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Abstract: Neuroscience and brain-inspired artificial intelligence are 

significant research areas. Many countries have launched brain-related 

projects in which neuroscience and brain-inspired artificial intelligence are 

major targeted areas to increase national interests and enhance their 

strength in key areas such as military and homeland security in the 

competitive global world. Methods, emerging technologies, and progress 

in neuroscience and brain-inspired artificial intelligence are introduced in 

this paper that specifically include brain-inspired computing, brain 

association graph, brain networks, the connectome, brain reconstruction, 

imaging technologies used for the brain, chips and devices inspired by the 

human brain, brain-computer interface or brain-machine interfaces, 

cyborg, neuro-robotics, and quantum robotics. Challenges in some of the 

topics are also presented and discussed. 
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Introduction 

Biological neurons and synapses work well through 

processing and storing information simultaneously, while 

maintaining adaptability. Massive computation is fulfilled 

with extremely low energy consumption due to the 

plasticity and the co-location of memory and computing 

that are unique to the human brain. Biomimetic soft 

materials were used for synaptic connections. A synaptic 

device has memristive attributes that emulate biological 

synaptic plasticity. Neuromorphic computing deals with 

various computers, devices, and models inspired by the 

interconnectivity, performance, and energy efficiency of 

the human brain. Architectures for neuromorphic 

computing are designed to emulate the adaptability and 

energy efficiency of the brain (Hasan et al., 2018).  

Artificial Spiking Neural Networks (SNNs) try to 

emulate brain features (e.g., event-triggered processing, 

spike-based data encoding, and temporal processing of 

data) to fulfill energy-saving learning networks. The 

potential of SNNs for ubiquitous Internet of Things (IoT) 

and other applications can be fulfilled only if energy-

efficient and dedicated parallel hardware solutions are 

developed (Nandakumar et al., 2018). Wireless 

Electroencephalography (EEG) sensors, edge devices, 

cloud-assisted data capture, and longitudinal brain 

monitoring and alerting were used in brain science and 

technology (Nick et al., 2015). Cognitive processes 

about network interactions during creative performance 

have been identified and they are: Internally focused 

attention, prepotent-response inhibition, and goal-

directed memory retrieval. Correlational research using 

prediction modeling shows that functional connectivity 

between networks enables to predict an individual’s 

ability in creative thinking (Beaty et al., 2019).  

How the features of the online world influence 

human’s attentional capacity, memory process, and 

social cognition was studied. It was demonstrated that 

the Internet could lead to alterations in human’s 

cognition that may be reflected in some changes in the 

brain. Specifically, the influences on the brain and 

cognitive process lie in: (1) Rapid and ubiquitous 

access to online information outcompeting previous 

transactive systems and potential internal memory 

processes; (2) multi-faceted incoming information 

streams making people be involved in attentional-

switching and “multi-tasking”; and (3) the online social 

world making it possible that properties of social media 

have influences on life (Firth et al., 2019).  

The purpose of this paper is to introduce methods, 

emerging technologies, and progress in neuroscience 
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and brain-inspired artificial intelligence, and present 

and discuss challenges of some topics. Brain diseases 

are not the focus in the paper. The rest of the paper is 

arranged as follows: Section 2 introduces brain-

inspired computing; Section 3 presents brain 

association graph, brain networks, the connectome, 

and brain reconstruction; Section 4 describes imaging 

technologies used for the brain; Section 5 presents 

brain-inspired chips and devices; Section 6 deals with 

brain-computer interface or brain-machine interfaces, 

cyborg, neuro-robotics and quantum robotics; and 

Section 7 is the conclusion.  

Brain-Inspired Computing  

Neuromorphic systems (low-energy consumption) 

have gained great attention, spurring forward the 

development of brain-inspired hardware systems that 

operate on principles different from conventional 

computers and therefore consume much less power 

(Diehl et al., 2016). Table 1 shows a comparison between 

the computer and the human brain (Otoom, 2016). The 

abbreviations in the table are as follows: MISD—multiple 

instructions and single data; SIMD—single instruction 

and multiple data; MIMD—multiple instructions and 

multiple data; STM—short-term memory; LTM—long-

term memory; and MM—main memory. 

A train-and-constrain method was present that 

enables the mapping of machine learned (Elman) RNNs 

(recurrent neural networks) on a substrate of spiking 

neurons, while being compatible with current 

neuromorphic systems. The method consists of first 

training RNNs using backpropagation, then discretizing 

weights and ultimately converting them to spiking RNNs 

(Diehl et al., 2016). Brain-inspired hyperdimensional 

(HD) computing emulates cognition tasks by computing 

with hypervectors. MHD, a multi-encoder hierarchical 

classifier was proposed, which enables HD to take full 

advantages of multiple encoders without increasing the 

cost of classification (Imani et al., 2018).  

The concept of Universal Memcomputing Machines 

(UMMs) was introduce. UMMs are brain-inspired 

computing machines, thus processing and storing 

information on the same location. Memory properties of 

UMMs give them intrinsic parallelism, information 

overhead, universal computation power, and functional 

polymorphism (Traversa and Di Ventra, 2015). Brain-

inspired mechanisms such as spike timing dependent 

plasticity (STDP) enable agile and fast on-the-fly 

adaptability in the SNNs. When incorporating nanoscale 

resistive non-volatile memory components (high-density 

integration capability and extremely low energy 

consumption), a hardware with SNNs will have several 

orders of reduction in energy consumption. A dendritic-

inspired processing architecture was presented in 

addition to complementary metal-oxide semiconductor 

(CMOS) neuron circuits (Wu and Saxena, 2018).   

 
Table 1: A computer-brain comparison  

Aspects  Computer  The human brain  

Size  Big  Compact  

Software  Programs  Minds  

Hardware  Parallel (not long time ago)  Massively parallel  

Software/hardware  Separate  Brain emerged from minds  

Speed  Faster  Slower (most situations)  

State  Digital  Analogue  

Assembly  Man-made  Self (reconfigurable)  

Information unit  Bit  Symbol  

Power  High  Extremely low  

Circuit  Silicon  Neuronal  

Storage  Memory (modular)  Synapses  

Dimensionality  Single  Multi  

Basic computing element  Processor/functional unit  Neuron (or Cortex)  

Information representation  Digital  Mixed  

Processing  Serial (most computers), parallel  Parallel  

Clocking/firing  Synchronous (time driven)  Asynchronous (event driven)  

Number of connections  Limited (in general)  Huge  

Communication  Bidirectional  Unidirectional  

Metrics  Time and throughput  Time and quality  

Memory hierarchy  L1, L2, … MM, hard drive, …  STM, LTM, EM, sensory, …  

Information transmission  Electrical  Electro-chemical  

Memory addressing  Byte addressable  Content addressable  

Parts  Reliable  Noisy  

Information encoding  Bits  Rates or Times  

Clock shape  Regular periods  Spikes (event driven)  

Architecture  SISD, SIMD, MIMD  MISD  

Number of processing elements  Hundreds of processing elements  1011 neurons, each receiving and giving about 104 synapses  
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Brain-inspired circuit design is thwarted by two 

limits: (1) understanding the event-driven spike 

processing of the human brain and (2) developing 

predictive models for the design and optimization of 

cognitive circuits. A model for SNNs based on STDP in 

Resistive Switching Memory (RRAM) synapses was 

presented. Both an analytical model and a Monte Carlo 

(MC) model were presented to explain experimental data 

from a neuromorphic hardware. It was shown that the 

MC model of RRAM circuits and the analytical compact 

model of the STDP dynamics accurately predicted the 

learning behaviors in a spiking network with RRAM 

synapses (Pedretti et al., 2017).  

Brain-inspired computing is based on neural 

morphological engineering. TensorFlow was developed 

by the Google brain. It has been a frequently used neural 

network simulation framework. TensorFlow implements 

neural networks using Dataflow Graphs (DFG). It 

enables the DFG to partition into several subgraphs and 

use them simultaneously on multiple CPUs and GPUs. 

In general, brain High-Performance Computing (HPC) 

platforms suffer from poor scalability, a slow speed, and 

too much energy consumption. The Codelet model was 

proposed based on the advancement of the dataflow 

model. It successfully fulfilled distributed computation on 

a heterogeneous system and effectively improved the 

computation capability and speed due to a fine-grained 

asynchronous program execution and resource allocation. 

A brain-inspired computing platform was proposed based 

on the Codelet model, which fine-grained multithread 

scheduling policy and the asynchronous execution plan 

was implemented (Zeng et al., 2019).  

Brain Association Graph, Brain Networks, 

the Connectome, and Brain Reconstruction  

Graph theory is very useful for neuroscience research 

and it is a challenge to understand how topological 

architecture and functional features are related in the 

brain. However, research on task‐based functional 

neuroimaging has uncovered a core set of brain regions 

such as parietal and frontal lobes that support various 

cognitive tasks. A graph measure for describing the 

functional diversity of brain regions was proposed. The 

graph method has potential for studying how the 

functional diversity of brain regions evolve during brain 

development or is disrupted due to neuropsychiatric 

disorders (Yin et al., 2019).  

Complex network theory has been successfully used 

in discovering the brain topology and showing 

alterations to the brain network structure due to brain 

diseases, behaviors, and cognitive functions. Functional 

connectivity networks represent various brain regions as 

the nodes and the connectivity between them as edges of 

a graph (Munia and Aviyente, 2019). The relationship 

between ages over the adult lifespan and the functional 

connectivity within the large-scale brain networks was 

investigated. Graph analysis indicated that there was 

widespread reorganization of the functional brain 

networks while the age increased and that the 

reorganization proceeded towards a more integrated 

network topology. It was shown that there were 

substantial alterations in functional connectivity patterns 

that were characterized by higher between-network 

connectivity and weaker within-network connectivity in 

increased ages (Bagarinao et al., 2019).  

The connectome deals with neuron wiring patterns in 

the brain. The key role of specific structural links 

between neuronal populations for the global stability of 

cortex was investigated; the relation between 

experimentally observed activity and anatomical 

structure was explained (Schuecker et al., 2017). The 

connectome prediction method has been used to evaluate 

the ability of creative thinking from the patterns of brain 

connectivity at rest and during tasks, indicating that the 

variation in brain-network connectivity presents a 

trustworthy biomarker of the ability in creative thinking 

(Beaty et al., 2019). A connectome-based hybrid model 

for the brain network was developed from diffusion-

weighted Magnetic Resonance Imaging (MRI) 

tractography and region parcellations from anatomical 

MRI. It integrated individual functional and structural 

data with neural population dynamics to help multi-scale 

neurophysiological inference (Schirner et al., 2018).  

An entire brain is usually sectioned into many slices 

for high resolution imaging. Brain-related research in 

anatomical labeling, visualization, and 3D measurement 

can benefit from reconstructed 3D virtual brains. With 

the 3D reconstruction of brain volumes, a 2D cross-

section view from any angles is feasible, thus leading to 

more accurate anatomy labeling. Two methods for 

structure correction were presented for the brain 

reconstruction with multilayer tissue sections and they 

are: Tissue flattening and structure-based intensity 

propagation. Tissue flattening improves the quality of a 

reconstructed brain (Liang et al., 2018).  

Imaging Technologies Used for the Brain  

There are major structural and functional changes in 

the brain during the first decade of life, which lays the 

foundation for human cognition. But a non-invasive 

imaging technology used to study brain functions 

throughout neurodevelopment is limited because of the 

growth in head-size with the age and much head 

movement in young users. The development of quantum 

science and technology has allowed the development of 

wearable magnetoencephalography (MEG) technology 

that is likely to revolutionize electrophysiological 

measurements of brain activity. A lifespan-compliant 
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system of MEG was demonstrated, which showed a new 

approach to functional imaging (Hill et al., 2019).  

Brain imaging with MRI and computerized 

tomography enables to find biomarkers of brain 

pathology that are significant for the accurate diagnosis 

and phenotyping of various neurological diseases. 

Reading brain imaging text reports would be helpful for 

research as well as clinical practice. A natural language 

processing algorithm for identifying brain imaging 

phenotypes was developed. Using radiologists’ reports 

of brain imaging in clinical practices should be helpful 

for the cohort development and outcome ascertainment 

of neurological phenotypes (Wheater et al., 2019).  

Imaging neural activities at the cellular level in the 

deep brain is necessary to understand structures and 

functions of nervous systems. Completely implantable 

optical sensors that were recently developed enable to 

capture fluorescence signals. A simplified model for 

studying the photon transport in the biological tissue 

was developed and it was used to understand the optical 

performance of an implantable fluorescence imager. 

Spatial resolution of the implanted imager was 

computed and imaging qualities for groups of neurons 

in 2D and 3D configurations were assessed 

(Nazempour et al., 2019). 

Electrical impedance tomography (EIT) has been 
regarded as a promising candidate for brain stroke 
imaging because of its compactness and potential 
applications in bedside and emergency settings. The 
electrode–skin contact impedance and the low 
conductivity of skulls bring practice challenges to the 

EIT head imaging. The applications of capacitively 
coupled electrical impedance tomography (CCEIT) in 
brain imaging were investigated. CCEIT is a new 
contactless EIT technology that uses voltage excitation 
(Jiang and Soleimani, 2019).  

Chips and Devices Inspired by the Human 

Brain  

There are two main methods to develop Artificial 

General Intelligence (AGI): Neuroscience-oriented and 
computer-science-oriented. The Tianjic chip was 
developed that integrates the two method to present a 
synergistic and hybrid platform. It has reconfigurable 
building blocks, a many-core architecture, and a 
streamlined dataflow. It accommodates computer-

science-oriented algorithms for machine learning and 
implements several coding schemes and brain-inspired 
circuits easily (Pei et al., 2019).  

Many efforts have been made to create artificial 

synapses and neurons using different solid-state systems 

with ferroelectric materials, oxide-based memristive 

materials, phase-change materials, etc. Brain-inspired 

hardware paves a potential pathway to fulfill 

complicated cognitive tasks with low energy 

consumption. Using artificial synapses comprising solid-

state devices with nonvolatile and analog-memory 

functions is attractive for the realization of low-power, 

high-performance, and adaptive artificial neural 

networks (ANN). The artificial spintronic synapse 

enables to learn patterns and execute operations of brain-

like associative memory. Spintronics devices generally 

permit high-speed and virtually unlimited read/write 

operations and information storage without using a 

power supply, keeping promise for the fulfillment 

adaptive neuromorphic hardware with low power 

consumption (Fukami and Ohno, 2018).  

Memory plays a significant role in computing and 

Phase-Change Memory (PCM) is a very innovative 

emerging technology of non-volatile memory. A key 

feature of brain-inspired computing is the co-location of 

processing and memory. It is also inspired by using PCM 

components and people can design a co-processor with 

multiple crossbar arrays of PCM to facilitate training 

deep neural networks. It is very promising to implement 

in-place computing with data saved in a PCM device 

(Sebastian et al., 2018).  

STDP and a neuroscience-inspired model of learning 

were used in a bioinspired approach to programming 

memory devices. This approach was adapted to various 

memory devices that include stochastic binary memories 

such as conductive bridge memory and multivalued 

memories (e.g., phase-change memory). Emerging 

nonvolatile memory devices such as memristor are very 

compact and can be embedded in the CMOS circuitry, 

offering the benefit of nonvolatility and the advantage of 

fusing memory and computation. Long-term memory is 

stored in synapses (connections between the neurons) 

that are active computation units in the human brain. A 

synapse can transmit information from one neuron to 

another as well as adjust its strength (synaptic weight). 

This adaptation (called synaptic plasticity) is regarded as 

a very significant phenomenon for long-term learning. A 

cognitive system can have an instant on/off and provide 

the possibility of extremely reduced power consumption 

for the IoT (Querlioz et al., 2015).  
Brain-inspired hardware systems have obtained much 

traction due to low power consumption. Its asynchronous 

and distributed feature of neural computation due to low-

energy spikes leads to massive parallelism and high 

energy efficiency. The large-scale neuromorphic 

hardware enables the low-power implementation of 

large-scale neural networks used for a real-time 

applications. The IBM TrueNorth Neurosynaptic System 

is such a platform. It has close to state-of-the-art 

properties in different tasks of pattern recognition with 

extremely high energy efficiency due to the operation in 

the spiking domain. A spike-based realization of Long 

Short-Term Memory (LSTM) on the IBM TrueNorth 

Neurosynaptic Processor was developed. A standard 
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LSTM was split into modules and separately 

approximated using spiking neurons. The modules were 

in the form of corelets that were combined/connected 

and mapped to shape spike-based LSTM networks 

(Shrestha et al., 2017).  

Brain-Computer Interface, Cyborg, Neuro-

robotics, and Quantum Robotics  

Brain-Computer Interface  

A Brain-Computer Interface (BCI)-based system can 
perform capturing, amplifying, digitalizing, processing 
and decoding signals that are generated from a user 
while imagining movement, dealing with decision-
making and finishing a cognitive task. A BCI device can 
be a tool for cognitive rehabilitation, bring many benefits 
for patients in various aspects such as visuospatial 
orientation, Short-Term Memory (STM), and attention. 
In addition, a BCI system can serve as a safe place (for 
example, using the virtual reality technology) to perform 
rehabilitation training, reducing health risks for patients. 
A BCI system was demonstrated to generate important 
modulations in some brain wave characteristics that 
promote changes in cortical organization and 
connectivity. A BCI system assists in cortical 
reorganization and cognitive skill recovery. But the BCI 

needs to adapt to a user’s cognitive profiles according to 
mental state classification, signal processing, and 
feedback provision (da Silva-Sauer et al., 2019).  

An architecture of brain-inspired SNNs was developed 

that enables to learn and reveal deep in time–space 

structural and functional patterns from spatiotemporal 

data. The patterns can be expressed as deep knowledge in 

a partial case using deep spatio-temporal rules. This is a 

trend for developing a new type of brain-computer 

interface that is called Brain-Inspired Brain–Computer 

Interface (BI-BCI). A BI-BCI was developed and it could 

extract neural trajectories. Deep spatiotemporal rules on 

structural and functional interactions of distinct brain areas 

were employed for the event prediction in the BI-BCI 

(Kumarasinghe et al., 2020).  

A brain-computer interface (BCI) tries to make 
people interact with the external world via an 
alternative and non-muscular communication channel 
that utilizes brain signal responses to finish cognitive 
tasks (Baek et al., 2019). An Electroencephalography 

(EEG)-based BCI, especially a BCI using Motor-
Imagery (MI) data, has the potential in clinical 
applications. MI data are generated when a user imagines 
the limb movement (Padfield et al., 2019). However, 
major challenges affecting the widespread 
implementation of the BCI are outlined in Table 2.  

 
Table 2: Major challenges of the BCI wide applications (Baek et al., 2019; Padfield et al., 2019)  

Aspects  Challenge description  

Flawed Testing Processes  Extensive testing on wide and large populations is needed to achieve improvement; 

 however, testing processes in themselves are sometimes flawed.  

Ethical Issues  Ethical standards are required to guide the development of the BCI, including 

 suitable utilization of bio-signal data, privacy, and liability if accidents happening in 

 using controlled apparatus.  

Problems encountered during BCI illiteracy is a barrier to the widespread implementation (especially for EEG- 

the BCI Use based interfaces). It sometimes happens when users cannot control a BCI since they 

 do not produce required brain signals with a high quality.  

Commercialization  1) Adapting lab-based technology for a wider world with the consideration of costs, 

 general appeal, reliability and usability, choice of technology, and intuitivism.  

 2) Major developments are demanded in user-friendliness, sensors, and overall 

 system performance for the non-invasive BCI; completely implantable systems are 

 required for the invasive BCI to improve the system performance and robustness and 

 clinical trials are necessary to guarantee the system safety.  

Research and Development  1) Design of dependable systems with steady performance for diverse users (various 

 mental states) in various environments.  

 2) In interface paradigm design, control commands (e.g., moving a cursor) in the 

 current BCI system are assigned to specific mental states. A user must implement a 

 specific mental task for encoding a desired control command. But requirements for a 

 visual stimulus (e.g., letters and flashing digits) that the user needs to watch has 

 limited the accessibility, flexibility, and usability of the BCI.  

 3) Troubles with signal processing challenges (especially for MI EEG), including 

 feature extraction/selection (due to the non-stationary, highly non-linear, and 

 artefact-prone property of EEG data) and data fusion (especially a combination of 

 data from various EEG channels) for data dimensionality reduction and the 

 improvement of classification results.  

 4) In brain activity monitoring, different neural signals have been used for the BCI. 

 EEG is very frequently employed since it is noninvasive. But the requirement for 

 wet electrodes limits the daily use of the BCIs.  
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A future BCI system should (1) be easy to install; (2) 

work well in all scheduled environments; (3) be 

convenient, comfortable, and provide aesthetically 

acceptable mountings; (4) operate by telemetry without 

requiring wiring; (5) have functions for many hours 

without any maintenance; and (6) interface easily with 

diverse applications (Baek et al., 2019). 

Cognitive Knowledge Base (CKB) is a core of 

cognitive knowledge learning for cognitive robotics and 

Machine Learning (ML) systems as well as Brain-

Machine Interfaces (BMI). Features of the semantical 

CKB are quantitative, relational, weighted, hierarchical, 

and nonnegative. Autonomous knowledge acquisition 

and comprehension are key for BMI and interactions. A 

method for autonomous generation of the CKB by 

cognitive machines was presented based on models of 

cognitive machine learning and concept algebra. An 

algorithm of CKB generation was developed for 

autonomous machine learning from semantic expression 

and human’s knowledge (Wang et al., 2017). 

Cyborg and Robotics  

A Neuro-Robotics System (NRS) is the “brain” of a 

neuro-robot. Generally, a neuro-robot should have the 

following features and functions: (1) A human-like 

brain; (2) fusing multi-sensory information and 

modeling/simulating a complex environment; (3) 

emotion expression and interacting with humans 

naturally; (4) synergy, redundancy, and intelligence in 

brain-like control; 5) brain-like cognition and self-

learning; and 6) a bio-inspired body for flexibility and 

adaptability (Li et al., 2019). The framework of an NRS 

is illustrated in Fig. 1.  

Cyborg is a human-machine hybrid and has been an 

emerging technology that helps the disabled patients 

restore limb functions as well as enables healthy people 

to obtain superpower. Cyborg microrobots have started 

emerging and a macrophage-based microrobot for active 

targeted cancer therapy has been proposed (Wei et al., 

2019). Figure 2 illustrates the fabrication process of the 

microrobot (left) and targeted tumor cell destruction and 

therapy process (right).  

The quantum science and technology infrastructure in 

the future requires the development of quantum Cyber-

Physical-Cognitive (CPC) systems, integrating quantum 

communication and quantum information technology, 

quantum Artificial Intelligence (AI), and quantum 

robotics. Quantum robotics deals with the following 

main points (Gonçalves, 2019):  

 

 Field-based cognitive science is required to 

effectively deal with the computational basis for 

quantum AI 

 Entanglement is the key dynamics for the 

computation of quantum CPC systems 

 Quantum CPC systems are not closed and 

interactions with the environment are a key feature 

of the systems  

 AI needs to be integrated in quantum CPC systems 

so that computation needs the entanglement as well 

as takes advantage of the entanglement for bring 

adaptive changes in the environment 

 

 
 

Fig. 1: An NRS framework (Tucker et al., 2015; Li et al., 2019) 
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Fig. 2: A microrobot used for cancer therapy (Han et al., 2016) copyright 2016, springer nature 

 

Conclusion  

Brain-inspired computing is based on neural 

morphological principles. Its key features are the co-

location of processing and memory, high efficiency, and 

ultra-low energy consumption. Also, it is inspired by 

using PCM and promising in fulfilling in-place 

computation with data saved in a PCM device.  

The brain association graph method has potential for 

examining the functional diversity of specific brain 

lobes. Complicated network theory has been used in 

studying the brain topology. The connectome discloses 

neuron wiring patterns in the brain. It has been used to 

assess an individual’s ability in creative thinking from 

the patterns of brain connectivity. Reconstructed 3D 

virtual brains enable to benefit brain-related research and 

development. Brain imaging helps understand structures 

and functions of the nervous system.  

A BCI device can be a tool for cognitive 

rehabilitation. Also, a BCI system can be used in 

rehabilitation training, reducing health risks for patients. 

Main challenges of the BCI lie in flawed testing 

processes, ethical issues, problems encountered during 

the BCI use, commercialization, research and 

development. Cyborg technology can help disabled 

patients restore limb functions and enable healthy people 

to obtain superpower. A microrobot can be used in 

cancer therapy. The quantum infrastructure in the future 

requires that the quantum CPC system integrate quantum 

communication and quantum IT, quantum AI, and 

quantum robotics.  
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