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Abstract: Problem statement: Logistic regression, perhaps the most frequently used regression 
model after the General Linear Model (GLM), is extensively used in the field of medical science to 
analyze prognostic factors in studies of dichotomous outcomes. Unlike the GLM, many different 
proposals have been made to measure the explained variation in logistic regression analysis. One of the 
limitations of these measures is their dependency on the incidence of the event of interest in the 
population. This has clear disadvantage, especially when one seeks to compare the predictive ability of 
a set of prognostic factors in two subgroups of a population. Approach: The purpose of this article is 
to study the base-rate sensitivity of several R2 measures that have been proposed for use in logistic 
regression. We compared the base-rate sensitivity of thirteen R2 type parametric and nonparametric 
statistics. Since a theoretical comparison was not possible, a simulation study was conducted for this 
purpose. We used results from an existing dataset to simulate populations with different base-rates. 
Logistic models are generated using the covariate values from the dataset. Results: We found 
nonparametric R2 measures to be less sensitive to the base-rate as compared to their parametric 
counterpart. Logistic regression is a parametric tool and use of the nonparametric R2 may result 
inconsistent results. Among the parametric R2 measures, the likelihood ratio R2 appears to be least 
dependent on the base-rate and has relatively superior interpretability as a measure of explained 
variation. Conclusion/Recommendations: Some potential measures of explained variation are 
identified which tolerate fluctuations in base-rate reasonably well and at the same time provide a good 
estimate of the explained variation on an underlying continuous variable. It would be, however, 
misleading to draw strong conclusions based only on the conclusions of this research only. 
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INTRODUCTION  

 
The Search for R2 analogs in logistic regression: 
Prediction of future outcomes based on a given set of 
covariates is a key component of regression analysis. In 
Ordinary Least Squares (OLS) regression analysis, the 
predictive accuracy of a linear model is often judged 
using the R2 statistic. This statistic has several 
mathematically equivalent definitions and multiple 
interpretations such as the proportion of variation in the 
dependent variable explained by the regressors, a 
measure of the strength of relationship between the 
covariate(s) and the response and the squared 
correlation between the observed and the predicted 
response. This statistic is usually not used as a measure 
of goodness-of-fit as other tools are better suited to that 
purpose (Hosmer et al., 2011). When the outcome 

variable is dichotomous, logistic regression model is the 
most popular choice. In most instances, interest lies in 
determining how well the model predicts the probability 
of group membership with respect to the dependent 
variable. Unlike the OLS regression, more than a dozen 
of R2 measures have been suggested for the logistic 
regression model (Mittlbock and Schemper, 1996; 
Menard, 2000; DeMaris, 2002; Liao and McGee, 2003). 
But the best form of R2 is not clear yet. Mittlbock and 
Schemper (1996) reviewed 12 measures of explained 
variation for logistic regression, Menard (2000) six and 
DeMaris (2002) seven, with some overlap. Other authors 
have proposed adjusted R2 analogs (see, Liao and 
McGee, 2003; Mittlbock and Schemper, 2002), for 
exmaple). Recommendations based on various 
researches were different as different criteria were used 
to evaluate the R2 analogs. 
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 Kvalseth's sixth criteria for a “good” R2 statistic for 
the linear model (Kvalseth, 1985) requires an R2 
measure to be comparable across different models fitted 
to the same data. Menard (2000) extended this criteria 
requiring an R2 measure to be comparable not only 
across different predictors but also across different 
dependent variables and different subsets of the dataset. 
With the help of an empirical example Menard (2000) 
demonstrated that R2 measures in logistic regression are 
sensitive to the incidence of the event of interest in the 
population. Even if the coefficients associating 
particular variables to the outcome are the same in 
different populations, the value of the R2 for 
populations with different incidence rates tend to be 
different. This phenomena is sometimes referred as the 
“base-rate” problem (Menard, 2000). 
 Having an R2 measure that depends on the 
incidence of the response has disadvantage if one is 
seeking to compare the predictive ability of two 
different sets of prognostic factors or to compare the 
same set of factors in two subgroups of a population or 
in two different populations. If a R2measure depends on 
the underlying incidence of the disease under study then 
the R2 values for these two cases could differ because 
of the difference in the underlying incidence and not 
because of different predictive abilities. This 
phenomena is illustrated with the help of an empirical 
study in the following subsection. 
 
An empirical example: The data used in this example 
are a subset of the Framingham Heart Study with 
known values of the covariates (age, systolic blood 
pressure, serum cholesterol, current cigarette smoking 
status and diabetic status). A logistic model with the 
ten-year incidence of Coronary Heart Disease (CHD) 
was estimated and thirteen different R2 measures were 
calculated. Table 1 presents estimated R2 s for each of 
the thirteen R2 measures. The measures are larger for 
the female group than the male group, with only a few 
exceptions. If we had performed OLS regression, we 
would claim that we are able to predict CHD better in 
women than in men. However, women developed CHD 
at only half the rate that men did and if our measures 
are affected by the underlying rate of disease, then it 
would be misleading to make such a claim. 
 For a more detailed examination of the effect of the 
base-rate on potential measures of explained variance, 
we conducted a simulation study. 
 The purpose of this article is to study the base-rate 
sensitivity of several R2 measures in logistic regression. 
We use an actual dataset to simulate populations with 
different base-rate. Logistic models are generated using 
actually occurring covariate values. The organization of 
the study is as follows: We introduce the R2 measures 
to be examined. Simulation methods and simulation 
results are discussed. Summary and concluding remarks 
are given. 

R2-measures in logistic regression: We present some 
of the R2 measures which have been proposed in the 
literature to estimate explained variation in logistic 
regression. Consider n observations (yi, xi) on a binary 
response variable y and a covariate vector x = (x1…xp). 
The relationship between y and x is modeled by a 
logistic model Eq. 1: 
 

o

o
i i i i

e 'x
Pr(y 1 x ) (x )

1 e 'x

β

β

+ β= ≡ π =
+ + β

 (1) 

 
where β is a (p+1)-dimensional parameter vector. We 
denote the estimates from a logistic regression by 

i i iPr(y 1| x ) (x )= = π
⌢ ⌢  and 

n

i ii 1
Pr(y 1) y (y / n)

=
= ≡ =∑

⌢
. 

For logistic model with binary y it can be shown that 
y = π , the mean of conditional probability of success 
for all possible combinations of the covariate values.   
  
Ordinary Least Squares R2 2

OLS(R ) : It is a natural 

extension of the coefficient of determination in OLS 
regression to the case of a binary y and is given by Eq. 2: 
 

2n n
2 2
OLS i i i

i 1 i 1

R 1 (y ) / (y y)
= =

= − − π −∑ ∑
⌢  (2) 

  
Gini's Concentration R2 2

G(R ) : Gini's concentration 

measure s 2
j 1 jC( ) 1 =π = − π∑ is proposed as a measure of 

dispersion of a nominal random variable γ that assumes 
the integral values j, 1 ≤ j ≤ s, with probability πj 
(Haberman, 1982). If the outcome variable is binary, 
C(π) reduces to 2π (1-π), where π is the probability that 
Y=1. The Gini's Concentration R2 is the given by Eq. 3: 
 

n
2
G i i

i 1

R 1 (1 ) / [ny(1 y)]
=

= − π − π −∑
⌢ ⌢  (3) 

 
The Likelihood Ratio R2 2

L(R ) : Let L0 be the 

likelihood of the model containing only the intercept 
and LM be the likelihood of the model containing all of the 
predictors. The quantity DM=-2logLM represents the SSE 
for the full model and D0 = -2logL0 represents the SSE of 
the model with only the intercept included, analogs to the 
total sum of squares (SST) in OLS. Thus the likelihood 
ratio R2 for a logistic model becomes Eq. 4: 
 

2
L M oR 1 log(L ) / log(L )= −  (4) 

  
R2 Based Upon Geometric Mean Squared 
Improvement 2

M(R ) : In the linear regression model with 

normally distributed errors with zero mean and constant 
variance it can be shown that R2 =1-(Lo/LM)2/n 
(DeMaris, 2002).  
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Table 1: Male and female R2 from a single cohort study 
 2

pR  2
OLSR  2

GR  2
LR  2

MR  2
NR  2

CR  2
CSR  ACU 2

aτ  2
bτ  2

DR  2
sR  

Females  
( π = 0.058)  0.060  0.060  0.062  0.110  0.048  0.133  0.047  0.151  0.756  0.003  0.029  0.512  0.043  
Males  
( π = 0.119)  0.040  0.040  0.048  0.059  0.042  0.081  0.041  0.097  0.686  0.006  0.029  0.372  0.043  

 
Since the method of maximum likelihood is the primary 
method of parameter estimation in the logistic 
regression, it seems quite natural to extend this concept 
of explained variation to the logistic regression setting. 
Maddala (1983) and Magee (1990) proposed the 
following R2 analog Eq. 5: 
 

M 0
2
[ln(L ) ln(L )]2 n

M 0 M
2/nR 1 e 1 (L / L )

− −
= − = −   (5) 

 
 Since L0≤ LM, 2

MR must be less than one. The 

maximum attainable value for 2MR  in Eq. 5 is max( 2
MR ) 

=1-(L0)
2/n. Nagelkerke (1991) proposed adjusting 2

MR  

by its maximum, 2/n
01 L− , to produce Eq. 6: 

 
2/n

2 0 M
N 2/n

0

1 (L / L )
R

1 L

−=
−

 (6) 

 
Contingency Coefficient R2 ( 2

CR ): Aldrich and Nelson 

(1984) proposed an R2 analog based on the model Chi-
squared statistics GM = -2log (L0/LM). It is a variant of 
the contingency coefficient and is given by Eq. 7:  
 

2
C M MR G / (G n).= +  (7) 

 
2
CR  has the same mathematical form of the squared 

contingency coefficient and as such cannot equal 
one, even for a model that fits the data perfectly, 
because of the addition of the sample size in the 
denominator. Because of this limitation, Hagle and 
Mitchell (1992) proposed to adjust 2

CR  by its 

maximum to produce Eq. 8:  
 

2 2 2
CS G GR R / max (R )=  (8) 

 

where, max 2
C(R )= 2[y log y (1 y) log(1 y)]

1 2[y log y (1 y) log(1 y)]
− + − −
− + − −

 and 

n
i iy y / n=∑  is the sample proportion of cases for which 

y = 1. 
 
Squared Pearson correlation ( 2

pR ): In linear 

regression R2 is mathematically equivalent to the 

squared correlation between y andy
⌢ , its sample fitted 

value according to the model. The same idea is 
extended to the case of logistic regression and the R2 
analog is obtained by squaring the correlation 
coefficient between y and π⌢  as Eq. 9 (Maddala, 1983): 
 

n 2 2
i 1 i i2 2

p n 2
i 1 i

[ y ny ]
R [corr(y, )]

ny(1 y) ( y)
=

=

π −
= π =

− π −
∑

∑

⌢
⌢

⌢  (9) 

  
Squared Spearman's Rho (2

Sρ ): Spearman's Rho is 

simply the Pearson's product moment correlation 
between ranks of y and π⌢ . If we denote the rank of z by 
R(z) and mean of the ranks of both variables by 
R (n 1) / 2≡ +  then Spearman's ρ is given by Eq. 10: 
 

n
i 1 i i

s n 2 n 2
i 1 i i 1 i

(R(y ) R)(R( ) R)
r

(R(y ) R) (R( ) R)
=

= =

− π −
=

− π −
∑

∑ ∑

⌢

⌢  (10) 

 
 Spearman's Rho is very close to Pearson's product 
moment correlation in normally distributed samples. 
For notational consistency, we will use 2SR  to denote 

squared rS hereafter. 
 
Squared Kendall's ττττs ( 2

aτ and 2
bτ ): Kendall (1990) 

suggested three possible coefficients, which he 
designated as τa, τb and τc. Only the first two of these 
coefficients are considered for our simulation study. 
Kendall's 2

aτ  and 2
bτ  are defined respectively as Eq. 11 

and 12: 
 

i j j i j i
a

sign(y y ) sign ( )

n(n 1) / 2
< − π − π

τ =
−

∑
⌢ ⌢

 (11) 

 
And: 
 

i j j i j i
b 2 2

i j j i j ii j

sign(y y )sign ( )

sign (y y ) sign ( )

<

< <

− π −π
τ =

− π −π
∑
∑ ∑

⌢ ⌢

⌢ ⌢  (12) 

 

where, sign(z) is defined as sign (z) = 

1 if z 0

0 if z 0

1 if z 0.

>
 =
− >
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Squared Somers'd: Under the hypothesis that y causes 
or predicts π⌢ , Somers (1962) proposed to use ydπ⌢  and 

for the hypothesis that π⌢  causes of predicts y, the 
proposed coefficient is yd π⌢ . The coefficients are defined 

respectively as Eq. 13 and 14: 
 

i j j i j i

2
i j j i

y

sign(y y )s ign( )
d

sig n (y y )
<

<
π

− π − π
=

−
∑

∑
⌢

⌢ ⌢

 (13) 

 

i j j i j i

2
i j j i

dy

sign(y y )s ign( )

sign ( )
<

<
π

− π − π
=

π − π
∑

∑
⌢

⌢ ⌢

⌢ ⌢  (14)    

 
with sign (z) defined as above. Somers' d's penalize for 
pairs tied on y only, in directional (asymmetric) 
hypotheses in which y causes or predicts π⌢ ; and to 
penalize for pairs tied on π⌢  only, in hypotheses in 
which π⌢  causes or predicts y. Kendall's τb is the 
geometric average of both asymmetric Somers' d, i.e., 

b y yd dπ πτ = ⌢ ⌢ . Because of this relationship, which is the 

same as the relationship between the classical 
regression coefficients and the product moment 
correlation (r2 = bxy byx), it is often viewed as an analog 
of a regression rather than a correlation coefficient. For 
notational consistency, we will use 2DR  to denote 

squared yd π , hereafter. 

 
Area Under ROC Curve (AUC):  Suppose that the 
population under study can be divided into two sub-
populations based on the status of the outcome variable 
Y: D (diseased) if Y = 1 and D  (not diseased) if Y = 0. 
Let F1 (.) and F0 (.) be the CDFs of π(x), the conditional 
probability of the outcome of interest, in D and D , 
respectively. Let c∈ℝ  be such that: 
  

1 if (x) c,
Y

0 otherwise

π ≥
= 


 

 
 For a given value of c, the sensitivity and 
specificity of a classification model are defined as 
sensitivity = Pr (π(x)≥c| Y=1)=1-F1 (c) and specificity = 
Pr (π(x) < c |Y = 0 = F0(c) respectively. The ROC curve 
is then obtained by plotting 1-F1(c) against 1-F0(c) for 
all possible values of c. The area under the ROC curve 
is then given by Eq. 15:  
 

1 o

1 0

1 0

AUC (1 F (c))d(1 F (c))

P[ (x) c, c]dc

P[ (x) (x)]

−∞

+∞
+∞

−∞

= − −

= π > π =

= π > π

∫

∫  (15) 

where, π1(x) denotes conditional probability of disease 
in the diseased. The last equality follows because of the 
independence of the conditional probabilities in the two 
groups. Thus AUC represents the probability that a 
randomly chosen diseased subject is correctly rated or 
ranked with greater suspicion than a randomly chosen 
non-diseased subject.  
 

MATERIALS AND METHODS 
 
Simulation study: Consider a response variable Y and 
a covairate vector X = (X1, X2,… Xp )'. Let us further 
consider m different populations or m subsets of the 
same population and assume that each of the covariates 
X1, X2,…Xp has the same effect on the outcome variable 
Y in all populations (i.e. fixed effect across the 
populations) but each population has different 
proportions of successes (Y = 1).  Using the logistic 
model, the odds of success in rth (r =1, 2,…, m) 
population is given by Eq. 16: 
 

( r )
o( r) (x) e 'x, r 1,2,...,mβΦ = + β =  (16) 

  
 The odds ratio of jth population relative to the kth 
population is then given by Eq. 17: 
 

( j)
o (k)

oOR e t 0β= − β ≡ >  (17) 
 
 This gives ( j) (k )

0 0 log(t)β = β + . It follows that for a 

given t>1, ( j) (k )(x) (x)π > π . Where π (r) = pr
(r) (Y = 1) is 

the base-rate in the rth population. Therefore, by fixing 
the odds ratio to some constant t > 0, it is possible to 
find a *

0β which can be used to generate new Y* with odds 

of success t times the odds success in the original data. 
 To design our simulation study, we elected to take 
advantage of naturally occurring covariate values by 
employing existing dataset to generate true logistic 
regression models. The data was a subset of the 
Framingham Heart Study data and consisted of 4,123 
Men and women examined at a baseline examination 
and followed for 10 years. During the next 10 years, 
370 (about 9%) developed Coronary Heart Disease 
(CHD). Males were twice as likely to develop CHD as 
females (6.0% for females, 12.7% for males). We 
simulated the logistic models as below. 
 
Simulation algorithm: (i) Fit a logistic model to the 

original data that specifies: 
6

o xi i1 0(x) e
β + β=∑Φ = , where x1 

= age in years x2= systolic blood pressure (mmHg), x3 
serum cholesterol (mg/dL), x4= male gender (0 = female, 
1 = male), x5 = Cigarette smoker (0 = no, 1 = yes) and x6 
= diabetic (0 = no, 1 = yes). Compute R2 measures and 
obtain the estimates oβ

⌢
and 1 2 6

ˆ ˆ ˆ ˆ' ( , ,..., )β = β β β .  
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(ii) Let *
0β̂  be the estimate of 0β from a data set with 

odds of success two times the odds of success in the 

original data. Substiture t = 2 in � *
0 0

* (x )
OR e t

(x )
β −βΦ= = =

Φ

⌢ ⌢
⌢

⌢  

and solve for *
0β
⌢

. Compute 
* ˆ ' x0

*
* ˆ ' x '0

e
(x)

1 e

β +β

β +β
π =

+

⌢

⌢

⌢ , where 'β
⌢

 

is obtained in step i). 
(iii) Generate y* such that: 
  

*
* 1 if (x) U, where U Uni(0,1),

y
0 otherwise

 π ≥= 


⌢
∼  

 
(iv) Select a random sample of size n from the new 

data, fit the regression model i
6 x0 ii 0(x) e

β + β=∑Φ = and 

compute R2 measures. 
(V) Repeat steps ii-iv for t = 3, 4,…, k. We used k =14 
in our simulation. This yielded datasets with base rates 
ranging from 8.6-49.6%. 
(Vi) Repeat steps ii-v 10,000 times for each of the 
sample sizes 500, 1000, 2000 and 4000. However, 
sample size did not affect the average value of any of 
the R2 measures. Therefore, we present only the results 
for the sample size 4,000.  
 

RESULTS 
 
Simulation results: Intercorrelations of different R2 
measures and their correlations with the base-rate are 
presented in Table 2. Squared correlation of the R2 
measures with the base-rate are presented in the last row of 
the same table. Only two of the 13 R2 measures, AUC 
and 2

DR , have very low (0.011) squared correlations with 

the base-rate. 2
LR  has some advantage over the other R2 

measures in the sense of having a low squared correlation 
with base-rate, but it is still substantial. 
 Means of the parametric and nonparametric 
measures are plotted against the base-rate in Fig. 1 and 
2, respectively. All the 9 parametric measures exhibit a 
monotonically increasing tendency with the base-rate 
(Fig. 1). 2

CSR is uniformly dominant over all other 

parametric measures, followed by 2
NR , across the levels of 

π. For small π  (less than 0.2), 2
LR  appearers to be the third 

largest measure, but as π approached to 0.5 other measures 
come to the fore forcing  2LR to be the smallest R2 measure 

for π >0.25. The remaining six parametric measures have 
almost identical means across the levels of π . 
 Among the nonparametric measures, the AUC 
statistic consistently resulted in very large mean values 
irrespective of the base-rate followed by the 2

DR  (Fig. 2).  

 
 
Fig. 1: Mean of the Parametric R2 Measures by Base-rate 
 

 
 
Fig. 2: Mean of the Nonparametric R2 Measures by 

Base-rate 
 
These two measures, unlike the rest of the 
nonparametric R2 measures, exhibit a negative 
correlation with π , which appears to be arising from 
the decreasing values of AUC for very low values of 
base-rate, particularly in the range 0%-2%. Otherwise, 
and 2

DR appear to be mostly invariant with respect to the 

base-rate. All of these measure had very small standard 
deviations. We did not find any noticeable difference in 
their standard deviations (Table 3). 
 We evaluated the base-rate sensitivity of R2 
measures by examining the rate of change in their 
means associated with the small changes in the base-
rate in the neighborhood of a given level of π . In doing 
so, we numerically computed derivatives of the R2 
measures with respect to the base-rate using the "dydx" 
function available in stata @ 9.1 software (Stata Base 
Reference Manual, 2005). We did not consider the sign 
of the derivatives as we were particularly interested in 
the magnitude, rather than the direction of base-rate 
sensitivity of these R2 measures. The results are 
presented in Fig. 3 for the parametric and in Fig. 4 for 
the nonparametric R2 measures. The marked points 
represent absolute values of the numeric derivatives of 
the R2 measures evaluated at each level of π employed.  
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Table 2: Correlation between base-rate and various R2 measures. The last row gives the squared correlation of π  with each of the R2 measures. 

 R2 π  2
pR  2

sR  2
OLSR  2

GR  2
LR  2

MR  2
NR  2

CR  2
CSR  ACU 2

aτ  2
bτ  2

DR  

π   1.000  
2
pR  0.899  1.000  

2
sR  0.927  0.994  1.000  

2
OLSR  0.899  1.000  0.994  1.000  

2
GR  0.954  0.942  0.961  0.942  1.000  

2
LR  0.549  0.797  0.754  0.796  0.570  1.000  

2
MR  0.919  0.996  0.998  0.997  0.958  0.767  1.000  

2
NR  0.848  0.985  0.972  0.985  0.880  0.882  0.977  1.000  

2
CR  0.917  0.996  0.998  0.996  0.960  0.764  1.000  0.976  1.000  

2
CSR  0.857  0.990  0.979  0.990  0.897  0.863  0.984  0.998  0.984  1.000  

ACU -0.105  0.165  0.114  0.164  -0.133  0.683  0.120  0.306  0.114  0.269  1.000  
2
aτ  0.970  0.969  0.986  0.969  0.968  0.680  0.980  0.935  0.979  0.942  0.028  1.000  

2
bτ  0.927  0.994  1.000  0.994  0.961  0.754  0.998  0.972  0.998  0.979  0.114  0.986  1.000  

2
DR  -0.105  0.165  0.114  0.164  -0.133  0.683  0.120  0.306  0.114  0.269  1.000  0.028  0.114  1.000  

r2 With π  0.809  0.859  0.809  0.911  0.302  0.844  0.718  0.841  0.734  0.011  0.940  0.859  0.011  

 
Table 3: Mean and standard deviations of various R2 measures at different base-rates (standard deviations are given in parenthesis). 

π  
 ----------------------------------------------------------------------------------------------------------------------------------------------------------- 
R2 0.0857  0.1508  0.2036  0.2479  0.2860  0.3193  0.3489  0.3753  0.3992  0.4209  0.4408  0.4591  0.4760  0.4916  

2
pR  0.0650  0.0940  0.1100  0.1220 0.1310  0.1360  0.1410  0.1450  0.1470  0.1490  0.1500  0.1520  0.1520  0.1530  

 (0.010)  (0.010)  (0.010)  (0.010)  (0.010)  (0.009)  (0.010)  (0.010)  (0.010)  (0.009)  (0.009)  (0.010)  (0.010)  (0.010)  
2
sR  0.0500  0.0790  0.0980  0.1130  0.1230  0.1310  0.1370  0.1410  0.1440  0.1470  0.1480  0.1510  0.1500  0.1520  

 (0.006)  (0.007)  (0.008)  (0.009)  (0.009)  (0.009)  (0.009)  (0.010)  (0.010)  (0.010)  (0.010)  (0.010)  (0.010)  (0.010)  
2
OLSR  0.0640  0.0930  0.1100  0.1220  0.1300  0.1360  0.1410  0.1440  0.1470  0.1480  0.1500  0.1520  0.1520  0.1530  

 (0.010)  (0.010)  (0.010)  (0.010)  (0.009)  (0.009)  (0.010)  (0.010)  (0.010)  (0.009)  (0.009)  (0.010)  (0.010)  (0.010)  
2
GR  0.0640  0.0930  0.1100  0.1220 0.1300  0.1360  0.1410  0.1440  0.1470  0.1490  0.1500  0.1510  0.1520  0.1530  

 (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  
2
LR  0.0970  0.1050  0.1080  0.1110  0.1130  0.1140  0.1150  0.1160  0.1170 0.1170  0.1170  0.1190  0.1180  0.1190  

 (0.012)  (0.010)  (0.009)  (0.009)  (0.008)  (0.008)  (0.008)  (0.008)  (0.008)  (0.008)  (0.008)  (0.008)  (0.008)  (0.008)  
2
MR  0.0550  0.0850  0.104 0 0.1170  0.1270  0.1330  0.1390  0.1430  0.1450  0.1470  0.1490  0.1510  0.1500  0.1520  

 (0.007)  (0.008)  (0.008)  (0.009)  (0.009)  (0.009)  (0.009)  (0.009)  (0.009)  (0.009)  (0.009)  (0.009)  (0.010)  (0.010)  
2
NR  0.1250 0.1490  0.1630 0.1730  0.1810  0.1860  0.1910  0.1940  0.1960  0.1980  0.1990  0.2020 0.2010  0.2020  

 (0.015)  (0.013)  (0.013)  (0.013)  (0.013)  (0.012)  (0.012)  (0.013)  (0.013)  (0.012)  (0.012)  (0.013)  (0.013)  (0.013)  
2
CR  0.0540  0.0810  0.0990  0.1100  0.1190  0.1250 0.1300  0.1330  0.1360  0.1370  0.1390  0.1410  0.1400  0.1410  

 (0.006)  (0.007)  (0.008)  (0.008)  (0.008)  (0.008)  (0.008)  (0.008)  (0.008)  (0.008)  (0.008)  (0.008)  (0.008)  (0.008)  
2
CSR  0.1460  0.1780  0.1960  0.2090  0.2190  0.2250  0.230  0.2340  0.2360  0.2380  0.2400  0.2430  0.2410  0.2430  

 (0.017)  (0.016)  (0.015)  (0.015)  (0.014)  (0.014)  (0.014)  (0.014)  (0.014)  (0.014)  (0.014)  (0.014)  (0.014)  (0.014)  
AUC 0.7290  0.7260  0.7250  0.7250  0.7240  0.7240  0.724  0.7240  0.7240  0.7240  0.7240  0.7250  0.7240  0.7250  
 (0.013)  (0.010)  (0.009)  (0.009)  (0.008)  (0.008)  (0.008)  (0.008)  (0.008)  (0.007)  (0.007)  (0.007)  (0.007)  (0.007)  

2
aτ  0.0050  0.0130  0.0210  0.0280  0.0340  0.0380  0.0420  0.0440  0.0460  0.0480  0.0490  0.0500  0.0500  0.0510  

 (0.001)  (0.001)  (0.002)  (0.002)  (0.003)  (0.003)  (0.003)  (0.003)  (0.003)  (0.003)  (0.003)  (0.003)  (0.003)  (0.003)  
2
bτ  0.0330  0.0530  0.0660  0.0750  0.0820  0.0870  0.0910  0.0940 0.0960  0.0980  0.0990  0.1010  0.1000  0.1010  

 (0.004)  (0.005)  (0.006)  (0.006)  (0.006)  (0.006)  (0.006)  (0.007)  (0.007)  (0.006)  (0.006)  (0.007)  (0.007)  (0.007)  

2
DR  0.4580  0.4530  0.4490  0.4490  0.4480  0.4480  0.4480  0.4480  0.4480  0.4480  0.4480  0.4500  0.4480  0.4500  

 (0.027)  (0.021)  (0.019)  (0.017)  (0.016)  (0.016)  (0.015)  (0.015)  (0.015)  (0.015)  (0.014)  (0.015)  (0.015)  (0.015)  



Am. J. Biostatistics 2 (1): 11-19, 2011 
 

17 

 
 
Fig. 3: Base-rate sensitivity of parametric R2 measures 

by base-rate 
 

 
 
Fig. 4: Base-rate sensitivity of Nonparametric R2 

Measures by Base-rate 
 
The large fluctuation observed at the higher end of π  is 
attributed mainly to the error in estimating the 
derivatives at the end points. 
 It is evident from Fig. 3 that 2

LR has a clear 

advantage over the rest of the parametric measures in 
the sense of having relatively small base-rate 
sensitivity. Like other parametric measures, it exhibits a 
steady decrease in base-rate sensitivity with 
increasingπ , but with a considerably slower rate as 
compared to the other parametric measures. The rest of 
the measures are in fairly good agreement with each 
other in terms of their sensitivity to the base-rate, at all 
levels of π  employed. They exhibit very high levels of 
base-rate sensitive at small values of π (<0.25). With 
increasingπ , their base-rate sensitivity rapidly 
decreases resulting quite low base-rate sensitivity 
when π  is close to 0.5.  
 Among the nonparametric measures, the AUC and 
the 2

DR  appear to be the least base-rate sensitive at all 

levels of π  (Fig. 4). In addition, these two measures 
demonstrate almost no fluctuation (except the 
fluctuation observed at the higher end of π , which, as 
mentioned earlier, is primarily due to the estimation 
error) in their base-rate sensitivity for π >0.2. 2

aτ , unlike 

other R2 measures, exhibits a convex relationship 
with π . Its base-rate sensitivity remains in between that 
of 2

bτ , the second worst measure in terms of the base-

rate sensitivity, and 2
DR . 

 
DISCUSSION 

 
Summary and concluding remarks: The very 
existence of a plethora of R2 measures for logistic 
regression sometime creates confusion about which 
measure to use in conjunction with a logistic regression 
analysis. Researchers have suggested various criteria 
for making judgment on these measures (for example 
see (Mittlbock and Schemper, 1996; Kvalseth, 1985; 
Sharma, 2006). Although the base-rate sensitivity of 
these R2 measures has been documented (Menard, 
2000; Gordon et al., 1979; Ash and Shwartz, 1999), the 
issue of whether this relationship to π  is always a 
weakness of the R2 measures is debated. Ash and 
Shwartz (1999) used a simple parametric model, 
applicable to a very specific situation, to clarify the 
effect of base-rate on 2OLSR  and argued that it was in fact 

a strength rather than the weakness of 2
OLSR . Because in 

real-world situations the value of a diagnostic test does, 
in fact, depend on the prevalence of the problem in the 
population being tested (Ash and Shwartz, 1999; 
Hilden, 1991). This idea was further augmented by 
Mittlbock and Schemper (2002). They argued that if the 
base-rate is either close to 0 or 1, then the outcome is 
already pretty much determined and there is not much 
uncertainty left to be explained. However, on the other 
hand if the base-rate is large (i.e. if π  is close to 0.5) 
the total variability in the dependent variable is high 
and the covariates may explain more of the uncertainty. 
 However, having an R2 measure that depends on 
the incidence of the response has clear practical 
disadvantages if one is seeking to compare the 
predictive ability of a set of predictors in two sub-
groups of a population. As illustrated in the empirical 
example presented, the analysis could lead to 
misleading conclusions. If a model, based on a 
particular R2 value, shows better predictability in one 
population than the other, it may be simply because of 
the difference in the underlying incidence rate and not 
because of different predictive abilities of the set of 
predictors used. In this study we have examined the 
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base-rate sensitivity of thirteen R2 type measures that 
are reported to have potential to be used as measures of 
explained variation in logistic regression analysis. Eight 
of these measures are parametric and the rest are 
nonparametric in nature. All of the R2 measures are 
sensitive to the fluctuations in the base-rate. The 
magnitude of the base-rate sensitivity varies greatly 
from one measure to another. Results show that 
nonparametric measures tend to be less base-rate 
sensitive than the parametric measures. Four of these, 
τa, τb, 2

DR and 2
SR , are measures of ordinal association. 

Use of measures of ordinal association with a logistic 
regression model may result inconsistent behavior. For 
example, if a weak continuous covariate is added to a 
model with a strong binary covariate, the proportion of 
a explained variance, as measured by a parametric R2, 
will increase slightly. But as a consequence of adding a 
continuous covariate in the model, ranks that were 
tied in the single covariate model are forced to 
slightly different values of the predictor. This may 
result a noticeable decrease in the proportion of 
explained variance, as measured by squared rank 
correlation, for example. 
 Among the parametric measures, 2

LR  is the most 
base-rate invariant. In addition, its base-rate sensitivity 
fluctuates less as compared to other parametric 
measures, across the levels of π . The closest 
competitors are the 2

NR  and the 2
CSR . The observed 

difference between the base-rate sensitivity of these 
measures and that of the2LR  is only marginal.  
 

CONCLUSION 
 
 Use of R2 in logistic regression has become a 
standard practice and many researchers have 
recommended it: Stata@ reports 2

LR  as the part of its 
logistic regression analysis; Menard (2000) also 
preferred 2

LR over other R2 measures because of its 
interpretability and independence from the base-rate; 
and Liao and McGee (2003) recommended routine use 
of 2

LR for logistic regression analysis. In spite of its 
interpretability and relatively superior ability to 
withstand fluctuations in base-rate, it is often criticized 
as having small values (Hosmer et al., 2011). If we 
consider y to be a binary proxy for a latent continuous 
variable y* that follows a multiple linear regression 
model, then the R2 analogs can be viewed as the 
estimates of the ρ2, the R2 of the latent scale y*. Sharma 
and McGee (2008) found 2

CSR to be numerically most 
consistent with the underlying ρ2 with 2

NR its nearest 
competitor. 2

CSR is based on the model chi-squared 
statistics and therefore has the advantages of being 
based on the quantity the model tries to maximize. 

Therefore, these two measures deserve serious 
consideration, especially when it is reasonable to 
believe that a underlying latent variable exists. They 
provide valuable information that 2

LR fails to provide, 
regarding the strength of relationship between the 
covariates and the underlying latent variable. 
 There are other potential factors whose effect on 
the base-rate sensitivity of R2 measure is not studied in 
the current research. It would be dangerous to draw 
strong conclusions based only on the conclusions of this 
research. Some potential measures of explained 
variation are identified which tolerate fluctuations in 
base-rate reasonably well and at the same time provide 
a good estimate of the explained variation on 
underlying continuous variable. 
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