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ABSTRACT 

A prelude to interpret a pattern in the repeating incidences is to identify the underlying frequency 

distribution of the collected data. A case in point is the Poisson distribution which is often selected for 

medical count data such as gene mutations, medication error and number of ambulatory pickups in a day. 

A requirement for the Poisson distribution is that the variance ought to be equal to the mean. The 

variance signifies the volatility in the occurrences. An implication is that the volatility becomes more 

when the average incidence is higher. When this requirement of the functional equivalence of the Poisson 

mean and variance is breached, the data deviates from a Poisson distribution. How could a data analyst 

recognize and point out to the medical team the dilution level of the requirement in their data? For this 

purpose, a simple and easier geometrical approach is developed in this article and illustrated with several 

historical data sets in the literature.  
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1. INTRODUCTION 

 What is Poisson distribution? A genesis of Poisson 

distribution with a misnomer is intriguing. About 119 

years ago, it was first introduced by de Moivre not by a 

French Probabilist Poisson, though the distribution is 

named Poisson. The Poisson distribution is frequently 

employed to explain uncertainty in count data such as the 

medication errors, adverse events, radioactive decay, 

traffic congestion, molecular mutations, ambulatory 

pickups of patients from their home as long as the data 

are about rarity (Cameron and Trivedi, 1986; Dalal et al., 

1989; Davutyan, 1989; Deb and Trivedi, 1997; 

Winkelmann and Zimmermann, 1994; Thakur et al., 

1980). For a chance mechanism to be governed by a 

Poisson distribution, three are assumptions which should 

be validated. The chance for any rare event to occur is 

proportional to the length of the time interval which is 

usually an infinitely small, the chance, for two or more 

rare events to simultaneously occur in a smaller time 

interval is slim and what happens in one time interval is 

stochastically independent of what happens in any other 

non-overlapping time interval.  

 A random variable Y in a background with all above 

three assumptions is called Poisson type. The probability 

mass function of Poisson random variable is Equation 1: 

 
y

poisson(y, ) e / y!
−λ

λ = λ  (1) 

 

where, y = 0, 1, 2,…, a collection of observables is and 

0<λ<∝ is the parameter space. The Poisson distribution 

is a member of the mean exponential family.  

 The Poisson probability model is popularly used to 

describe rare events such as arrival patterns in a queuing 

system, the number of decaying atomic elements in 

particle physics, the number of cancerous cells, the 

number of failing units in reliability discussions, the 

number of financial risk applicants seeking credit card, 

the number of false claims in auto insurance, the 

number of virus in toxicology studies, the number of 

foreign genes in bacteriology investigation, the 

number of traffic accidents in a highway during a time 

interval, the number of epileptic seizures in a patient 

and the number of cholera cases in a family during an 

epidemic among others. A unique property of Poisson 
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distribution is the equality of mean and dispersion. That 

is, var (Y) = λ = E (Y). In real life data, this unique 

Poisson property is not completely seen for a variety of 

reasons. Either an over or under dispersion in Poisson 

type data is noticed. To fix this breach of the 

requirement, statisticians seek modified Poisson 

distribution. After considering a gamma probability 

density for the intensity parameter, the Poisson 

distribution gets convoluted into a version called inverse 

binomial distribution. In spite of this remedial approach, 

even the inverse binomial distribution has been found to 

be poorly fitting many Poisson type data. In this remedial 

process, an incidence rate restricted Poisson distribution 

was introduced. Still, the one often wonders about what 

causes all versions of Poisson distribution to fail to fit 

their data. Is the rarity of the event doubtful? Or, is it the 

lack or dilution of unique Poisson property of equal 

mean and dispersion? Statisticians experience a 

frustration to understand the poor Poisson fit. How could 

a data analyst recognize and point out to the medical 

team a breach of the requirement in a data? For this 

purpose, a simple and easier geometrical approach is 

developed in this article and illustrated with several 

historical data sets in the literature. This geometric view 

of over/under Poisson dispersion as introduced and 

explained in this article would help to capture the 

breaching level in Poisson type data of real life scientific, 

social, economic, finance, medical, engineering, 

business, public health and industrial data from the 

literature are considered in the illustration. 

1.1. Geometric View of Over/Under Poisson 

Dispersion  

Consider a random sample
1 2 n
y ,y ,..., y  of observations 

from a Poisson distribution in (1) with the incidence 

parameter 0<λ<∝. Let their sample mean and dispersion 

be 
i

i n

i 1

y y / n
=

=

=∑  and 2

y i

i n

i 1

s (y y) / (n 1)
=

=

= − −∑  respectively. It 

is well known that y  and 2

y
s  are unbiased estimator of 

their population counterpartsµ and 2

y
σ  respectively. The 

unique property of equal mean and dispersion is 

echoed in the mapping of dispersion in terms of the 

mean by a bisecting straight line OD passing through 

the coordinate (0,0) at an angle equal to 45° in Fig. 1. 

 When an over or under dispersion prevails, the 

straight line passes through the coordinate (0, 0) but at an 

angle larger (in the case of over dispersion as in Fig. 1 or 

smaller (in the case of under dispersion as in Fig. 2 than 

45°. In other words, the line OD passing through the 

origin signifies perfect Poissonness in the data. For that, 

the point B should coincide with the point D. When the 

points B and D coincide, there is no dilution of Poisson 

dispersion and it means β is zero. 

 When β ≠ 0, the Poisson dispersion is saturated or 

diluted in the sense of unique property. An over 

dispersion is synonymous with an angle β>45°. In the 

case of under dispersed data, the point D would be below 

the bisecting diagonal line OD at an angle β>45°. Now, 

using the trigonometric formula: 
 

tanA tanB
tan(A B)

1 tanA tanB

±
± =

∓
 

 

It is easy to notice that the length BD is Equation 2:  

 
2

y

2

y

S y
tan

S y

−
β =

+
  (2) 

 

which is less than one when angle β>45°. The ratio in (1) 

can be called percent dilution index of Poisson 

dispersion. In the case of over dispersion, the 

dispersion 2

y
s is larger than y . In the case of under 

dispersion, the dispersion 2

y
s is less than y . Using the 

well-known Pythagoras theorem and geometric concepts 

for trigonometric formulas, it is easy to obtain that the 

length of BD, OD and OB are respectively 2

ys y, y 2−  

and 4 2

y
s y+ . Also:  

 
2 1/ 2

2 2

y

2 2 2 2 1/2

y y

Cos( ) [1 tan ( )]

(s y)

[(s y) ( s y) ) ]

−β = + β

+
=

+ + −

 

 

Hence Equation 3: 

 
2 2

y1

2 2 2 2 1/2

y y

(s y)
Cos ( )

[(s y) ( s y) ) ]

−

+
β =

+ + −
 (3) 

 

When equality of mean and dispersion exists (that is, 
2

ys y− = 0) as required in Poisson data, the expressions 

(2) and (3) imply that β = Cos
−1

 (1) = 45°. Otherwise, 

>45° in the case of over dispersion Fig. 1 and β >45° in 

the case of under dispersion Fig. 2. 
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Fig. 1. Geometry of over-dispersion 
 

 
 

Fig. 2. Geometry of under-dispersion 

 

Notice that a regression like relation exists between 
dispersion and mean with slope (= regression 
coefficients). The slope is than (45°± β). In the case of 
over dispersion, the sign is (+) and in the case of under 
dispersion, the sign is (-). But, it is so that than (45° = 

1) in the case of equality of mean and dispersion as 
required in Poisson data with β = 0. Also, the 
regression coefficient is linked to the correlation 

coefficient. This means that the estimate of the 
correlation under Poisson equal dispersion is: 

 
2 2

Y Y2(Y,S )Y

ˆ ˆCorr(Y,S S Y) 1ρ = = =   

 

 However, under over/under dispersion, an estimate 

of the correlation is Equation 4: 
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Table 1. Over-dispersion Poisson dilution and the correlation between the sample mean and dispersion 

  Sample Angle, β̂  Poisson  Correlation 

 Sample dispersion
2

y
S  using (2) dilution index 2

Y
(Y,S )

ρ̂  

Data variable mean y  (dispersion>mean) in degrees using (2) (%) using (6) 

# mutations seen in a length of 1089 sites of 1.190 1.590 8.18 14 0.1 

amino acids  

# contract strikes in US manufacturing companies  5.500 13.400 22.68 41 0.17 

# ships damaged by waves  10.200 236.500 42.53 91 0.87 

# patents in German companies  304.600  44.00 99 0.99 

# failed U.S. banks during 1947-81  6.300 11.800 16.90 30 0.48 

# airplane accidents in Canada during 1974-88 0.013 0.125 39.06 81 0.72 

# yeast cells  0.680 0.790 4.27 7 0.06 

# soldiers killed in Prussian army  0.700 0.760 2.35 4 0.03 

# O-rings with thermal distress at a given 

Fahrenheit temperature and pounds 0.390 0.430 2.79 4 0.04 

per square inch pressure in NASA  

flights with failures during 1981-86  

# times parasite visited without any attack before the third 2.100 4.700 20.92 38 0.12 

host attacked it  

# doctors visit according to austrailan health survey during 0.302 0.637 19.63 35 0.08 

1977-78  

# daily traffic accidents in virginia state during January 1, 0.860 0.979 3.70 6 0.05 

1969 through October 31, 1970  

 
Table 2. Under-dispersion Poisson dilution and the correlation between the sample mean and dispersion 

  Sample Angle, β̂  Poisson Correlation 

 Sample dispersion
2

y
S  using (2) dilution index 2

Y
(Y,S )

ρ̂  

Data variable mean y  (dispersion>mean) in degrees using (2) (%) using (6) 

(dispersion<mean)  2.10 1.70 6.00 10 0.08 

# children in Germany in a family where the mother’s  

age is between 40-65   

# hospital admissions due to acute poisoning 0.92 0.66 9.30 16 0.12 

during full moon  

# suicides per year in 18 states of Germany by Von  1.85 0.11 41.59 88 0.15 

Bortkiewicz  

# hospital visits according to national medical expenditure  1.50 0.56 24.52 45 0.21 

Survey of 1987-88 of n = 4406 respondents  

# tram accidents by n = 134 drivers over the years 1965-1970  2.75 0.35 37.74 77 0.20 

 
2 2

Y Y

2

Y

2(Y,S )Y

ˆ ˆCorr(Y,S S Y)

ˆ ˆvar(Y)(slope)

ˆvar(S )

ρ = ≠

=

 (4) 

 

 Substituting in (4) the
2

ySˆslope
y

= , the results in (5) 

and (6), an expression for the estimate of the correlation 

coefficient in (7) is obtained. Notice that Equation 5 and 6: 
 

2

YˆVar(Y Poisson)
n

σ

=  (5) 

And: 
 

2

Y2

Y

4,Y
ˆVar(S Poisson)

n

µ − σ

≈  (6) 

 

where, 2

y4,Yµ ≈ σ + µ is the fourth central Poisson moment. 

After algebraic simplifications, the expression for an 

estimate of the correlation coefficient is Equation 7:  

 

2 2

y y2

Y 2 2

y y

2(Y,S )Y

y S y y S
ˆ ˆCorr(Y,S Poisson) max( ,1)

S y y y S

− − −
ρ = ≈

+ + −
 (7) 
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In this approach, a visual meaning is involved and 

provided. The clients are at ease to quickly grasp the 

Poisson fit or it’s lacking. The visualization seems to be 

the most effective way of learning complicated Poisson 

dispersion versus mean. In the next section, several well-

known Poisson data are examined in terms of the 

formulas in (1) through (7). 

1.2. Illustrations 

The data sets in illustration include the number of 

genetic mutations, the number contract strikes in US 

manufacturing industries, the number of ships damaged 

due to sea waves, the number patents obtained in 

German companies, the number of airplane accidents in 

Canada, the number of failed US banks, the number of 

children per German family where mothers’ age fall in 

40-65 years, the number of daily hospital admissions due 

to poisoning during full moon season, the number of 

yeast cells as reported by William Gosset, the number of 

soldiers killed in Prussian army, the number of O-rings 

with thermal stress in NASA space flights, the number of 

yearly suicides in 18 states of Germany, the number of 

parasites visited before the attack by the host, the 

number of hospital visits by Australians and US citizen, 

the number of daily tram accidents in Yugoslavia and 

the daily number of accidents in Virginia State of the 

United States. Their sample mean and dispersions are 

displayed in Table 1 for over dispersed Poisson data 

and in Table 2 for under dispersed Poisson data. The 

angle, percent of dilution index from Poisson 

dispersion and the correlation between the sample 

average and dispersion of the data are estimated and 

displayed using expressions (1) through (6) in Table 1 

for over and in Table 2 for under dispersion. 

2. CONCLUSION 

 Biostatisticians and medical researchers have been 

puzzled when they experience the lack of fit of the data 

on rare incidences by the Poisson distribution. A root-

cause of it is the existence of disparity between the mean 

and dispersion in the data. The disparity is recognized as 

over-saturated when the dispersion is more than the 

mean and as diluted when the dispersion is less than the 

mean. In either situation, there is a need to quantify the 

level of disparity in the data. Approching the 

quantification geometrically, the level of disparity could 

be indexed as demonstrated in this article. In some data, 

the dilution is severe but mild in other data. Likewise, 

the saturation is stronger in some data but mild in other 

data. The index is expressed as a percentage so that 

different data sets could be compared with one another. 

More often, the medical researches require the 

comparison of different drugs or the comparison of how 

differently patients perform under the same medication. 
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