmembrane topology involved in inducing 

membrane alterations (Egger et al., 2002). NS5A is a 

RNA-binding phosphoprotein that exists as both a basal 

and a hyperphosphorylated form. The phosphorylation 

status of NS5A appears to be determined by several 

cellular kinases, including Glycogen Synthase Kinase 3 

beta (GSK3β), Protein Kinase A (PKA), Casein Kinases 

(CK) I and II, polo-like kinase 1 and Mitogen-Activated 

Protein Kinases (MAPKs) (Colpitts et al., 2015). NS5A 

function seems to be to interact with other viral 

replicase components as well as cellular factors  

(Ross-Thriepland and Harris, 2015). Proteomics and 

molecular systematics approaches have been reported 

that more than one hundred proteins interact with NS5A 

(Tripathi et al., 2013; Li et al., 2014a). Affinity capture 

was also used for identifying host factors interacting 

with HCV RNA positive strand (Upadhyay et al., 2013). 

Some of them have been described above and comprises 

La protein (Kumar et al., 2013), Heterogeneous Nuclear 

Ribonucleoprotein L (hnRNP L) (Li et al., 2014b), 

Nuclear Factor 90 (NF90) (Li et al., 2014b), Vesicle-

associated membrane protein-associated protein A and B 

(VAPA and VAPB) (Evans et al., 2004; Gao et al., 2004; 

Hamamoto et al., 2005), Polo-like Kinase 1 (Chen et al., 

2010), TBC1 domain family member 20 (TBC1D20) 

(Nevo-Yassaf et al., 2012), Amphiphysin II (Zech et al., 

2003), Reticulon 1 and 3 (RTN1 and RTN3)    

(Tripathi et al., 2013), Protein Phosphatase 2A 

(Georgopoulou et al., 2006), cyclophilin A (Liu et al., 

2009), F-Box and Leucine-rich repeat protein 2 (FBXL2) 

(Wang et al., 2005), stress granule components (Pène et al., 

2015) and the lipid kinase phosphatidylinositol-4 kinase 

III (Harak et al., 2014) among many others. Some of 

these are cellular kinases with well known roles in HCV 

infection in vivo (Reed et al., 1997). 

NS5B is the viral RNA-dependent RNA Polymerase 

(RdRP) responsible for the synthesis of the (+) strand 

progeny through a (-) strand intermediate (Sesmero and 

Thorpe, 2015). NS5B X-ray crystal structures have 

revealed a polymerase-typical right-hand shape with 

fingers, palm and thumb subdomains (Verdaguer et al., 

2014). The catalytic site is totally encircled, as other viral 

RdRP, with extensive interactions by loops connecting 

fingers and thumb subdomains (Verdaguer et al., 2014). 

The C-terminal end has a very hydrophobic peptide that 

allows NS5B to be anchored to ER membrane. This 

peptide can be removed to increase recombinant NS5B 

purification yields without affecting NS5B RdRP 

activity (López-Jiménez et al., 2014). In vitro RNA 

synthesis by NS5B can be induced in the presence of a 

template-primer or initiated by a de novo mechanism 

(López-Jiménez et al., 2014), the latter being the most 

likely to occur in vivo. A beta-hairpin from the thumb 

subdomain protrudes into the catalytic center preventing 

primer-dependent RNA synthesis (Lesburg et al., 1999).  

Residues in the tip of this structure act as a platform to 

initiate RNA synthesis by a de novo mechanism. Once 

the first phosphodiester bond is formed the beta-hairpin 

is removed and NS5B can complete genome replication 

(Appleby et al., 2015). 
HCV replicates its genome in replication complexes 

where viral and cellular proteins co-localize. A large 

excess of each HCV non-structural protein with respect 
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to (+) and (-) strand HCV RNA has been observed 

(Quinkert et al., 2005), suggesting extensive protein-

protein interactions and molecular crowding 

phenomena. Actually, HCV NS5B interacts with itself, 

affecting RNA synthesis activity in a cooperative way 

(López-Jiménez et al., 2014). Furthermore, HCV NS5B 

interacts with other HCV proteins and interactions 

with NS3, NS4A, NS4B and NS5A have been 

described (Ishido et al., 1998; Piccininni et al., 2002; 

Shimakami et al., 2004). 

Also, HCV polymerase directly interacts with host 

factors. NS5B activity can be regulated by 

phosphorylation. Actually, one of the first cellular 

proteins with a confirmed interaction with HCV 

polymerase was the PKC-Related Kinase 2 (PRK2) 

(Kim et al., 2004). This Serine/Threonine protein kinase 

regulates viral polymerase activity by phosphorylation of 

NS5B residues Ser29 and Ser42 (Han et al., 2014). Other 

cellular proteins with which NS5B interacts include 

ELAV like RNA binding protein 1 (ELAVL1 or HuR) 

(Shwetha et al., 2015), BCL2 Interacting Killer (BIK) 

(Aweya et al., 2015), Vesicle-Associated Membrane 

Protein (VAMP)-associated proteins A, B and C (VAPA, 

VAPB and VAPC) (Hamamoto et al., 2005; Tu et al., 

1999; Goyal et al., 2012), Nucleolin (Hirano et al., 2003; 

Kusakawa et al., 2007), human Eukaryotic Initiation 

Factor 4A2 (hEIF42) (Kyono et al., 2002), ubiquilin 1 

(UBQLN1 o hPLIC1) (Gao et al., 2003), Alpha-

actinin (Lan et al., 2003) and chaperonin TRiC/CCT 

(Inoue et al., 2011).  

The cytoplasmic double-stranded RNA binding 
protein Staufen 1 (Stau1) coimmunoprecipitates HCV 
NS5B and the host factor Protein Kinase R (PKR), 
which is critical for interferon-induced cellular antiviral 
and antiproliferative responses (Dixit et al., 2016). 
Protein Kinase R (PKR) inhibits translation via eIF2α 
phosphorylation (Donnelly et al., 2013) and regulation 
of PKR activity is central for the control of cellular 
translation by several viruses (Flint et al., 2015). HCV 
may appropriate Stau1 to its advantage to prevent PKR-
mediated inhibition of eIF2α, which is required for the 
synthesis of HCV proteins and also for translocation of 
viral RNA genome to the polysomes for efficient 
translation and replication (Dixit et al., 2016). 

Our laboratory has recently described the interaction 

of NS5B with the Ser/Thr kinase Akt (Llanos Valero et al., 

2016). This interaction has been confirmed by in vitro 

kinase assays, coimmunoprecipitation of NS5B and Akt, 

either expressed ectopically or from HCVcc infected 

cells. The interaction of HCV NS5B with this cellular 

kinase of the PI3K/Akt/mTOR pathway leads to a 

subcellular relocalization of Akt from a cytoplasmic to a 

perinuclear region in a clear colocalization with HCV 

polymerase. Relocalization was observed in cells 

transfected with plasmids encoding NS5B and Akt as 

well as in cells carrying a subgenomic replicon or 

HCVcc infected cells. NS5A is susceptible to be 

phosphorylated by Akt and relocalization of Akt with 

NS5B could drive NS5A phosphorylation at this 

subcellular region. 

Relationship between HCV infection and sex 

hormones has been previously documented 

(Giannitrapani et al., 2006; Baden et al., 2014; White et al., 

2014). Some estrogen-related drugs inhibits the 

production of HCV virus particles in an Estrogen 

Receptor alpha (ER1)-dependent manner (Hayashida et al., 

2010). It has been also shown that ER1 may recruit 

NS5B to the HCV replication complex (Watashi et al., 

2007) and our laboratory has described the interaction 

between HCV NS5B and ER1 in vitro, showing that this 

protein-protein interaction depends on NS5B 

oligomerization (Hillung et al., 2012). Cellular DEAD-

box helicase 5 (DDX5 or p68) also interacts with HCV 

NS5B (Goh et al., 2004). DDX5 is a RNA-dependent 

ATPase and it is implicated in cellular processes 

involving alteration of RNA secondary structure, such as 

translation initiation. DDX5 has been involved in HCV 

translation (Ríos-Marco et al., 2016) as well as in 

replication of other RNA(+) viruses as Japanese 

Encephalitis virus (Li et al., 2013) and retrovirus 

(Sithole et al., 2015) and negative strand RNA viruses as 

influenza virus (Jorba et al., 2008). DDX5 also interacts 

with Estrogen Receptor 1 (ER1) (Fujita et al., 2003) and 

with Akt (Zhu et al., 2011). Therefore, it seems to be a 

complex network comprising interactions among HCV 

replicase, Akt, DDX5 and ER1 in association with ER 

membrane that are important for HCV replication. 

However, experiments to demonstrate a clear 

localization of these host factors into the HCV 

replication complex have to be done. Once the 

mechanism governing these interactions will be decoyed 

we explore use of host factor inhibitors to treat viral 

infections. Currently, some inhibitors directed against 

ER1 (Riggs and Hartmann, 2003; Cuzick et al., 2013) 

and Akt (Brown, 2016; Nitulescu et al., 2016) are in 

clinical use or in development for treating other diseases. 

Therefore, HCV polymerase interacts with several 

host factors that are important not only for viral 

replication process but also to control cell cycle, cell 

metabolism, etc (Lee et al., 2006). By these interactions, 

NS5B not only replicates HCV genome but also controls 

several cellular functions important for virus-cell 

relationship. Under these premises NS5B is a 

multifunctional protein so NS5B direct inhibition could 

lead to HCV replication inhibition by affecting several 

steps in the replicative cycle of the virus. However, the 

great genetic diversity of RNA(+) viruses make the 

appearance of resistant mutants a definite possibility. 

Targeting one or more of the interactions described 

above could also blockade HCV replication making it 

more difficult for the selection of resistant viruses. 
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Finally, several cellular pathways are shared by 

different RNA(+) viruses and targeting host factors 

could be useful for inhibiting viral infections from 

different viruses. 

Conclusion 

Viruses needs to replicate inside the cells usurping 

cellular functions. HCV NS5B, the main component 

of the viral replicase, not only replicates HCV RNA 

but also interacts with host factors to subjugate 

cellular metabolism. A deeper knowledge about 

NS5B-host interactions will be useful in the design of 

new, strongest and panviral antiviral strategies with 

limited side effects. 
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